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We organize our investigations into case studies, to both illustrate our framework and explore
various types of interoperability.

Differences with the paper. In the paper that accompanies this appendix, we simplified
the presentation in two ways. First, we combined the “Affine with Dynamic Safety” and “Affine
with Dynamic Safety, Efficiently” case studies, effectively eliminating the former. Second, and
more significantly, we presented the logical relation for that case study, and that for “Memory
Management and Polymorphism” as unary relations rather than binary. While binary relations are
more powerful, allowing us to express equivalences and prove parametricity theorems in the case
of the latter, these issues were not explored in the paper and thus the additional complexity served
only to bog down the already quite complex technical presentation.
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1 CASE STUDY: REFERENCES

In this case study, we consider mutable references.

1.1 StackLang Target Language

Our target language is an untyped, stack-based language.

1.1.1  Syntax.

Stack S =
Error Code ¢
Instructioni :=

Program P :=
Value v

Note that for programs, we overload the comma symbol (,) to denote both appending an instruction

Vv,...,v | Fail ¢

TyrE | Ipx | Conv

push v | add | less? | if0 P P | lam x.P | call
| idx | len | alloc | read | write | fail c

i, P

n|thunkP|¢]|[v,...]

(i, P) and concatenating a program (P4, Py), which is right associative, as usual.

1.1.2  Dynamics.

(H;S; push v, P)

(H; Fail ¢; push v, P)
(H;S, ny, nq; add, P)
(H;S; add, P)

(H;S, ny, ny; less?, P)
(H; S, ny, nq;less?, P)
(H;S; less?, P)

(H; S, 0;if0 Py Py, P)
(H;S, n;if0 Py Py, P)
(H;S;if0 Py Py, P)
(H; S, v;lam x.Pq, Py)
(H; S;lam x.Py, Py)
(H; S, thunk Py; call, P,)
(H; S; call, P,)

.+ Vn,], ny;idx, P)
., Vn,], ny;idx, P)
(H;S;idx, P)
(H;S, [vo, . .., vn]; len, P)
(H;S;len, P)

(H; S, v;alloc, P)

(H; -; alloc, P)

(Hw {f + v};S, £;read, P)
(H; S; read, P)

(Hw {t — _};S, ¢ v;write, P)
(H; S; write, P)

(H; S; fail c, P)

(H;S, [Vo, ..
<H;S, [Vo, ..

(H; S, v; P)

(H; Fail c; fail TypE)
<H;S, (n] + nz); P>
(H; S; fail TypE)

(H; Fail ¢; -)

(S # Fail ¢)

(S * S/’ na, n])

N
N

N

N

—  (H;S,0;P) (n1 < ny)
—  (H;S,1;P) (ny 2 ny)
—  (H;S; fail Typg) (S #S’,ny,ny)
—  (H;S; Py, P)

—  (H;S;P,, P) (n#0)
—  (H;S;fail TypE) (S+S,n)
—  (H;S;[x = v]Py, Py)

—  (H;S; fail Typg) (S#S",v)
—  (H;S;Py,Py)

—  (H;S; fail TypE) (S # S/, thunk Py)
- (H;S,vn,;P) (n1 € [0,n2])
—  (H;S;fail Ipx) (ny € [0,n3])
—  (H;S; fail Typg) (S#S, [vo,..-,Vn,],n7)
—  (H;S,(n+1);P)

—  (H;S; fail Typg) (S#S, [vo,..->vnl)
— (HW{f— v}S,¢;P)

—  (H;-;fail TypE)

— (Hw{f— v}S,v;P)

—  (H;S; fail Typg) (S+S,¢)
— (Hw{f— v} S;P)

—  (H;S;fail Typg) (S#S,¢,v)
N
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1.1.3  Properties. We make use of the following macros:

SWAP 2 lam x.lam y.(push x, push y)
DROP £ |am x.()
DUP = lam x.(push x, push x)

LEmMMA 1.1 (IRREDUCIBLE CONFIGURATIONS HAVE EMPTY PROGRAMS). If(H;S;P) —», then P = -.

