
From Linearity to Borrowing
Andrew Wagner*, Olek Gierczak, Brianna Marshall, John Li*, Amal Ahmed*

Northeastern University
OOPSLA 2025, Singapore
*Attending—Come chat with us!

1

From Linearity to Borrowing
This is not a Rust talk

1

From Linearity to Borrowing
This is not a Rust talk

How can we isolate borrowing as a language feature …

1

From Linearity to Borrowing
This is not a Rust talk

How can we isolate borrowing as a language feature
and develop it as an extension of linearity?

1

Contributions

2

1. A lightweight borrowing extension for the linear lambda calculus with references.
• No new syntax or operational semantics.
• Linear typing works “as usual.”

Contributions

2

1. A lightweight borrowing extension for the linear lambda calculus with references.
• No new syntax or operational semantics.
• Linear typing works “as usual.”

2. An incremental development of distinct borrowing features.
 Linear ➔ Imm ➔ Lexical Lifetimes ➔ Mut ➔ Reborrows λ𝚁𝚎𝚏

Contributions

2

1. A lightweight borrowing extension for the linear lambda calculus with references.
• No new syntax or operational semantics.
• Linear typing works “as usual.”

2. An incremental development of distinct borrowing features.
 Linear ➔ Imm ➔ Lexical Lifetimes ➔ Mut ➔ Reborrows λ𝚁𝚎𝚏

3. A layered soundness proof ensuring memory safety, leak freedom, & termination.

Type System Separation Logic Semantic Model
“Borrow Checking” “ Code”𝚞𝚗𝚜𝚊𝚏𝚎

Contributions

2

1. A lightweight borrowing extension for the linear lambda calculus with references.
• No new syntax or operational semantics.
• Linear typing works “as usual.”

2. An incremental development of distinct borrowing features.
 Linear ➔ Imm ➔ Lexical Lifetimes ➔ Mut ➔ Reborrows λ𝚁𝚎𝚏

3. A layered soundness proof ensuring memory safety, leak freedom, & termination.

Type System Separation Logic Semantic Model
“Borrow Checking” “ Code”𝚞𝚗𝚜𝚊𝚏𝚎
Type System

Level 0: Linear References

3

Γ ⊢ e : T Expression has type in a linear context e T Γ

∙ ⊢ 𝚊𝚕𝚕𝚘𝚌 : T ⊸ 𝚁𝚎𝚏 T ∙ ⊢ 𝚏𝚛𝚎𝚎 : 𝚁𝚎𝚏 T ⊸ T

Manually-Managed Memory “ ”𝙱𝚘𝚡⟨T⟩

Level 0: Linear References

3

Γ ⊢ e : T Expression has type in a linear context e T Γ

x : T ⊢ x : T ∙ ⊢ () : 𝚄𝚗𝚒𝚝

Weakening

Axioms are precise about contexts

Don’t forget variables ➔ No leaks!

∙ ⊢ 𝚊𝚕𝚕𝚘𝚌 : T ⊸ 𝚁𝚎𝚏 T ∙ ⊢ 𝚏𝚛𝚎𝚎 : 𝚁𝚎𝚏 T ⊸ T

Manually-Managed Memory “ ”𝙱𝚘𝚡⟨T⟩

Level 0: Linear References

3

Γ ⊢ e : T Expression has type in a linear context e T Γ

x : T ⊢ x : T ∙ ⊢ () : 𝚄𝚗𝚒𝚝

Weakening

Axioms are precise about contexts

Don’t forget variables ➔ No leaks!

Γ1 ⊢ e1 : T1 Γ2 ⊢ e2 : T2

Γ1 ⊎ Γ2 ⊢ (e1, e2) : T1 ⊗ T2

Contraction

Contexts are split between subexpressions

Don’t dupl. variables ➔ No use-after-free!

∙ ⊢ 𝚊𝚕𝚕𝚘𝚌 : T ⊸ 𝚁𝚎𝚏 T ∙ ⊢ 𝚏𝚛𝚎𝚎 : 𝚁𝚎𝚏 T ⊸ T

Manually-Managed Memory

“Use of moved value”

“ ”𝙱𝚘𝚡⟨T⟩

Level 1: Immutable Borrows

4

Γ ⊢ e : T Expression has type in a linear context e T Γ Same judgment!

