The Specification of
Application Binary Interfaces

Andrew Wagner

Northeastern University
April 30, 2025 @ CS1710, Brown University

About Me

Then
e Brown Class of 2020 €2

e Advised by Tim and Shriram

About Me

Then
e Brown Class of 2020 €2

e Advised by Tim and Shriram
e TA/HTAd LS 3 times

About Me

Then
e Brown Class of 2020 €2

e Advised by Tim and Shriram
e TA/HTAd LSS 3 times
e Jeam Toad

NEJ | F[JH svsms

e — ~ :
—— =

About Me

Then
e Brown Class of 2020 &2

e Advised by Tim and Shriram

e TA/HTAd LIS 3 times

e Jeam Toad

Now

e PhD student with Amal Ahmed at NEU

e [ocus on the semantics of language
iInteroperability

2

Piecing Languages Together

Application Programming Interface (API)

Piecing Languages Together

Foreign Function Interface (FFI)

Piecing Languages Together

/

\

’

N

gl Il Il D DD DD D D DD DD DD DD D N S .y

N
\

Foreign Function Interface (FFI)

TyDe23

Semantic Encapsulation using Linking Types

Daniel Patterson
dbp@dbpmail.net
Northeastern University
Boston, MA, USA

Abstract

Interoperability pervades nearly all mainstream language
implementations, as most systems leverage subcomponents
written in different languages. And yet, such linking can
expose a language to foreign behaviors that are internally in-
expressible, which poses a serious threat to safety invariants
and programmer reasoning. To preserve such invariants, a
language may try to add features to limit the reliance on
external libraries, but endless extensions can obscure the
core abstractions the language was designed to provide.

Andrew Wagner
Northeastern University

Boston, MA, USA
ahwagner@ccs.neu.edu

Amal Ahmed

amal@ccs.neu.edu
Northeastern University
Boston, MA, USA

ACM Reference Format:

Daniel Patterson, Andrew Wagner, and Amal Ahmed. 2023. Seman-
tic Encapsulation using Linking Types. In Proceedings of the 8th
ACM SIGPLAN International Workshop on Type-Driven Development
(TyDe °23), September 4, 2023, Seattle, WA, USA. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3609027.3609405

1 Introduction

Lancuages cannot exist in isolation. Foreien function inter-

Crash Course: Memory Safety

int *x = malloc(sizeof(int));

Manually managed memory *x =42:
e C does not guarantee safety free(x);
return *x;

// SIGSEGV: Seg. fault

Crash Course: Memory Safety

int *x = malloc(sizeof(int));
Manually managed memory *x =42:

e C does not guarantee safety free(x);

e Rust guarantees safety using fancy types return *x;
// SIGSEGV: Seg. fault

Crash Course: Memory Safety
int *x = malloc(sizeof(int));
Manually managed memory *x = 42:
e (does not guarantee safety free(x);

e Rust guarantees safety using fancy types return *x;
// SIGSEGV: Seg. fault

Automatically managed memory
e Reference counting (e.g., Swift) let X = ref 42 in !x
e Garbage collection (e.g., OCaml) // no explicit free

Crash Course: Memory Safety
int *x = malloc(sizeof(int));
Manually managed memory *x = 42:
e (does not guarantee safety free(x);

e Rust guarantees safety using fancy types return *x;
// SIGSEGV: Seg. fault

Automatically managed memory

e Reference counting (e.g., Swift) let x = ref 42 in !x
e Garbage collection (e.g., OCaml) // no explicit free

No explicit memory (e.g., Haskell)

42 1n X

let x

Piecing Safe Languages Together

’_______

Piecing Safe Languages Together

IS S S S B s Em

’_______

Piecing Safe Languages Together in Practice

_______N

gl B Il I I IS = -

- s - - - - - .

I DN IS IS IS IS IS IDEE IS IS IS IEE DS IDE s . EEEE I S S S S IS B S B B S e e

Why C?

Because every language
already “speaks C”

But Why Does Every
Language Speak C?

Why C?

Because every language
already “speaks C”

But Why Does Every

Why C?
y e Language Speak C?
Because every language Because C Is committed to
already “speaks C” ABI stability

“The standard is haunted ... by that Three Letter
Demon. ... a contract was forged in blood.”
— JeanHeyd Meneide, WG14 (C/C++ Compatibility)

What is an ABI?

Application Binary Interface (ABI)

The run-time contract for usinga particular API (orfor an

entire library), including things like symbol names, calling conventions, and
type layout information.

— Swift

What is an ABI?

Application Binary Interface (ABI)

The run-time contract for usinga particular API (orfor an
entire library), including things like symbol names, calling conventions, and

type layout information. ——

behavior
— Swift

What is an ABI?

