An Adjoint Separation Logic for the Wasm Call Stack
Work in Progress!

Andrew Wagner Zachary Eisbach Amal Ahmed

Northeastern University

June 11, 2025 @ Dagstuhl 25241

Context: Formally Specifying ABls

Application Binary Interface (ABI)
The run-time contract for usinga particular API

— Swift

Context: Formally Specifying ABls

Application Binary Interface (ABI)
The run-time contract for usinga particular API

— Swift

This Type T

Context: Formally Specifying ABls

_4
LY

Application Binary Interface (ABI)
The run-time contract for usinga particular API

— Swift

This Type T

Is Realistically Realized [Benton06]
By These Target Programs

[tI={el...}

Context: Formally Specifying ABls

Application Binary Interface (ABI)

Is Realistically Realized [Benton06]

By These Target Programs
[tI={el...}

OOPSLA24

Realistic Realizability: Specifying ABIs You Can Count On

ANDREW WAGNER, Northeastern University, USA
ZACHARY EISBACH, Northeastern University, USA|
AMAL AHMED, Northeastern University, USA

The run-time contract for usinga particular API
— Swift
This Type T Our Approach
e is ABI compliant with T if
e e[T]
r)
o J

The Applicat
including data layout and calling tions, such ths liance with the rule: “safe” execution
. e

function interfaces. Unfortunately, ABIs are typically specified in prose, and while type systems

Context: Formally Specifying ABls

Application Binary Interface (ABI)

Is Realistically Realized [Benton06]

By These Target Programs
[t1={el..}

Target-level separation i —————

AMAL AHMED, Northeastern University, USA

OOPSLA24

Realistic Realizability: Specifying ABIs You Can Count On

The run-time contract for usinga particular API
— Swift
This Type T Our Approach
e is ABI compliant with T if
e e [Tl
r)
o J

logic predicate

Th
including data layout and calling tions, such ths liance with the rule: “safe” execution

librari
function interfaces. Unfortunately, ABIs are typically specified in prose, and while type syste

Toward a Rust ABI for Wasm

Source Front-End Intermediate Back-End Target

We need:

Toward a Rust ABI for Wasm

Source Front-End Intermediate Back-End Target

We need:
1. A semantics for borrowing

Toward a Rust ABI for Wasm

Source Front-End Intermediate Back-End Target

We need:
1. A semantics for borrowing

2. To support independent updates to the front-end and back-end

Toward a Rust ABI for Wasm

Source Front-End Intermediate Back-End Target

AT} e {071}

We need:

1. A semantics for borrowing

2. To support independent updates to the front-end and back-end
3. A separation logic for Wasm

State of the Art: IrisWasm

PLDI23

Iris-Wasm: Robust and Modular Verification of
WebAssembly Programs

XIAQJIA RAQ?, Imperial College London, UK

AINA LINN GEORGES", Aathus University, Denmark
MAXIME LEGOUPILY, Aarhus University, Denmark
CONRAD WATT, University of Cambridge, UK 7 O\
JEAN PICHON-PHARABOD, Aarhus University, Denmark OOPSLA24) §
PHILIPPA GARDNER¥, Imperial College London, UK N\ 4%” &
LARS BIRKEDAL¥, Aarhus University, Denmark "
WebAssembly makes it possible to run C/C++ applications on Iris-MSWasm: Elucidating and Mechanising the Security

WebAssembly program is expressed as a collection of higher-ord
together through a system of explicit imports and exports using Invariants of Memory-Safe WebAssembly
order modular programming. We present Iris-Wasm, a mechani
on a specification of Wasm 1.0 mechanized in Coq and the Iris fi MAXIME LEGOUPIL, Aarhus University, Denmark
specify and verify individual modules separately, and then compos: JUNE ROUSSEAU, Aarhus University, Denmark

AINA LINN GEORGES, MPI-SWS, Germany
JEAN PICHON-PHARABOD, Aarhus University, Denmark
LARS BIRKEDAL, Aarhus University, Denmark

‘WebAssembly offers ined lati via its module system, but does not support
ﬁne gramed sharing of its lmear ‘memory. MSWasm is a recent proposal which extends WebAssembly wnth

IrisWasm: Sample wp Rules

. wp_call
wp_binop
[t.binop](c1,cz) = ¢ + »@(immV [t.constc]) » B F (Finstfuncs(i] = addri) + <™ Fx o (£ F — wp [invoke addri] {w, &(w)})
wp [t.const cy1; t.const cz; t.binop binop] {w,&b(w) x IR, F} wp [call i] {w, ®(w)}
wp_invoke_native
NativeCl

|vs| = |tsq] * ¢l = {(inst; ts); es} * F' = {locs := vs ++ zeros(ts);inst := inst} *

(ts;—tsz)
G e R py
wp [local|,52|{F'} (block ([] — tsz) es) end] {w, ®(w)}

wp (vs ++ invoke i) {w, ®(w)}

[RTA.LENY IR & Ny JA

wp_local_bind
IR, Py («i Fi — wp es {w, 3F], RN F{ * ((ﬂ, F — wp [local,{F{} wend] {w',@(w')})})

wp [local,{F1} es end] {w’, ®(w")}

What do all of these rules have in common?