Level 1: Immutable Borrows

4

Γ ⊢ e : T Expression has type in a linear context e T Γ Same judgment!

∙ ⊢ 𝚍𝚞𝚙𝚕 : 𝙸𝚖𝚖 T ⊸ 𝙸𝚖𝚖 T ⊗ 𝙸𝚖𝚖 T ∙ ⊢ 𝚏𝚘𝚛𝚐𝚎𝚝 : 𝙸𝚖𝚖 T ⊸ 𝚄𝚗𝚒𝚝

No for !𝚏𝚛𝚎𝚎 𝙸𝚖𝚖

Level 1: Immutable Borrows

4

Γ ⊢ e : T Expression has type in a linear context e T Γ Same judgment!

∙ ⊢ 𝚍𝚞𝚙𝚕 𝙸𝚖𝚖 𝙸𝚖𝚖 𝙸𝚖𝚖 ∙ ⊢ 𝚏𝚘𝚛𝚐𝚎𝚝 𝙸𝚖𝚖 𝚄𝚗𝚒𝚝

No for !𝚏𝚛𝚎𝚎 𝙸𝚖𝚖

∙ ⊢ 𝚠𝚒𝚝𝚑𝚋𝚘𝚛 : 𝚁𝚎𝚏 T1 ⊸ (𝙸𝚖𝚖 T1 ⊸ []T2) ⊸ (𝚁𝚎𝚏 T1) ⊗ T2

Start with owned
linear reference

Temporarily
exchange for

borrow
Result must outlive

borrows
Take back
ownership

Level 1: Outlives Modality

5

Γ ⊢ e : T Γ ⊐ 𝙸𝚖𝚖
Γ ⊢ e : []T

[]-Intro
 “outlives” all

 borrows
Γ
𝙸𝚖𝚖 Γ ⊢ e : []T

Γ ⊢ e : T

[]-Elim
Erasable

Level 1: Outlives Modality

5

Γ ⊢ e : T Γ ⊐ 𝙸𝚖𝚖

[]-Intro
 “outlives” all

 borrows
Γ
𝙸𝚖𝚖 Γ ⊢ e : []T

Γ ⊢ e : T

[]-Elim

T ⊐ 𝙸𝚖𝚖

Erasable

Level 1: Outlives Modality

5

Γ ⊢ e : T Γ ⊐ 𝙸𝚖𝚖

[]-Intro
 “outlives” all

 borrows
Γ
𝙸𝚖𝚖

𝚄𝚗𝚒𝚝 ⊐ 𝙸𝚖𝚖
T ⊐ 𝙸𝚖𝚖

𝚁𝚎𝚏 T ⊐ 𝙸𝚖𝚖
T1 ⊐ 𝙸𝚖𝚖 T2 ⊐ 𝙸𝚖𝚖

T1 ⊗ T2 ⊐ 𝙸𝚖𝚖

Γ ⊢ e : []T
Γ ⊢ e : T

[]-Elim

T ⊐ 𝙸𝚖𝚖 Base types Compound types inherit

Erasable

Level 1: Outlives Modality

5

Γ ⊢ e : T Γ ⊐ 𝙸𝚖𝚖

[]-Intro
 “outlives” all

 borrows
Γ
𝙸𝚖𝚖

𝚄𝚗𝚒𝚝 𝙸𝚖𝚖
T ⊐ 𝙸𝚖𝚖

𝚁𝚎𝚏 𝙸𝚖𝚖
T1 ⊐ 𝙸𝚖𝚖 𝙸𝚖𝚖

 𝙸𝚖𝚖

Γ ⊢ e : []T
Γ ⊢ e : T

[]-Elim

T ⊐ 𝙸𝚖𝚖

[]T ⊐ 𝙸𝚖𝚖

Base types Compound types inherit

Safe by []-Intro!

