From Linearity to Borrowing

Andrew Wagner*, Olek Gierczak, Brianna Marshall, John Li*, Amal Ahmed*
Northeastern University (¢
OOPSLA 2025, Smgapore

*Attending—Come chat with us!

From Linearity to Borrowing

@ This is not a Rust talk

From Linearity to Borrowing

From Linearity to Borrowing

Contributions

1. A lightweight borrowing extension for the linear lambda calculus with references.

* No new syntax or operational semantics.
» Linear typing works “as usual.”

Contributions

1. A lightweight borrowing extension for the linear lambda calculus with references.

* No new syntax or operational semantics.
» Linear typing works “as usual.”

2. An incremental development of distinct borrowing features.

Linear Az = Imm = Lexical Lifetimes = Mut = Reborrows

Contributions

1. A lightweight borrowing extension for the linear lambda calculus with references.

* No new syntax or operational semantics.
» Linear typing works “as usual.”

2. An incremental development of distinct borrowing features.

Linear Az = Imm = Lexical Lifetimes = Mut = Reborrows

3. A layered soundness proof ensuring memory safety, leak freedom, & termination.

Type System gmmg Separation Logic Semantic Model

& “Borrow Checking” & “‘unsafe Code”

Contributions

1. A lightweight borrowing extension for the linear lambda calculus with references.

* No new syntax or operational semantics.
» Linear typing works “as usual.”

2. An incremental development of distinct borrowing features.

Linear Ay = Imm = Lexical Lifetimes = Mut = Reborrows

3. A layered soundness proof ensuring memory safety, leak freedom, & termination.

Type System Separation Logic Semantic Model

& “Borrow Checking” & “‘unsafe Code”

_evel O: Linear References

[+ e: T| Expression e has type 1 in a linear context 1

Manually-Managed Memory & Box(T)”

e alloc: T —Ref T e free:Ref I' - T

_evel O: Linear References

[+ e: T| Expression e has type 1 in a linear context 1

Manually-Managed Memory & Box(T)”

e alloc: T —Ref T e free:Ref I' - T

Axioms are precise about contexts

Don’t forget variables = No leaks!

_evel O: Linear References

[+ e: T| Expression e has type 1'in a linear context I

Manually-Managed Memory & Box(T)”

e alloc: T —Ref T e free:Ref I' - T

Coniraction & “Use of moved value”
I''kFe T, IsFe: T,
x:Tkx:T e - ():Unit WwlyF(ene): 1) Q 1,

 t \

Axioms are precise about contexts Contexts are split between subexpressions

Don’t forget variables = No leaks! Don’t dupl. variables = No use-after-free!

_evel 1: Immutable Borrows

[e: T| Expression e has type 1'in a linear context I = S SEER L]y

_evel 1: Immutable Borrows

[e: T| Expression e has type 1'in a linear context I = S SEER L]y

e-dupl:Imm 7 — Imm 7’® Imm 7T e - forget : Imm 7"— Unit

No free for Imm!

_evel 1: Immutable Borrows

[e: T| Expression e has type 1'in a linear context I = S SEER L]y

edupl : Imm 7"—o Imm 7@ Imm 7T e - forget : Imm 7"— Unit

o - withbor : Ref T} — (Imm 7| — []|7,) = (Ref T)) ® T,

Temporarily
exchange for
borrow

Start with owned Result must outlive Take back

linear reference

borrows ownership

Level 1: Outlives Modality

[]-Intro = []-Elim
, “outlives” all
I'Fe:|[|T

I'Fe: T

Level 1: Outlives Modality

[]-Intro - []-Elim
, “outlives” all
I'Fe: T 1 31 Tmm borrows Ce:[IT Erasable
Pre: T Cke:T

T 3 Imm

Level 1: Outlives Modality

[]-Intro
I'Fe: T 1 31

I “outlives” all
Imm borrows

T 3 Imm

[1-Elim
C'ke: [T Erasable

'Ee:[IT 'Fe: T
Base types Compound types inherit
'3l I'' 3 Imm 7, 3 Imm

Unit J Im Ref T'1

T1®T2:|Im

Level 1: Outlives Modality

[]-Intro
I'Fe: T TI'3l

I “outlives” all
Imm borrows

['Fe:|]|T

T 3 Imm

I 1 1Im

1-Elim
C'ke: [T Erasable

I'Fe: T

I 3 I 1531

Unit J Imm Ref T 7 In

17" 3 Imm

Safe by []-Intro!

