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_evel O: Linear References

[+ e: T| Expression e has type 1'in a linear context I

Manually-Managed Memory & Box(T)”

e alloc: T —Ref T e free:Ref I' - T

Coniraction & “Use of moved value”
I''kFe T, IsFe: T,
x:Tkx:T e - ():Unit WwlyF(ene): 1) Q 1,

 t \

Axioms are precise about contexts Contexts are split between subexpressions

Don’t forget variables = No leaks! Don’t dupl. variables = No use-after-free!
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_evel 1: Immutable Borrows

[ e: T| Expression e has type 1'in a linear context I = S SEER L]y

edupl : Imm 7"—o Imm 7@ Imm 7T e - forget : Imm 7"— Unit

o - withbor : Ref T} — (Imm 7| — []|7,) = (Ref T)) ® T,

Temporarily
exchange for
borrow

Start with owned Result must outlive Take back

linear reference

borrows ownership
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I'Fe: T 1 31

I “outlives” all
Imm borrows

T 3 Imm
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Level 1: Outlives Modality

[]-Intro
I'Fe: T TI'3l

I “outlives” all
Imm borrows

['Fe:|]|T

T 3 Imm

I 1 1Im

1-Elim
C'ke: [T Erasable

I'Fe: T

I 3 I 1531

Unit J Imm Ref T 7 In

17" 3 Imm

Safe by []-Intro!

T,QT, 11




Level 1: Outlives Modality

[]-Intro

T 3 Imm

[ “outlives” all [-Elim
. outiives a
I’ ' Fe: T 1 3l Tmm borrows Ce:[IT Erasable
Lrelr Che:T
73T 7, 3Imm T, 71
Unit 3O Imm Ref 71 IT'®T, 31

11731

[]-Intro

No rules for Imm or —o
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_evel 2: Lifetimes

A an unrestricted lifetime ordering context, I " linear typing context

Lifetimes allow different borrows to be distinguished

Aj;e - withbor:Ref 7} - (VaC A. Imma 1| — [a]Tl,) - (Ref 1)) ® T,

[a]-Intro &85

Fresh lifetime a
shorter than all Tag borrow with a
others

Result must outlive
borrows at a

A;THe: T AFT da abrae AFb3a
d DOIFOWS
AT’ e [a]lT AFImmb T Ia
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GContraction, Lexical
. IMM = 1 it~ - Mut = Reborrows
Weakening Lifetimes
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Separation Logic
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Separation Logic

"rame Start with //, owned
M -> Temporarily ignore | during ¢
1P x Ote{ P, % I} - Reclaim ownership of 7, after e



Borrowing Separation Logic

Frame

(Otei}
PrxOtel P x )}

withbor : Ref /|, — Mut a T, — Ref 7, @

Borrow Frame
Va.{l — MutaP, % O}e{ !

(/= P, x Ole{l > P, % P,)

Temporarily establish invariant P, for a



Borrowing Separation Logic

Frame
et}
ok Ofer k1)
wilthbor : —o —o X
Borrow Frame Borrow Anti-Frame #8, ‘unsafe”

Va.{l — MutaP, % O}e{ | C = P x0Olelt — P, % I}
(= P *xOtelt — P, % I} >< { - MutaP, % QO}e{P,}

_ o _ Temporarily break and reestablish
Temporarily establish invariant P, for a _ _
invariant P,



Borrow Frame

ESOP 2017

Temporary Read-Only Permissions
for Separation Logic

Arthur Charguéraud and Francois Pottier

Inria*

Abstract. We present an extension of Separation Logic with a general
mechanism for temporarily converting any assertion (or “permission”) to
a read-only form. No accounting is required: our read-only permissions
can be freely duplicated and discarded. We argue that, in circumstances

Borrow Anti-Frame

LICS 2008

Hiding local state in direct style:
a higher-order anti-frame rule

Francois Pottier
INRIA

Abstract

Separation logic involves two dual forms of modularity:
local reasoning makes part of the store invisible within a
static scope, whereas hiding local state makes part of the
store invisible outside a static scope. In the recent litera-
ture, both idioms are explained in terms of a higher-order
frame rule. I point out that this approach to hiding local
state imposes continuation-passing style, which is imprac-
tical. Instead, I introduce a higher-order anti-frame rule,
which permits hiding local state in direct style. I formal-

On hidden state One often designs a piece of software so
that its implementation is imperative and relies on an inter-
nal state, but its specification does not betray this fact. By
this, I do not mean that the state appears under an abstract
type in the specification, so that clients do not have access to
its concrete representation. I mean that the very existence
of an internal state is not revealed in the specification, so
that clients have no knowledge whatsoever of it. A typical
example is that of a memory manager [9, 2, 7]: no knowl-
edge of the manager’s internal free list should be necessary
when reasoning about a client.
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From Linear Semantics to Borrow Semantics

Imm = tﬁ‘)e(!tci:r?nles -> Mut = Reborrows

)
)

Semantic Model

9

Borrow Frame & Anti-Frame Rules,

Frame Rule Semantic Typing
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Linear Resources

Disjoint Union of Heap
Fragments

Owned Ref

Exclusive:

Arbitrary updates
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Semantic Model: Resources (p)

Disjoint Union of Heap

Fragments In nested
Range of references,
Owned Ref legal Mut shared

states \ “dominates”
exclusive @

Temporarily shared:

No updates

10
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sSemantic Model: Locality

‘Baking in” the

f (p,e) =™ (p,e), then (ppep,e) == (ppep’,e) forall pg frame rule

Example @

Need to keep track of
“forgotten” nested borrows

Borrow Preservation B

If (p,e) =>* (p/,e’), then “Baking in” the
borrow frame

rule

reachable borrows in p & reachable borrows in p’

11
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semantic Model: Termination

(p,e) =>* (p’,v) for some p’, v Preserved by all program logic rules

Recall &)

Range Mutable refs = Circularity = Step-indexing? &
of legal

states

Insight: Borrows are naturally stratified by lifetimes

MutaMutbT)=>arC b

12
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Termination, Lifetime Stratification,

Leak Freedom Borrow Preserving Updates