Erasable

Level 1: Outlives Modality

5

Γ ⊢ e : T Γ ⊐ 𝙸𝚖𝚖

[]-Intro
 “outlives” all

 borrows
Γ
𝙸𝚖𝚖

𝚄𝚗𝚒𝚝 𝙸𝚖𝚖
T ⊐ 𝙸𝚖𝚖

𝚁𝚎𝚏 𝙸𝚖𝚖
T1 ⊐ 𝙸𝚖𝚖 𝙸𝚖𝚖

 𝙸𝚖𝚖

Γ ⊢ e : []T
Γ ⊢ e : T

[]-Elim

T ⊐ 𝙸𝚖𝚖

[]T ⊐ 𝙸𝚖𝚖 No rules for or 𝙸𝚖𝚖 ⊸

Base types Compound types inherit

Safe by []-Intro!

Erasable

Level 2: Lifetimes

6

Δ; Γ ⊢ e : T an unrestricted lifetime ordering context, linear typing contextΔ Γ

Lifetimes allow different borrows to be distinguished

Level 2: Lifetimes

6

Δ; Γ ⊢ e : T an unrestricted lifetime ordering context, linear typing contextΔ Γ

Lifetimes allow different borrows to be distinguished

Δ; ∙ ⊢ 𝚠𝚒𝚝𝚑𝚋𝚘𝚛 : 𝚁𝚎𝚏 T1 ⊸ (∀a ⊏ Δ . 𝙸𝚖𝚖 a T1 ⊸ [a]T2) ⊸ (𝚁𝚎𝚏 T1) ⊗ T2

Fresh lifetime
shorter than all

others

a
Tag borrow with a Result must outlive

borrows at a

Level 2: Lifetimes

6

Δ; Γ ⊢ e : T an unrestricted lifetime ordering context, linear typing contextΔ Γ

Lifetimes allow different borrows to be distinguished

Δ; ∙ ⊢ 𝚠𝚒𝚝𝚑𝚋𝚘𝚛 𝚁𝚎𝚏 𝙸𝚖𝚖 𝚁𝚎𝚏

Fresh lifetime
shorter than all

others

a
Tag borrow with a Result must outlive

borrows at a

“T : ‘ ”𝚊

Δ; Γ ⊢ e : T Δ ⊢ Γ ⊐ a
Δ; Γ ⊢ e : [a]T

[]-Introa
 “outlives” all

 borrows
Γ

a

Level 2: Lifetimes

6

Δ; Γ ⊢ e : T an unrestricted lifetime ordering context, linear typing contextΔ Γ

Lifetimes allow different borrows to be distinguished

Δ; ∙ ⊢ 𝚠𝚒𝚝𝚑𝚋𝚘𝚛 𝚁𝚎𝚏 𝙸𝚖𝚖 𝚁𝚎𝚏

Fresh lifetime
shorter than all

others

a
Tag borrow with a Result must outlive

borrows at a

“T : ‘ ”𝚊

Δ; Γ ⊢ e : T Δ ⊢ Γ ⊐ a
Δ; Γ ⊢ e : [a]T

[]-Introa
 “outlives” all

 borrows
Γ

a
Δ ⊢ b ⊐ a

Δ ⊢ 𝙸𝚖𝚖 b T ⊐ a

Δ ⊢ T ⊐ 𝚊

From Linear _________ to Borrow _________

Separation Logic

Semantic Model

Typing Typing

7

Lexical
Lifetimes

Contraction,
Weakening Imm ➔ ➔ Mut ➔ Reborrows

Type System

From Linear _________ to Borrow _________

Separation Logic

Semantic Model

Typing Typing

7

Lexical
Lifetimes

Contraction,
Weakening Imm ➔ ➔ Mut ➔ Reborrows

Type System

From Linear _________ to Borrow _________

Separation Logic

Semantic Model

Sep. Logic Sep. Logic

7

Lexical
Lifetimes

Contraction,
Weakening Imm ➔ ➔ Mut ➔ Reborrows

Type System

Separation Logic

Borrowing Separation Logic

8

{Q}e{P2}
{P1 ⋆ Q}e{P1 ⋆ P2}

Frame Start with owned
➔ Temporarily ignore during
➔ Reclaim ownership of after

P1
P1 e

P1 e

Borrowing Separation Logic

8

{Q}e{P2}