T,QT, 11

Level 1: Outlives Modality

[]-Intro

T 3 Imm

[“outlives” all [-Elim
. outiives a
I’ ' Fe: T 1 3l Tmm borrows Ce:[IT Erasable
Lrelr Che:T
73T 7, 3Imm T, 71
Unit 3O Imm Ref 71 IT'®T, 31

11731

[]-Intro

No rules for Imm or —o

A:l'FHe: T

_evel 2: Lifetimes

A an unrestricted lifetime ordering context, I " linear typing context

Lifetimes allow different borrows to be distinguished

_evel 2: Lifetimes

A:T' e : T| A anunrestricted lifetime ordering context, 1" linear typing context

Lifetimes allow different borrows to be distinguished

Aj;e - withbor :Ref T} = (VaC A. Imma 71| — [a]l,) - (Ref T)) ® T,

Fresh litetime a Result must outlive

borrows at a

shorter than all Tag borrow with a
others

_evel 2: Lifetimes

A:T' e : T| A anunrestricted lifetime ordering context, 1" linear typing context

Lifetimes allow different borrows to be distinguished

Aj;e - withbor:Ref 7} - (VaC A. Imma 1| — [a]Tl,) - (Ref 1)) ® T,

Fresh lifetime a
shorter than all Tag borrow with a

others
[a]-Intro 4, =

a borrows
A;1'Fe:|alT

Result must outlive
borrows at a

A:l'FHe: T

_evel 2: Lifetimes

A an unrestricted lifetime ordering context, I " linear typing context

Lifetimes allow different borrows to be distinguished

Aj;e - withbor:Ref 7} - (VaC A. Imma 1| — [a]Tl,) - (Ref 1)) ® T,

[a]-Intro &85

Fresh lifetime a
shorter than all Tag borrow with a
others

Result must outlive
borrows at a

A;THe: T AFT da abrae AFb3a
d DOIFOWS
AT’ e [a]lT AFImmb T Ia

From Linear _ Typing to Borrow Typing
Type System

%

Contraction, » Lexical
. Imm = ot - Mut = Reborrows
Weakening Lifetimes

)

Separation Logic

Semantic Model

I I

From Linear _ Typing to Borrow Typing
Type System

Semantic Model

Separation Logic

From Linear Sep. Logic to Borrow _Sep. Logic

GContraction, Lexical
. IMM = 1 it~ - Mut = Reborrows
Weakening Lifetimes

)

Separation Logic

)

Separation Logic

Start with /’, owned

Frame

M -> Temporarily ignore | during ¢
(P, * Ole{P, % I’} - Reclaim ownership of P, after e

Separation Logic

"rame Start with //, owned
M -> Temporarily ignore | during ¢
1P x Ote{ P, % I} - Reclaim ownership of 7, after e

Borrowing Separation Logic

Frame

(Otei}
PrxOtel P x)}

withbor : Ref /|, — Mut a T, — Ref 7, @

Borrow Frame
Va.{l — MutaP, % O}e{ !

(/= P, x Ole{l > P, % P,)

Temporarily establish invariant P, for a

Borrowing Separation Logic

Frame
et}
ok Ofer k1)
wilthbor : —o —o X
Borrow Frame Borrow Anti-Frame #8, ‘unsafe”

Va.{l — MutaP, % O}e{ | C = P x0Olelt — P, % I}
(= P *xOtelt — P, % I} >< { - MutaP, % QO}e{P,}

_ o _ Temporarily break and reestablish
Temporarily establish invariant P, for a _ _
invariant P,

Borrow Frame

ESOP 2017

Temporary Read-Only Permissions
for Separation Logic

Arthur Charguéraud and Francois Pottier

Inria*

Abstract. We present an extension of Separation Logic with a general
mechanism for temporarily converting any assertion (or “permission”) to
a read-only form. No accounting is required: our read-only permissions
can be freely duplicated and discarded. We argue that, in circumstances

