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Γ ⊢ e : T Expression  has type  in a linear context  e T Γ

x : T ⊢ x : T ∙ ⊢ () : 𝚄𝚗𝚒𝚝

Weakening

Axioms are precise about contexts

Don’t forget variables ➔ No leaks!

Γ1 ⊢ e1 : T1 Γ2 ⊢ e2 : T2

Γ1 ⊎ Γ2 ⊢ (e1, e2) : T1 ⊗ T2

Contraction
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Γ ⊢ e : []T
Γ ⊢ e : T
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T ⊐ 𝙸𝚖𝚖
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Disjoint Union of Heap 
Fragments

Linear Resources

Temporarily shared:               
No updates

ℓ (v, ρ)

Imm
In nested 

references, 
shared 

“dominates” 
exclusive 😵💫

Exclusive: 
Arbitrary updates

ℓ v

Owned Ref

Temporarily exclusive:             
Type-preserving 

updates

Mut
Range of 
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(v3, ρ3)
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If , then  for all (ρ, e) →* (ρ′￼ ￼ (ρF ∙ ρ, e) →* (ρF ∙ ρ′￼ ￼ ρF

Frame Preservation
“Baking in” the 

frame rule

ℓa : 𝙼𝚞𝚝  𝙾𝚙𝚝𝚒𝚘𝚗 𝙼𝚞𝚝     𝙼𝚞𝚝 
(ℓa ↦ 𝚂𝚘𝚖𝚎       𝙽𝚘𝚗𝚎  ￼ ￼

Example 😵💫

Need to keep track of 
“forgotten” nested borrows

If , then
reachable borrows in   reachable borrows in  

(ρ, e) →* (ρ′￼, e′￼)
ρ ≈ ρ′￼

Borrow Preservation
“Baking in” the 
borrow frame 

rule
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 for some (ρ, e) →* (ρ′￼  ρ′￼

Termination

Preserved by all program logic rules

Mutable refs ➔ Circularity ➔ Step-indexing? 😰

Temporarily exclusive:             
Type-preserving 

updates

MutRange 
of legal 
states (v1, ρ1)

(v3, ρ3)
(v2, ρ2)ℓ

Recall ⏪

 ➔ 𝙼𝚞𝚝 a (𝙼𝚞𝚝 b T) a ⊏ b
Insight: Borrows are naturally stratified by lifetimes 
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