Application Binary Interface (ABI)

The run-time contract for usinga particular API (orfor an
entire library), including things like symbol names, calling conventions, and

type layout information. ——

behavior
— Swift

int foo(int fst, int snd)
foo : (Int, Int) -> Int int foo(int indir[])

void foo(int indir[], int *ret)

ABI Stability

This API

Will Have
This ABI

Today*, Tomorrow, & Forever

* In Theory @

10

ABI Instability

Today

Tomorrow?

11

ABI Instability

Today Tomorrow?

Rust Standard Library

Why Use an ABI?

Why Use an ABI? Interoperability!

12

Why Use an ABI? Interoperability!

12

Why Use an ABI? Interoperability!

<I Compat
Compiler
v

Compiler

12

Why Use an ABI? Interoperability for | Compilers |

Compiler 1 I Compller 2

13

Why Use an ABI? Interoperability for

<IAPI Compat
I [
Compiler l Compiler

14

So Why Doesn’t Every Language Stabilize an ABI?

So Why Doesn’t Every Language Stabilize an ABI?

Fear of Commitment @&

So Why Doesn’t Every Language Stabilize an ABI?

Fear of Commitment @8

Example: What is the Layout of a

Option 1: Rigid Layout Lie cas

[struct Student {reg : bool, id : int}]|()

+0

+1

+3

+3

+4

TRUE

?

?

?

16

Option 1: Rigid Layout Lie cas

[struct Student {reg : bool, id : int}]|()

+0 (+]1 (+ |+8 |+4 |+ |[(+6 [(+Y

TRUE| ? ? ? 1710

No reordering)U«/

[struct Student {id : int, reg : bool } [|(¢)

+0Q0 (+]1 |+ |+8 [(+4 |+ |+6 [+

1710 TRUE ? ? ?

Option 1: Rigid Layout Lie cas

[struct Student {reg : bool, id : Iint}]|(¥)

+0 |+]1 (+¥2 [+8 |+4 |+ |(+6 [+

TRUE| ? ? ? 1710

No extensions)U(

[struct Student {reg : bool, id : int, year : char}]|(¢)

+Q0 |(+1 |+1& |(+&8 |+4 |+§ |(+6 |+'¢ |+8

TRUE|, ? ? ? 1710

Option 1: Rigid Layout Lie cas

[struct Student {reg : bool, id : Iint}]|(¥)

/%
torvalds/linux/include/uapi/linux/stat.h
+0 |+1 [(+2 [+8 (+4 |+§5 |+6 |+% y / / /uapi/ /
struct statx {
TRUE ? ? ? 1710
__u6d4d spare3[9];
/* Spare space for future expansion */
No extensions)W

[struct Student {reg : bool, id : int, year : char}]|(¢)

+Q0 (+1 |+& (+8 (¥4 |+§ |+6 (+7 |(+8 |+9 (+10 (+11

TRUE| 2 ? ? 1710 3 ? ? ?

17

Option 1: Rigid Layout Lie cas

[struct Student {reg : bool, id : int, year : char}]|(¢)

+Q0 |(+1 +2 (+8 |+4 |+ [(+6 |+%¢ |[+8

TRUE| ? ? ? 1710 3

No optimizations?!)U«/

[struct Student {reg : bool, id : int, year : char}]|(¢)

+Q0 |(+]1 [+ |+8 (¥4 |+§5 [(+6 |+%

TRUE| 3 ? ? 1710

Option 2: Resilient Layout Like switt ABi

Option 2: Resilient Layout Like switt ABi
Client Using Student

Offset Table

® reg o000 id Y

o0 oreg o000 oid o000

X Oreg XX Oid +1 +z +3 XX

eee | TRUE| ,,, 1710

Option 2: Resilient Layout tike swittAgi

Client Using Student = Library Providing Student
Offset Table Offset Table
reg |... id |... reg id year
o Oreg o0 Oid Y S 0 L.
oo |Oreg |ooe|0ia [+1 [+2 [+3 |... = |40 [+1 [+2 [+3 [+a|+5 [+6 |+7

.. |TRUE/... 1710 1710 3 |TRUE| ? | °

Option 2: Resilient Layout tike swittAgi

Client Using Student = Library Providing Student
Offset Table Offset Table
reg |... | id |... reg | id | year
o| Oreg | eoe | Oid | oo 5 0 4
vo |Oreg e |Oia |[*1 [+8 [+3 |... +0 (+1 [+2 [+3 |+4(+5 |+6 |+7
.o | TRURE|,,. 1710 veo 1710 3 [TRUE ? ?

Many valid options => Flexibility ~

Option 2: Resilient Layout tike swittAgi

Client Using Student = Library Providing Student
Offset Table Offset Table
reg |... | id |... reg | id | year
o| Oreg | see | Oid | ooe 5 0 4
vo |Oreg e |Oia |[*1 [+8 [+3 |... +0 (+1 [+2 [+3 |+4(+5 |+6 |+7
.o | TRURE|,,. 1710 veo 1710 3 [TRUE ? ?

