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“The standard is haunted ... by that Three Letter

Demon. ... a contract was forged in blood.”

— JeanHeyd Meneide, WG14 C/C++ Compatibility Chair
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@ What Is an ABI? w7 Who Cares?

Data layouts %  Swift: AB/ Stability Manifesto
Calling conventions

% {R)Rust: crABI

Name mangling
Safety invariants * C C++: WG21 ARG

Ownership * wa WASM: Component Model

% @ You!
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All the Languages Together




All the Languages Together
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e Multi-Lang. Boundaries [MFOQ7]
e Linking Types [PWA23]
e Probably a C FFI @
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All the Libraries Together
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Towards a Formal ABI

e |anguages are already grappling with these problems
e (Growing dissatisfaction with status quo

e Demand for richer ABIs

e Design decisions, tradeoffs, uncharted territory




Towards a Formal ABI

e |anguages are already grappling with these problems
e (Growing dissatisfaction with status quo
e Demand for richer ABIs

e Design decisions, tradeoffs, uncharted territory

Can we provide a semantic foundation?
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What Is an ABI, Formally?

“This source Interface ...”

This Type T

T is ABl compliant with T if

T e [T]

— ... describes target programs like this”

Denotes These Programs
[TI={TI... }——————Semantic Typing via Realizability
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s this a good spec?




T is ABI compliant with T if 1. Formalization: Can the spec capture

T e [T] all the pertinent details?

2. Application: Can the spec be used

In all the relevant scenarios?

Is this a good spec?




Case Study: Reference Counting

e PCF-ish Source

o Records, variants, higher-order recursive functions

e (-ish Target

o Block-based memory, pointer arithmetic
e Reference Counting ABI

o All values are boxed and reference-counted

o Separation logic specification
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Formalization: Semantic Typing via Realizability

['Ee:T

~ { “Prestate like I ”} e {v. v like T”}

(['=x:T,)

{* R[[Tx]](x)} e {t’. R(T] (t’)}
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Formalization: Reference Layout

Ref. Count Object Data
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Formalization: Reference Layout

Ref. Count Object Data

R[[Z]l(f) . \ﬁ 2 +1... >

c O|Z](¢+ 1;

=

O|Z||(¢+1)=Fn.t+1 > n




Formalization: Ownership + Sharing
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2 +1...

RIT](¢) > 1
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Formalization: Ownership + Sharing

Y/, 2 +1...
RIT] (f)\/f S OT|(e+1)
‘\7{[[7"]] ()
RITI ()
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Formalization: Ownership + Sharing

2 2 +1...
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Formalization: Ownership + Sharing

Y/, 2 +1...

=L O[T](e+ 1)

R T (l’)\/

RC-DECR

{R[[T]] (t’)} ——¢ {n.
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Formalization: Ownership + Sharing

Y/, 2 +1...
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Formalization: Ownership + Sharing
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Formalization: Ownership + Sharing
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Formalization: Ownership + Sharing

Y/, 2 +1...

\/1 O[T (¢ + 1)
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Formalization: Ownership + Sharing

Y/, 2 +1...

RIT](¢) 1 +
~_ A O[T](¢+1)

RC-NEW

IRITI)} e {0]
{t’ — 1% O|T(¢+ 1)} e {Q}




Formalization: Compound Layout

O|T. X L[ (¢) =
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Formalization: Compound Layout

O[T, x T,] (¢) ~ F[ﬁre_ _—

:*f+1l—>t’2:

L - Y
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Formalization: Compound Layout

O|T, x ]| (¢) =
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Formalization: Compound Layout

O|T, X T, || (¢) =

Also: I {

£ 1 !
Records and | ) ' |* R T ( |
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Formalization: Calling Convention

O[T, > Ll(e)c3f.t— [ %

Pointer to function
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Formalization: Calling Convention

O[T, > L(¢)=3f.t— %
Ve ARIT (20} f(81) {62 RIT[(22)}

Pointer to function

Calling convention:
Caller retain
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Formalization: Calling Convention

0[[T1 —> TZ]]([) = f { —> f * Pointer to function

Vo ARITN ()} f(8) {2 RIT] (22)}  Some conventon

VS

Ve RITIE)} £ {6 RIT] () * RIT] ()}

Callee retain
Also:
Closures



Application: Compiler Compliance
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Application: Compiler Compliance

o -

Compliant

- 1S an compliant compiler if

S:T and S~ T implies T e [1]
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Application: FF| Safety

Compile Compliant
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Application: FF| Safety

Compile Compliant

Also
ABI
mlgratlon




Application: Library Compatibility
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Application: Library Compatibility
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T e[t2] implies T e [T41]
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Application: Library Compatibility

ﬂ = E“
Compatible [T Update
011
I
T |

Swift ? C T2 IS an compatible update from 11 if

M I e [T2] Imp/IeS I e [T4]

Flexible Rigid
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Next Steps

% Wrapping up case study
+ Variations on design
% Idiosyncrasies of Swift ABI
4+ Resilient type layouts, reabstraction (polymorphism)

% Rust ABI over Wasm

4+ Component Model (prev. Interface Types) building blocks
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Takeaways

Formalization

Application

Let’s Chat!

Email: ahwagner@ccs.neu.edu
Web: andrewwagner.io

OF 410
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