All the Binaries Together
A Semantic Approach to ABIs

- ANndrew Wagner, Amal Ahmed
| l (Secure Interoperability, Languages,and Compilers)

1]

All the Binaries Together
A Semantic Approach to/ABIs

- ANndrew Wagner, Amal Ahmed
| l (Secure Interoperability, Languages,and Compilers)

“The standard is haunted ... by that Three Letter

Demon. ... a contract was forged in blood.”

— JeanHeyd Meneide, WG14 C/C++ Compatibility Chair

® What Is an ABI?

@ What Is an ABI?

Data layouts

Calling conventions

Name mangling
Safety invariants
Ownership

@ What Is an ABI? w7 Who Cares?

Data layouts % Swift: AB/ Stability Manifesto
Calling conventions

% {R)Rust: crABI

Name mangling
Safety invariants * C C++: WG21 ARG

Ownership * wa WASM: Component Model

% @ You!

All the Compilers Together

F

All the Compilers Together

i

Compiler 1 C.Do(r:Tsrlllzr 2
. oo e gcc 10
e gcc9

———————————

I

I

[
l

All the Languages Together

All the Languages Together

Cu

e Multi-Lang. Boundaries [MFOQ7]
e Linking Types [PWA23]
e Probably a C FFI @

All the Languages Together

Compile Compile

I

—————————

All the Libraries Together

u carpte n
B B

All the Libraries Together

ﬂ COmp”e n
E | Update
g 011
!
L I

\\
\ 2 "~
I~
\ ~ o
~

\ | |
S o \ '
\\)
/ -~
-

All the Libraries Together

ﬂ — n
E | Update
g Tch
I
I

\ ~
\ \\\ \ \\\ \
, ~
\\)\\xl\ ! r <) RENA
AS o \ [| \I \\o

\
~ v
\\\ \ ~ /,
- n /] .~
/ - -
/’ -
ﬂ

“DLL Hell” €2

Towards a Formal ABI

e |anguages are already grappling with these problems
e (Growing dissatisfaction with status quo

e Demand for richer ABIs

e Design decisions, tradeoffs, uncharted territory

Towards a Formal ABI

e |anguages are already grappling with these problems
e (Growing dissatisfaction with status quo
e Demand for richer ABIs

e Design decisions, tradeoffs, uncharted territory

Can we provide a semantic foundation?

What Is an ABI, Formally?

“This source Interface ...”

— ... describes target programs like this”

What Is an ABI, Formally?

“This source Interface ...”

This Type T

— ... describes target programs like this”

Denotes These Programs
[TI={TI... }——————Semantic Typing via Realizability

7

What Is an ABI, Formally?

“This source Interface ...”

This Type T

T is ABl compliant with T if

T e [T]

— ... describes target programs like this”

Denotes These Programs
[TI={TI... }——————Semantic Typing via Realizability

7

s this a good spec?

T is ABI compliant with T if 1. Formalization: Can the spec capture

T e [T] all the pertinent details?

2. Application: Can the spec be used

In all the relevant scenarios?

Is this a good spec?

Case Study: Reference Counting

e PCF-ish Source

o Records, variants, higher-order recursive functions

e (-ish Target

o Block-based memory, pointer arithmetic
e Reference Counting ABI

o All values are boxed and reference-counted

o Separation logic specification

Formalization: Semantic Typing via Realizability

Formalization: Semantic Typing via Realizability

I'Ee:T

Formalization: Semantic Typing via Realizability

['Ee:T

~ { “Prestate like I ”} e {v. v like T”}

Formalization: Semantic Typing via Realizability

['Ee:T

~ { “Prestate like I ”} e {v. v like T”}

(['=x:T,)

{* R[[Tx]](x)} e {t’. R(T] (t’)}

U

Formalization: Reference Layout

Ref. Count Object Data

?HT]I(K) . \ﬁ 2 +1... >

c 0[[T]](£+1;

Formalization: Reference Layout

Ref. Count Object Data

R[[Z]](f) . \2 2 +1... >

c O|Z](¢+ 1;

=

O|Z||(¢+1)=Fn.t+1 > n

Formalization: Reference Layout

Ref. Count Object Data

R[[Z]l(f) . \ﬁ 2 +1... >

c O|Z](¢+ 1;

=

O|Z||(¢+1)=Fn.t+1 > n

Formalization: Ownership + Sharing

Y/, 2 +1...

RIT] () c O|T](¢+1)

Formalization: Ownership + Sharing

2 +1...