IrisWasm: Sample wp Rules

wp_binop wp_call

[t.binop] (c1, ¢2) = ¢ * >D(mmV [¢.const c]) *lﬂ, F | (F.inst.funcs[i] = addri) *l R, Fln >Iﬂv F '—* wp [invoke addri] {w, <I>(w)})
wp [t.const cy;t.const cy; t.binop binop] {w, D(w) *| L2 F wp [call i] {w, ®(w)}
wp_invoke_native
NativeCl

|vs| = |tsq] * cl = {(inst; ts); es}(m_mz) * F’ = {locs := vs ++ zeros(ts);inst := inst} *

P cl*>[(tv————»cl*——«

wp [local|,52|{F'} (block ([] — tsz) es) end] {w, ®(w)}
wp (vs ++ invoke i) {w, ®(w)}

wp_local_bind
wp es {w, EIFl' wp [local,{F|} w end] {w’,@(w')})})

wp [local,{F1} es end] {w’, ®(w")}

What do all of these rules have in common?

Explicit threading of the monolithic “frame resource” < F

Context Splitting

'Fe:T

$
{[TT} e AT}

Context Splitting

Context Splitting

®
Fll—el:Tl FQFGQITQ
Fl,FQ ~ (el,eg) : Tl ®T2
$
{FixFox-- -} efie; {[Ta] *[T2]}

Separating the Frame

loc

Local points-to: $z — v

Separating the Frame

Local points-to: $z /5 v
Locals are exclusive: $z 1% v x $z 2% vy - L

Separating the Frame

Local points-to: $z /5 v
Locals are exclusive: $z 1% v x $z 2% vy - L
Rules are small footprint:

WP-PLUS
®(i32.const (ng + ng))

WP-LOC-GET

Sz 1% v*x P(v)

wp (i32.constny;i32.const ny;i32.add) {P}

WP-LOC-SET

$2 1% o 5 ($2 125 v — B(e))

wp (v;local.get $z:) {®}

wp (local.get $z) {®}

Separating the Frame

Local points-to: $z /5 v
Locals are exclusive: $z 1% v x $z 2% vy - L
Rules are small footprint:

WP-PLUS WP-LOC-GET
®(i32.const (ny + 1)) Sz 1% v x O(v)
wp (i32.constny;i32.const ny;i32.add) {P} wp (local.get $z) {®}
WP-LOC-SET WP-FRAME-BINDY
S 1% o * ($x 1% v — P (e)) F —wp () {v". ®(v™)}

wp (v;local.get $z:) {®} wp (frame, Fe*) {®}

Problem 1: Popped Frames Not Encapsulated

wp (framey (locals ($z 42)) €) {$z £=5 42}

Local $z should not be returnable from the frame. This should be false.

Problem 1: Popped Frames Not Encapsulated

$2 125 42 —« wp (e) {Sz =5 42}
wp (framey (locals ($z 42)) €) {$z £=5 42}

WP-FRAME-BINDT

Local $z should not be returnable from the frame. This should be false.

Problem 1: Popped Frames Not Encapsulated

loc loc

$x = 42 — $x —> 42
$2 125 42 —x wp (e) {Sz =5 42}
wp (framey (locals ($z 42)) €) {$z £=5 42}

WP-VALS

WP-FRAME-BINDT

Local $z should not be returnable from the frame. This should be false.

Encapsulating Frames with the Pop Modality

The Pop Modality, | P
1 P holds whenever P would hold after popping the top frame.