Borrow Anti-Frame

LICS 2008

Hiding local state in direct style:
a higher-order anti-frame rule

Francois Pottier
INRIA

Abstract

Separation logic involves two dual forms of modularity:
local reasoning makes part of the store invisible within a
static scope, whereas hiding local state makes part of the
store invisible outside a static scope. In the recent litera-
ture, both idioms are explained in terms of a higher-order
frame rule. I point out that this approach to hiding local
state imposes continuation-passing style, which is imprac-
tical. Instead, I introduce a higher-order anti-frame rule,
which permits hiding local state in direct style. I formal-

On hidden state One often designs a piece of software so
that its implementation is imperative and relies on an inter-
nal state, but its specification does not betray this fact. By
this, I do not mean that the state appears under an abstract
type in the specification, so that clients do not have access to
its concrete representation. I mean that the very existence
of an internal state is not revealed in the specification, so
that clients have no knowledge whatsoever of it. A typical
example is that of a memory manager [9, 2, 7]: no knowl-
edge of the manager’s internal free list should be necessary
when reasoning about a client.

From Linear Sep. Logic to Borrow _Sep. Logic

Type System

. * Imm = tﬁ‘)e“t(i:%les - Mut = Reborrows

%

Weakening
Separation Logic >
Borrow Frame & Anti-Frame Rules,
Frame Rule : : A
Semantic Typing E

Semantic Model

From Linear Sep. Logic to Borrow _Sep. Logic

GContraction, Lexical
. IMM = 1 it~ - Mut = Reborrows
Weakening Lifetimes

Separation Logic >

>

Borrow Frame & Anti-Frame Rules,
Semantic Typing E

Frame Rule

From Linear Semantics to Borrow Semantics

Imm = tﬁ‘)e(!tci:r?nles -> Mut = Reborrows

)
)

Semantic Model

9

Borrow Frame & Anti-Frame Rules,

Frame Rule Semantic Typing

Semantic Model: Resources (p)

Linear Resources

Semantic Model: Resources (p)

Linear Resources

Disjoint Union of Heap
Fragments

Owned Ref

Exclusive:

Arbitrary updates

10

Semantic Model: Resources (p)

Disjoint Union of Heap

Fragments
Range of
Owned Ref legal Mut
states
L ——V

Temporarily exclusive:
Type-preserving
updates

10

Semantic Model: Resources (p)

Disjoint Union of Heap

Fragments In nested
Range of references,
Owned Ref legal Mut shared

states \ “dominates”
exclusive @

Temporarily shared:

No updates

10

sSemantic Model: Locality

Frame Preservation

“‘Baking in” the

It (p,e) =% (p’,e’), then (prep,e) =% (ppep’,€) forall pg frame rule

11

sSemantic Model: Locality

‘Baking in” the

f (p,e) =™ (p,e), then (ppep,e) == (ppep’,e) forall pg frame rule

Example &

Need to keep track of
“forgotten” nested borrows

11

sSemantic Model: Locality

‘Baking in” the

f (p,e) =™ (p,e), then (ppep,e) == (ppep’,e) forall pg frame rule

Example @

Need to keep track of
“forgotten” nested borrows

Borrow Preservation B

If (p,e) =>* (p/,e’), then “Baking in” the
borrow frame

rule

reachable borrows in p & reachable borrows in p’

11

semantic Model: Termination

Termination

(p,e) =>* (p,v) for some p’, v Preserved by all program logic rules

12

semantic Model: Termination

Termination

(p,e) =>* (p,v) for some p’, v Preserved by all program logic rules

Recall b

Mutable refs = Circularity = Step-indexing? &

Temporarily exclusive:
Type-preserving
updates

12

semantic Model: Termination

(p,e) =>* (p’,v) for some p’, v Preserved by all program logic rules

Recall &)

Range Mutable refs = Circularity = Step-indexing? &
of legal

states

Insight: Borrows are naturally stratified by lifetimes

MutaMutbT)=>arC b

12

E Paper

From Linearity to Borrowing 3

Slides
Contact
Type System Ot
. . =
Woakani ’ * Imm = tﬁ‘)e(!c(iﬁles - Mut = Reborrows
Separation Logic >
* Borrow Frame & Anti-Frame Rules,
Frame Rule : : A
Semantic Typing E
Semantic Model >

Termination, Lifetime Stratification,

Leak Freedom Borrow Preserving Updates