{P1 ⋆ Q}e{P1 ⋆ P2}

Frame

𝚠𝚒𝚝𝚑𝚋𝚘𝚛 : 𝚁𝚎𝚏 T1 ⊸ (∀a . 𝙼𝚞𝚝 a T1 ⊸ [a]T2) ⊸ 𝚁𝚎𝚏 T1 ⊗ T2

 Start with owned
➔ Temporarily ignore during
➔ Reclaim ownership of after

P1
P1 e

P1 e

Borrowing Separation LogicBorrowing

8

{Q}e{P2}
{P1 ⋆ Q}e{P1 ⋆ P2}

Frame

𝚠𝚒𝚝𝚑𝚋𝚘𝚛 : 𝚁𝚎𝚏 T1 ⊸ (∀a . 𝙼𝚞𝚝 a T1 ⊸ [a]T2) ⊸ 𝚁𝚎𝚏 T1 ⊗ T2

∀ a . {ℓ ↦ Mut a P1 ⋆ Q}e{[a]P2}
{ℓ ↦ P1 ⋆ Q}e{ℓ ↦ P1 ⋆ P2}

Borrow Frame

Temporarily establish invariant for P1 a

{ℓ ↦ P1 ⋆ Q}e{ℓ ↦ P1 ⋆ P2}
{ℓ ↦ Mut a P1 ⋆ Q}e{P2}

Borrow Anti-Frame

Borrowing Separation LogicBorrowing

8

{Q}e{P2}
{P1 ⋆ Q}e{P1 ⋆ P2}

Frame

𝚠𝚒𝚝𝚑𝚋𝚘𝚛 𝚁𝚎𝚏 𝙼𝚞𝚝 𝚁𝚎𝚏

∀ a . {ℓ ↦ Mut a P1 ⋆ Q}e{[a]P2}
{ℓ ↦ P1 ⋆ Q}e{ℓ ↦ P1 ⋆ P2}

Borrow Frame “ ”𝚞𝚗𝚜𝚊𝚏𝚎

Temporarily break and reestablish
invariant P1

Temporarily establish invariant for P1 a

{ℓ ↦ P1 ⋆ Q}e{ℓ ↦ P1 ⋆ P2}
{ℓ ↦ Mut a P1 ⋆ Q}e{P2}

Borrow Anti-Frame

Borrowing Separation LogicBorrowing

8

{Q}e{P2}
{P1 ⋆ Q}e{P1 ⋆ P2}

Frame

𝚠𝚒𝚝𝚑𝚋𝚘𝚛 𝚁𝚎𝚏 𝙼𝚞𝚝 𝚁𝚎𝚏

∀ a . {ℓ ↦ Mut a P1 ⋆ Q}e{[a]P2}
{ℓ ↦ P1 ⋆ Q}e{ℓ ↦ P1 ⋆ P2}

Borrow Frame “ ”𝚞𝚗𝚜𝚊𝚏𝚎

Temporarily break and reestablish
invariant P1

Temporarily establish invariant for P1 a

ESOP 2017 LICS 2008

From Linear _________ to Borrow _________

Semantic Model

Sep. Logic Sep. Logic

9

Lexical
Lifetimes

Contraction,
Weakening Imm ➔ ➔ Mut ➔ Reborrows

Type System

Frame Rule Borrow Frame & Anti-Frame Rules,
Semantic Typing

Separation Logic

From Linear _________ to Borrow _________

Semantic Model

Sep. Logic Sep. Logic

9

Lexical
Lifetimes

Contraction,
Weakening Imm ➔ ➔ Mut ➔ Reborrows

Type System

Frame Rule Borrow Frame & Anti-Frame Rules,
Semantic Typing

Separation Logic

From Linear _________ to Borrow _________

Semantic Model
9

Lexical
Lifetimes

Contraction,
Weakening Imm ➔ ➔ Mut ➔ Reborrows

Type System

Frame Rule Borrow Frame & Anti-Frame Rules,
Semantic Typing

Separation Logic

Semantics Semantics

Semantic Model

Semantic Model: Resources ()ρ

10

Disjoint Union of Heap
Fragments

Linear Resources

Semantic Model: Resources ()ρ

10

Disjoint Union of Heap
Fragments

Linear Resources

Exclusive:
Arbitrary updates

ℓ v

Owned Ref

Semantic Model: Resources ()ρ

10

Disjoint Union of Heap
Fragments

Linear Resources

Exclusive:
Arbitrary updates

ℓ v

Owned Ref

Temporarily exclusive:
Type-preserving

updates

Mut
Range of

legal
states

(v1, ρ1)