Proor. We will prove the contrapositive: if there exist i, P’ such that P = i, P/, then (H;S; P) —
(H*; S*; P*). This can be demonstrated by a trivial case analysis on H, S, and i, because the dynamics
of StackLang are defined so that there is a reduction rule for every possible configuration with a
non-empty program. O

LEmMMA 1.2 (PREFIX TERMINATION). If(H;S;P) R (H;S’; P’) - and (H;S; P) 5 (He; Se; Pe, Po),
then (Ha; So; Pa) 2 (HL;SL;-) = for some H., SL, ju < j.

Proor. There is a constructive proof using induction, but here, we will sketch an intuitive proof
by contradiction.

If (He; Se; Po) does not step to a stuck configuration in some jo, < j steps, then (He; Se; Po) runs

for at least j + 1 steps. Because StackLang is deterministic, we can then construct the reduction
sequence

(H;S;P) = (Ha; Sus Po, Po)
(ML S 1P Po)
5 (H;S;P)
-
which is longer than j, contradicting the premise.

Finally, if (He; Se; Po) 2 (H.;S.; PL) —», then by Lemma 1.1, P, = -, which suffices to finish the

proof. O

Note that when applying Lemma 1.2, we sometimes leave P, implicit.

1.2 RefHL Source Language
1.2.1  Syntax.
Type © unit |bool |7+ 7| rX1|T—> 7| refr

Expressione := ()| true|false|x|inle|inre]|(e,e)|fste|snde|ifeece
| match e x{e} y{e} | Ax:re|ee|refe|le|e:==¢e] (¢,



1.2.2  Statics.

x:T€Tl
I;TF():unit I;T + true : bool I;T + false : bool sTEx:T
T re:n 1 ke ko7 IT Fe:bool ket T Fes:

T

Trinle:nm+

Tre:m+1 T x 1 ke

Trinre:nm+ o

: T

ITrifeejey:t

LThby:mprey:t

hx:qre:n

;T Fmatche x{e} y{e>}: 7

iT're:ty —» F;er’:ﬁ

IiTree' : o

iTre:m Xn

I'Trsnde:n

IsTReqirefr

They: T

ke ke

I TrEAXTe:T > 0

iT're:nmp Xn

T e (61,82) 1T X1y

T ey :=ep:unit

1.2.3  Compiler.
0

true

false

X

inle

inre

ifee e

match e x{e1} y{e,}

(e1,e2)
fste
snd e
AXx:T.€
[SEINSH
ref e
le

1.3 RefLL Source Language

1.3.1  Syntax.

Value Type ¢
Expression ¢ :=

LRI I I I IR

L I O O 2 2 A

T fste:n

Tre:r IsTrerefr
;T rrefe:refr Trle:r
Iilre:r T~T
Tk (e), et

push 0

push 0

push 1

push x

e*, lam x.(push [0,x])

e*, lam x.(push [1,x])

et if0 et eyt

e*, DUP, push 1, idx, SWAP, push 0, idx,
if0 (lam x.e1*) (lam y.e;*)

et e, lam xp.lam xq.(push [x1,x2])

e*, push 0, idx

e*, push 1,idx

push (thunk lam x.e™)

(S +, e2+, SWAP, call

et alloc

et read

e, e, write, push 0

e, Crsr

int|[r]|r—>r|refr
n|x|le...]lele]|Ax:re|ee|e+e|ifdoeee|refe]|le|e=e] (€],
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1.3.2  Statics.

L0k Ik el
LIk NN IiTr
I IS IS IS
Ll ;T F
I k IR IFE
;e I
I ;0 Ik I:T k T r
LIk I ;0
ik I Tre:r ~T
Ll ;T k(e
1.3.3 Compiler.
~»>  pushn
~s  push x
et e T lam xg. . lam xq.(push [xq, ..., X0 ])
et et idx
~s *if0 et et
~»  push (thunk lam x.e*)
o * e,", SWAP, call
s oetet add
~  etlalloc
~ et read
eyt e,® write, push 0
e s e+,CTH

1.4 Logical Relation
1.4.1 Worlds.

World,, = {(k,¥) | k < n A'Y C HeapTy, }
World = U World,,
HeapTy, = {t — Typ,, ...}