RIT](¢) > 1
N~

O|T](¢+ 1)

Formalization: Ownership + Sharing

RIT] () 25 O[T (2 + 1)

Formalization: Ownership + Sharing

Y/, 2 +1...
RIT] (f)\/f S OT|(e+1)
‘\7{[[7"]] ()
RITI ()

RC-INCR

{7{[[1"]](1’)} e {n. > 17 % R[T](2) % R[T] (e)}

Formalization: Ownership + Sharing

2 2 +1...
=3 O[T (e +1)

RITI ()
\/I\R[[T]] (£)

Formalization: Ownership + Sharing

Y/, 2 +1...

=L O[T](e+ 1)

R T (l’)\/

RC-DECR

{R[[T]] (t’)} ——¢ {n.

R T (t’)\/

Formalization: Ownership + Sharing

I’

2 +1...

> 1

O|T](¢+1)

RIT(£)

RC-DECR

{R[[T]] (t’)} ——7 {n. ("> 07 A emp)

Formalization: Ownership + Sharing

Y/, 2 +1...

R[] (t’)\/l O[T] (¢ + 1)

RC-DECR

{R[[T]] (t’)} ——7 {n. ("> 07 A emp)

Formalization: Ownership + Sharing

I’

2 +1...

O

O|T](¢+1)

-

RC-DECR

{R[[T]](f)} ——F {n. (Tn>0TAemp)V (Trn=0T%2H 0xO[T](¢+ 1))}

13

Formalization: Ownership + Sharing

2 +1...

O|T](¢+ 1)

Formalization: Ownership + Sharing

Y/, 2 +1...

\/1 O[T (¢ + 1)

{£+—> 1*0[[T]](£+1)} e {Q}

Formalization: Ownership + Sharing

Y/, 2 +1...

RIT](¢) 1 +
~_ A O[T](¢+1)

RC-NEW

IRITI)} e {0]
{t’ — 1% O|T(¢+ 1)} e {Q}

Formalization: Compound Layout

O|T. X L[(¢) =

O[T, x L |(¢) =

Formalization: Compound Layout

O[T, x T,] (¢) ~ F[ﬁre_ _—

:*f+1l—>t’2:

L - Y

15

Formalization: Compound Layout

O|T, x]| (¢) =

=8 o= == —— :
s 1ia e, * RIEI@) * RITI (%)

L - Y

Formalization: Compound Layout

O|T, X T, || (¢) =

Also: I {

£ 1 !
Records and |) ' |* R T (|
variants : */4+1MH [2 | '8[‘51] gtilll !__ E _2_]]_(_22|

L - Y

Formalization: Calling Convention

O[T, > Ll(e)c3f.t— [%

Pointer to function

16

Formalization: Calling Convention

O[T, > L(¢)=3f.t— %
Ve ARIT (20} f(81) {62 RIT[(22)}

Pointer to function

Calling convention:
Caller retain

16

Formalization: Calling Convention

0[[T1 —> Tz]](t’) = f { —> f * Pointer to function

Vo ARITN ()} f(8) {2 RIT] (22)} Some conventon

VS

Ve AR T | (£ 1) 182, R (£2) * R T |f (£1
b ARIT (1)} f(81) {£2. RIT] (£2) * RIT (1)}

Callee retain

Formalization: Calling Convention

0[[T1 —> TZ]]([) = f { —> f * Pointer to function

Vo ARITN ()} f(8) {2 RIT] (22)} Some conventon

VS

Ve RITIE)} £ {6 RIT] () * RIT] ()}

Callee retain
Also:
Closures

Application: Compiler Compliance

17

Application: Compiler Compliance

o -

Compliant

- 1S an compliant compiler if

S:T and S~ T implies T e [1]

&)

17

Application: FF| Safety

Compile Compliant

=

Compile

|
v

18

Application: FF| Safety

Compile Compliant

Also
ABI
mlgratlon

Application: Library Compatibility

ﬂ Compile ﬂ
| Update
011

19

Application: Library Compatibility

ﬂ = E “
Compatible [T Update
011
I

-7 |
\ \\ A
\ 2 NI
\I\\ ° \
v S o \
~
~ ’/
L~

T2 IS an compatible update from 11 if

T e[t2] implies T e [T41]

19

Application: Library Compatibility

ﬂ = E“
Compatible [T Update
011
I
T |

Swift ? C T2 IS an compatible update from 11 if

M I e [T2] Imp/IeS I e [T4]

Flexible Rigid

19

Next Steps

% Wrapping up case study
+ Variations on design
% Idiosyncrasies of Swift ABI
4+ Resilient type layouts, reabstraction (polymorphism)

% Rust ABI over Wasm

4+ Component Model (prev. Interface Types) building blocks

20

Takeaways

Formalization

Application

Let’s Chat!

Email: ahwagner@ccs.neu.edu
Web: andrewwagner.io

OF 410
[m]ak

21