Encapsulating Frames with the Pop Modality

The Pop Modality, | P
1 P holds whenever P would hold after popping the top frame.

mem

Global facts always hold after a pop: n % v - | (n /2)

Encapsulating Frames with the Pop Modality

The Pop Modality, | P
1 P holds whenever P would hold after popping the top frame.

mem

Global facts always hold after a pop: n % v - | (n /2)
Frame-local facts never hold after a pop: $z +5 v 1/ | ($x LN v)

Encapsulating Frames with the Pop Modality

The Pop Modality, | P
1 P holds whenever P would hold after popping the top frame.

mem

Global facts always hold after a pop: n % v - | (n /2)
Frame-local facts never hold after a pop: $z +5 v 1/ | ($x LN v)
Binding under a frame moves the postcondition under a pop:
WP-FRAME-BIND
F —wp (") {v". [®(v")}
wp (frame, F'e*) {®}

Problem 2: Suspended Frames Not Encapsulated

loc

$x — 42 F wp (frame; (locals) local.get $z) {v. v = i32.const 42}

Local $z should not be accessible within the frame. This should be false.

Problem 2: Suspended Frames Not Encapsulated

S 125 42 - wp (local.get $z) {v. | (v =i32.const42)}

WP-FRAME-BINDt

loc

$x — 42 F wp (frame; (locals) local.get $z) {v. v = i32.const 42}

Local $z should not be accessible within the frame. This should be false.

Problem 2: Suspended Frames Not Encapsulated

J ~PURE, REFL

$2 1% 42 |- | (i32.const 42 = i32.const 42)

| WP-LOCAL-GET
$x = 42 F wp (local.get $z) {v. | (v = i32.const42)}

WP-FRAME-BINDt

loc

$x — 42 F wp (frame; (locals) local.get $z) {v. v = i32.const 42}

Local $z should not be accessible within the frame. This should be false.

Encapsulating Frames with the Push Modality

The Push Modality, 1 P
1 P holds whenever P would hold after pushing a new frame.

10

Encapsulating Frames with the Push Modality

The Push Modality, 1 P
1 P holds whenever P would hold after pushing a new frame.

mem mem

Global facts always hold after a push: n+—— v+ 1 (n — v)

10

Encapsulating Frames with the Push Modality

The Push Modality, 1 P
1 P holds whenever P would hold after pushing a new frame.

mem

Global facts always hold after a push: n ™ v =1 (n > v)

loc

Frame-local facts never hold after a push: $z 2% v t/ 1 ($2 5 v)

10

Encapsulating Frames with the Push Modality

The Push Modality, 1 P
1 P holds whenever P would hold after pushing a new frame.

mem mem

Global facts always hold after a push: n+—— v+ 1 (n — v)
loc loc

Frame-local facts never hold after a push: $z — v t/ 1 (32 — 0v)
Binding under a frame moves the continuation under a push:

WP-FRAME-BIND
T(F —owp (¢7) {v". L @(uv")})
wp (frame, F'e*) {®}

10

Adjoint Logic

Benton and Wadler (1996), Reed (2009)

i

Adjoint Logic

Benton and Wadler (1996), Reed (2009)

Push and pop are both modalities:
1 -MONO 1 -Mono
PFQ PFQ

tPETQ LPFLQ

i

Adjoint Logic

Benton and Wadler (1996), Reed (2009)

Push and pop are both modalities:

1 -MONO 1 -Mono
PFQ PFQ
TPETQ IPHLQ
They form an adjunction:
4-AD)
IPEQ

PE1Q

i

Adjoint Logic

Benton and Wadler (1996), Reed (2009)

Push and pop are both modalities:

1 -MONO 1 -Mono
PFQ PFQ
TPETQ IPHLQ
They form an adjunction:
4-AD)
IPEQ

+L-UNIT 11 -CounIT
PF1Q PH1LP 1tPEP

i

Example: Suspending and Resuming Frames

loc

$2 — 20 F wp ((frame; (locals)i32.const 25) ; local.get $x;i32.add) {v. v = 45}

12

Example: Suspending and Resuming Frames

S 2% 20 - wp (frame; (locals) i32.const 25) {v’. wp (v'; local.get $x;i32.add) {v.v = 45}}
—_(WP-CTX-BIND)

loc

$2 — 20 F wp ((frame; (locals) i32.const 25) ; local.get $x;i32.add) {v. v = 45}

12

Example: Suspending and Resuming Frames

loc

$z — 20 F T wp (i32.const 25) {v'. L wp (v’;local.get $z;i32.add) {v. v = 45}}
__(WP-FRAME-BIND)

S 2% 20 - wp (frame; (locals)i32.const 25) {v’. wp (v'; local.get $x;i32.add) {v.v = 45}}
—_(WP-CTX-BIND)

loc

$2 — 20 F wp ((frame; (locals) i32.const 25) ; local.get $x;i32.add) {v. v = 45}

12

Example: Suspending and Resuming Frames

loc

1 (82 — 20) F wp (i32.const 25) {v'. L wp (v';local.get $x;i32.add) {v. v =45}}
— (1 -AD)

loc

$2 — 20 - Twp (i32.const 25) {v'. L wp (v';local.get $z;i32.add) {v. v = 45}}
__(WP-FRAME-BIND)