Indirect access = Performance "\ Many valid options => Flexibility ~

Consequences: Library Fvolution

E— =

20

Consequences: Library Evolution

ﬂ Compile ﬂ
| Update

20

Consequences: Library Evolution

ﬂ Compile ﬂ
H Compatlble—r Update

T2 IS an ABI compatible update from 11 If
[To] refines [T1]

20

Consequences: Library Evolution

ﬂ Compile ﬂ
H Compatible —T Update 1
C 1

Swift T2 IS an ABI compatible update from 11 If
M |[T2]] reflnes |[T1]]
Flexible Rigid

20

To Stabilize or Not to Stabilize?
Pros

+ Precise control of interface to other languages

+ First-class support for shared libraries

Cons

= (Can stunt language growth
= Limits compiler optimizations
= Tension between flexibility and performance

— Pressure on library developers

21

To Stabilize or Not to Stabilize?

Pros

+ Precise control of interface to other languages

+ First-class support for shared libraries

() Issues 600

Code Blame @ 439 lines (230 loc) - 56.2 KB

crABIv1#34/0

Swift ABI Stability Manifesto

Il Pull request

11 0pen joshtriplett wants to merge 5 commit

Cons

= (Can stunt language growth
= Limits compiler optimizations
= Tension between flexibility and performance

— Pressure on library developers

C++

WG21 — C++ Committee

ABI Review
Group

21

How Are ABlIs Specified?

C ABI Swift ABI

How Are ABlIs Specified?

C ABI

271 PDF pages of prose

SYSTEM V
PPLICATI

Swift ABI

22

How Are ABlIs Specified?

C ABI

271 PDF pages of prose

SYSTEM V
APPLICATION BINARY INTERFACE

150 PDF pages of prose

SYSTEM V APPLICATION BINARY INTERFACE
PowerPCProcessorSupplement

by
SteveZucker, SunSoft
KariKarhi, IBM

September 1995

Swift ABI

22

How Are ABlIs Specified?

C ABI

271 PDF pages of prose

SYSTEM V
APPLICATION BINARY INTERFACE

150 PDF pages of prose

SYSTEM V APPLICATION BINARY INTERFACE
PowerPC ProcessorSupplement

by
Steve Zucker, SunSoft
KariKarhi, IBM

September 1995

Swift ABI
O swiftlang / swift

<> Code (%) Issues 5k+ i9 Pullrequests 11k () Security |~ Insights

al

¥ main ~ swift /docs /ABl/ (&

g xedin [Docs] NFC: Remove last remaining references to @execution attribute

..
h
b
D
h
O
O
&
&
h

5002 RST lines of prose

CallingConvention.rst
CallingConventionSummary.rst
GenericSignature.md
KeyPaths.md

Mangling.rst

OldMangling.rst
RegisterUsage.md
TypelLayout.rst

TypeMetadata.rst

22

How Can ABIs Be Specified Formally?

The run-time contract for usinga particular API

23

How Can ABIs Be Specified Formally?

The run-time contract for usinga particular API

This Type T

23

How Can ABIs Be Specified Formally?

L]

The run-time contract for usinga particular API

This Type T

Is Realistically Realized [Benton06]
By These Target Programs

[TI={el...}}

23

How Can ABIs Be Specified Formally?

The run-time contract for usinga particular API

This Type T Our Approach

e iIs ABl compliant with T If

e e [Tl

Is Realistically Realized [Benton06]

By These Target Programs
OOPSLA24
[t]={el... }

Realistic Realizability: Specifying ABIs You Can Count On

ANDREW WAGNER, Northeastern University, USA
ZACHARY EISBACH, Northeastern University, USA
AMAL AHMED, Northeastern University, USA

The Application Binary Interface (ABI) for a language defines the interoperability rules for its target platforms,
including data layout and calling conventions, such that compliance with the rules ensures “safe” execution
and perhaps certain resource usage guarantees. These rules are relied upon by compilers, libraries, and foreign-
function interfaces. Unfortunately, ABIs are typically specified in prose, and while type systems for source
h D T T Y T o % R P T T b D I R R T T . . T B A

23

The Recipe

Target

24

The Recipe

e Define the ABI as a mapping
| — || from source types T to
separation logic predicates
over target terms

The Recipe

Source

e Define the ABI as a mapping
| — || from source types T to
separation logic predicates
over target terms

The Recipe

Source

e Define the ABI as a mapping
| — || from source types T to
separation logic predicates
over target terms

e Prove compiler compliance
by showing that e € [[T |]
whenever a source term € of
type T compiles to target term
€