AtomVal, = {(W,v) | W € World,,}



Typ, = {R € 24tV | V(W v) e RYW'. WE W = (W’,v) €R}
Typ = U, Typn

LRI; = {(W,v) | (W.v) € RA Wk < j}
L\ijz{fl—)l_RJJ|fl—>R€\P}

j<k

(¥ EG¥) = vy e dom(®).1%(0)); = L¥'(0))

Wi C I/szé Wl.k> Wz.k/\ng W,
H={fw v}
H: W2z (VM+—Re WY.(>W,H(f)) €R)

>(k,¥) £ (k- 1, ¥]k-1)

1.4.2  Expression Relation.

&[] = {(W,P) | VH:W, S, H",S", j < W.k. (H;S; Py L (H’;$";")
= (S’ =FailcAce OKERR) VIV, W I W. (S =S,vAH : W A (W',v) € V[r])}

where OKERR = {Conv, IDx}

1.4.3 Value Relation.

V{unit] = {(W,0)}
V[bool] = {(W,n)}
(V[[ﬁ X TZ]] = {(W’ [VBVZ]) | (W: V1) € (VIITW]] A (W’VZ) € (V[[TZ]]}
Vo +n] = (W [0v]) | (W,v) € V[nr]}
U{(W,[1v]) | (W,v) € V[r]}
V[rr — ] = {(W,thunklam x.P) | Vv, W 3 W. (W’,v) € V[r]
= (W', [x+—> V]P) € &[]}
VIref ] = {(W,0) | W) = [V wi}
V[ini] = {(W.n)}
VIII] = AW, [vi,...,va]) | (W, vi) € V[7]}
VI ] = {(W,thunklam x.P) | Vv, W O W.(W’,v) € V[r]

= (W', [x+— Vv]P) € &[]}

V]ret 7] {w,0) | W¥ () = [V[]lwax}
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1.4.4 Extending to Open Terms.
Gll, = {(W,") | W e World}

G, x: 7]
G« ]

{(Wylx= VD) [ (W,v) e V][] A (W,y) € G[TT}

{(W.ylx = v [ (W,v) e V[[] A (W,y) € G[TT}

[T re:r] =VWyryr (W,yr) € GIIT A (W, yr) € G[T] = (W, close(yr, close(yr, e¥))) € E[7]

[T ket =VWyryr (W,yr) € GITT A (W, yr) € G[I] = (W, close(yr, close(yr, €*))) € &[7]

1.5 Convertibility

CbOO].H ,C —bool * bool ~ Cref bool— ,C —ref bool : ref bool ~

CT]»—» ,C R CTz»—> ,C Ty 12

CT1XT2|—> ,C T X Tyt T X T~

CT1|—> ,C T T CT2|—> ,C Ty P2
Cr + 0 Clintjmry + 1t 1+ T2 ~
Choolm =
Cintmsbool %
Cref boole T
—~ref bool = -
Cr, X £ DUP, push 0, idx, Cr;s., SWAP, push 1, idx, Cr,:,
lam x;.lam xq.push [x3, x2]
Cirlmt X 1 2 DUP, len, push 2, SWAP, less?, if0 fail Conv,
DUP, push 0, idx, C,7,, SWAP, push 1, idx, C.s1,,
lam x;.lam xq.push [x1, x2]
Cr + 0 2 DUP, push 1, idx, SWAP, push 0, idx, DUP,

if0 (SWAP, Crsini) (SWAP, Crysint),
lam x,.lam x¢.push [x, xy ]
Clint]o71 + 1 2 DUP, len, push 2, SWAP, less?, if0 fail Conv,
DUP, push 1, idx, SWAP, push 0,idx, DUP,
if0 (SWAP, C,.sr;)
(DUP, push -1, add, ifo (SWAP, Ci.sz,) fail Conv),
lam x,.lam x¢.push [x, xy ]

THEOREM 1.3 (CONVERIBILITY SOUNDNESS). If 74 ~ 7p then
(1) Y(W,P) € E[wa]. (W, (P, Crysry)) € E[8]; and
(2) Y(W,P) € &[zg]. (W, (P, Crysry)) € Efa]