S 2% 20 - wp (frame; (locals)i32.const 25) {v’. wp (v'; local.get $x;i32.add) {v.v = 45}}
—_(WP-CTX-BIND)

loc

$2 — 20 F wp ((frame; (locals) i32.const 25) ; local.get $x;i32.add) {v. v = 45}

12

Example: Suspending and Resuming Frames

loc

1 (82— 20) - | wp (i32.const 25; local.get $;i32.add) {v. v = 45}
_(wP-VAL)

loc

1 (82 — 20) - wp (i32.const 25) {v’. | wp (v';local.get $x;i32.add) {v. v = 45}}
—(1-AD)

loc

$2 — 20 - Twp (i32.const 25) {v'. L wp (v';local.get $x;i32.add) {v. v =45}}
__(WP-FRAME-BIND)

$a %% 20 - wp (frame; (locals) i32.const 25) {v". wp (v';local.get $2;i32.add) {v.v = 45}}
—(WP-CTX-BIND)

loc

$2 — 20 F wp ((frame; (locals)i32.const 25) ; local.get $x;i32.add) {v. v = 45}

12

Example: Suspending and Resuming Frames

$2 +2% 20 wp (i32.const 25; local.get $z;i32.add) {v. v = 45}
—(} -Mono)

1 (8 % 20) - L wp (i32.const 25; local.get $z;i32.add) {v. v = 45}
__(wP-VAL)

loc

1 (82 — 20) wp (i32.const 25) {v’. | wp (v';local.get $x;i32.add) {v. v = 45}}
—(1-AD)

loc

$2 — 20 - Twp (i32.const 25) {v'. L wp (v';local.get $x;i32.add) {v. v = 45}}
__ (WP-FRAME-BIND)

$Sa %% 20 I wp (frame; (locals) i32.const 25) {v". wp (v';local.get $;i32.add) {v.v = 45}}
—(WP-CTX-BIND)

loc

$2 — 20 F wp ((frame; (locals) i32.const 25) ; local.get $x;i32.add) {v. v = 45}

12

Example: Suspending and Resuming Frames

__(WP-CTX-BIND, WP-LOCAL-GET, WP-BINOP, WP-VAL)

$2 #2520 - wp (i32.const 25; local.get $z;i32.add) {v. v = 45}
—({-Mono)

loc

1 (82 — 20) F | wp (i32.const 25; local.get $z;i32.add) {v. v = 45}
__(wP-VAL)

loc

1 (82 — 20) F wp (i32.const 25) {v'. L wp (v';local.get $x;i32.add) {v. v =45}}
—(1-AD)

loc

$2 — 20 - Twp (i32.const 25) {v'. L wp (v';local.get $x;i32.add) {v. v =45}}
__(WP-FRAME-BIND)

S 125 20 - wp (frame; (locals)i32.const 25) {v’. wp (v'; local.get $x;i32.add) {v.v = 45}}
—(WP-CTX-BIND)

loc

$2 — 20 F wp ((frame; (locals)i32.const 25) ; local.get $x;i32.add) {v. v = 45}

12

Other Stacks

13

Other Stacks

A shadow stack
WP-SPUSH WP-SPOP

1 0(c) LB ()

WP-SALLOC
v/, b 0 2 b — B(i32.const)

wp ($spush) {®} wp ($spop) {P}

wp ($sallocn) {®}

13

Other Stacks

A shadow stack

WP-SPUSH WP-SPOP WP-SALLOC
15 B(e) Ls ®(e) v/, b 0 2 b — B(i32.const)
wp ($spush) {®} wp ($spop) {P} wp ($sallocn) {®}

The operand stack?

top(20)xl, top(25)xl, 4o top(10) = i32.const 10; v; i32.const 25; i32.const 20

13

Other Stacks

A shadow stack

WP-SPUSH WP-SPOP WP-SALLOC
15 B(e) Ls ®(e) v/, b 0 2 b — B(i32.const)
wp ($spush) {®} wp ($spop) {P} wp ($sallocn) {®}

The operand stack?

top(20)xl, top(25)xl, 4o top(10) = i32.const 10; v; i32.const 25; i32.const 20

Stack switching?

13

Summary

1-AD)
WP-FRAME-BIND JPFQ
T(F = wp () {0".] 2(v")}) Pr1Q
wp (frame,, Fe*) {®}

Source Front-End Intermediate

Back-End Target

@aso)

+~{[I'T} e {071}

14