(v3, ρ3)
(v2, ρ2)ℓ

Semantic Model: Resources ()ρ

10

Disjoint Union of Heap
Fragments

Linear Resources

Temporarily shared:
No updates

ℓ (v, ρ)

Imm
In nested

references,
shared

“dominates”
exclusive 😵💫

Exclusive:
Arbitrary updates

ℓ v

Owned Ref

Temporarily exclusive:
Type-preserving

updates

Mut
Range of

legal
states

(v1, ρ1)

(v3, ρ3)
(v2, ρ2)ℓ

Semantic Model: Locality

11

If , then for all (ρ, e) →* (ρ′￼, e′￼) (ρF ∙ ρ, e) →* (ρF ∙ ρ′￼, e′￼) ρF

Frame Preservation
“Baking in” the

frame rule

Semantic Model: Locality

11

If , then for all (ρ, e) →* (ρ′￼ ￼ (ρF ∙ ρ, e) →* (ρF ∙ ρ′￼ ￼ ρF

Frame Preservation
“Baking in” the

frame rule

ℓa : 𝙼𝚞𝚝 a (𝙾𝚙𝚝𝚒𝚘𝚗 (𝙼𝚞𝚝 b T)), ℓb : 𝙼𝚞𝚝 b T
(ℓa ↦ 𝚂𝚘𝚖𝚎(ℓb) ∙ ρ, e) →* (ℓa ↦ 𝙽𝚘𝚗𝚎 ∙ ρ′￼, e′￼)

Example 😵💫

Need to keep track of
“forgotten” nested borrows

Semantic Model: Locality

11

If , then for all (ρ, e) →* (ρ′￼ ￼ (ρF ∙ ρ, e) →* (ρF ∙ ρ′￼ ￼ ρF

Frame Preservation
“Baking in” the

frame rule

ℓa : 𝙼𝚞𝚝 𝙾𝚙𝚝𝚒𝚘𝚗 𝙼𝚞𝚝 𝙼𝚞𝚝
(ℓa ↦ 𝚂𝚘𝚖𝚎 𝙽𝚘𝚗𝚎 ￼ ￼

Example 😵💫

Need to keep track of
“forgotten” nested borrows

If , then
reachable borrows in reachable borrows in

(ρ, e) →* (ρ′￼, e′￼)
ρ ≈ ρ′￼

Borrow Preservation
“Baking in” the
borrow frame

rule

Semantic Model: Termination

12

 for some (ρ, e) →* (ρ′￼, v) ρ′￼, v

Termination

Preserved by all program logic rules

Semantic Model: Termination

12

 for some (ρ, e) →* (ρ′￼, v) ρ′￼, v

Termination

Preserved by all program logic rules

Mutable refs ➔ Circularity ➔ Step-indexing? 😰

Temporarily exclusive:
Type-preserving

updates

MutRange
of legal
states (v1, ρ1)

(v3, ρ3)
(v2, ρ2)ℓ

Recall ⏪

Semantic Model: Termination

12

 for some (ρ, e) →* (ρ′￼ ρ′￼

Termination

Preserved by all program logic rules

Mutable refs ➔ Circularity ➔ Step-indexing? 😰

Temporarily exclusive:
Type-preserving

updates

MutRange
of legal
states (v1, ρ1)

(v3, ρ3)
(v2, ρ2)ℓ

Recall ⏪

 ➔ 𝙼𝚞𝚝 a (𝙼𝚞𝚝 b T) a ⊏ b
Insight: Borrows are naturally stratified by lifetimes

From Linearity to Borrowing

Termination,
Leak Freedom

Lifetime Stratification,
Borrow Preserving Updates

Semantic Model

13

Lexical
Lifetimes

Contraction,
Weakening Imm ➔ ➔ Mut ➔ Reborrows

Type System

Frame Rule Borrow Frame & Anti-Frame Rules,
Semantic Typing

Separation Logic

Paper
Slides
Contact