24

The Recipe

Source

e Define the ABI as a mapping
| — || from source types T to
over target terms

e Prove compiler compliance
by showing that e € [[T |]
whenever a source term e of
type T compiles to target term
€

24

Crash Course: Hoare Logic

Pretv. Q]

“In any state satisfying the precondition P,
expression e will run to a value v

and a state satisfying postcondition Q

25

Crash Course: Hoare Logic

Pretv. Q]

“In any state satisfying the precondition P,
expression e will run to a value v

and a state satisfying postcondition Q

10— 3tloadd{v.v=3A70— 3}
_Y_I

“Location 7

maps to the value 3
INn memory”

25

Crash Course: Hoare Logic

{f 1 —> Vl /\ f 2 > V2} Memory ‘ ‘:
free fl; \ (1 l2
{KQ > Vz} s o E

....
lll

load s
(V.V=VyA Ly Vs

26

Crash Course: Hoare Logic

{fl = V4 N\ fz > V2} Memory
freesy; >’< Ll

ramrt \ el
load s

V. V=V Al 5 Vs}

26

Crash Course: Hoare Logic

{fl = V4 A\ fz > V2} Memory |
load s

V. V=V Al 5 Vs}

26

Crash Course: Hoare Logic

{fl = V4 A\ fz > V2} Memory |
load s

V. V=V Al 5 Vs}

26

Crash Course: Hoare Logic

BUtWhatrffl — fz — f??

{f 1 —> Vl /\ f 2 > V2} Memory ‘
free?; \ 20

o> Vo) - .E
load ;s

V. V=V Al Vs}

27

Crash Course: Hoare Logic

BUtWhatrffl — fz — f??

WiV ANCy = Vo) e —
free?y;

{ } :“ ...
load ;s

27

Crash Course: Hoare Logic

WP VAL, B Vo)

BUtWhatrffl — fz — f??

lll
PY L 4

27

Crash Course: Separation Logic

Prev.dj

- (Frame)

"Any valid triple is still valid if extended with a separate frame (Px)’

Crash Course: Separation Logic

Separating Conjunction (“sep”) {P } e { v Q }

- (Frame)

"Any valid triple is still valid if extended with a separate frame (Px)’

28

Crash Course: Separation Logic

Separating Conjunction (“sep”) {P } e { v Q }

- (Frame)

"Any valid triple is still valid if extended with a separate frame (Px)’

[= v,k = v, False

28

Crash Course: Separation Logic

No aliasing = No use-after-free
iV kLo Vs
free?;
o> Vs
load ;s

{(V.V=Vy ALy > Vs

29

Specifying Layout

[struct Student {reg : bool,id : int}]|(¢)

+0 (+]1 (+8 |+8 |+4 |+5 |[(+6 [(+Y

TRUE| ? ? ? 1710

3 7
fHTRUE*(*f+i — ?) *(*f+i — bytel._4(1710))
=1 i=4

Calling Conventions

[T, — T,I()

Calling Conventions

[T, — T,I()

(x [T 0D EED{v, . [T,(v,)}

31

Calling Conventions

[T, — T,I()

Argument Order

(o [T 0T, [T0)} v {x [T, 1) T {v, . [T,0(v)}
Left-to-Right Right-to-Left

31

Calling Conventions

[T, — T,I()

Argument Order

(% [T AT [T} vse (% [T G v, [T}
Left-to-Right Right-to-Left

Ownership

{ % [[T1]](V15}f(7{){vg ALTHNCvs)) vse { % [[T1]](v15}f(7{){v2. x [[T1]](V15 *x [[T5]1(vs)])
Caller Save Callee Save

31

The Recipe

Source

e Define the ABI as a mapping
| — || from source types T to
separation logic predicates
over target terms

e Prove compiler compliance
by showing that e € [[T |]
whenever a source term € of
type T compiles to target term
€

32

Multi-Pass Compilation (Ongoing)

Source Front-End Intermediate

rustc

LLVM

Back-End

Emscripten

Target

Wasm

33

Multi-Pass Compilation (Ongoing)

Source Front-End Intermediate

rustc

LLVM

Back-End

Emscripten

Target

Wasm

33

Multi-Pass Compilation (Ongoing)

Source Front-End Intermediate Back-End

rustc Emscripten

LLVM

Target

Wasm

33

Multi-Pass Compilation (Ongoing)

Source Front-End Intermediate Back-End Target

rustc Emscripten

LLVM

Wasm

How can we allow independent updates to the front-end and back-end?

33

Takeaways

The Methodology Compiler Compliance, Library Evolution, FFI Safety”

) ‘ I '@
i Update
| Cli

The Design Decisions

TRUE ?

Performance vs. Flexibility
[struct Student {reg : bool, id : Iint}]](£)

Client Using Student . Library Providing Student

Offset Table . Offset Table

=] Paper Resilient

Slides o | o e
Contact

[m] 2k