Proor. By simultaneous induction on the structure of the convertibility relation.
NOTE: in the proofs in this case study, we explicitly move the world forward with >" when we take
n steps. Based on how we construct our logical relations, this is not usually necessary (any future world
will usually do), and we present proofs without this in later case studies.
(1) V(W,P) € &[bool]. (W, (P. Cpoo1,s)) € E[InT].
Expanding the definition of Cy,,,7,,,, we are to show that (W,P) € E[int] given arbi-
trary W, P such that (W, P) € &[[bool]. Notice that V[bool] = V[int] by definition. Then
&[bool] = &[int] also by definition, so the claim is trivially true.
(2) V(W,P) € &[int]. (W, (P, C,..shoo1)) € E[bool].
As in the previous case, exchanging bool with int where appropriate.

[ref bool ~ |
(1) V(W,P) € &[ref bool]. (W, (P, Craf hoolm.r i) € El 1.

As in .(1), exchanging bool, int with ref bool, where appropriate.
(@) V(W,P) € [ref int]. (W, (P, C. .\, ref bool)) € E[ref bool].
As in the previous case, exchanging ref bool with where appropriate.

‘T1~ N1y~ = 71 X T~ ‘

(1) V(W,P) € &[r; x o] . (W, (P, Cr, x ro5(1)) € E[I7]].
Expanding the definition of &[] in the goal, we are to show that

S"=FailcAce€ OKERR V Iy, W I W.(S"=S,vAH : W A (W,v) € V[[7]] (1)
given arbitrary W, P,H:W,S,H’,S’, j < W.k such that (W,P) € E[r x ;] and

(H;S; P, Cr; X 1o ) N (H’;S’;-) =». The claim is vacuous when W.k = 0, so consider

W.k > 0. Applying Lemma 1.2, there is Hp, Sp, jp < j such that (H;S; P) kLA (Hp;Sp;-) -».
Then by expanding the definition of &[] in the premise and specializing where appropriate,
either:
e Sp=S5"=Failc Ac € OKERR and Hp = H’.
In this case, we have the left disjunct of (1).
]
Jvp, Wp 3 W.(Sp =S,vp AHp: Wp A (Wp, Vp) € (V[[ﬁ X Tz]]
and (Hp;Sp; Cr, % 15[]) gy (H’;S’;-) -». Expanding the definition of V[ x 1],
we have that
vp = [vi, va] A (Wp,vy) € V1] A (Wp,vy) € V1]

for some vy, v,. Expanding the definition of C7, x 7, || and applying the operational
semantics of StackLang,

5
<HP;S, [V],Vz]; DUP, . > i <HP;S, [V1,V2],V];CT1._> PN >

Applying Lemma 1.2 again, there is Hy, Sq, j1 < j — jp — 5 such that

(Hp; S, [vi, val, vi; Crymsr) £> (H1;S1;-) —». Appealing to the inductive hypothesis that
71 ~ 7, expanding the definition of E[-], and specialzing where appropriate, we have
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that
S; = Fail ¢ A c € OKERR V

2
vy, Wi 3 WP-(SI =S, [vi,val,vic AHy : Wi A (W, vi) € V7] @

If we have the left disjunct, then we have the left disjunct of (1). Then suppose we have
the right disjunct. By the operational semantics of StackLang, we have that

J
(HpsS, [vi,val,vi; Crysrs .. ) = (Hp; S, [Vi,va], vic; SWAP, ..)

5 (Hp;S,vie, v2; Crymry -2 2)
Applying Lemma 1.2 again, there is Hy, Sz, j» < j — jp — j1 — 7 such that
(Hi;S,vie, va; Croms ) £> (Hz; S2; ) —». Appealing to the inductive hypothesis that 7, ~
, expanding the definition of &[], and specializing where appropriate, we have that
S, = Fail ¢ A ¢ € OKERR V

3)
Avae, W 3 Wi.(Sz = S,vie, Vae A Ha : Wy A (Wa,vao) € V7]

If we have the left disjunct, then we have the left disjunct of (1). Then suppose we have
the right disjunct. By the operational semantics of StackLang, we have

(Hp; S, vie, v2; C sy - 0) e (Hp; S, vic, vac; lam xo.lam x;.push [x1, x2])

3
— (Hp; S, [vic, vacls )
soH = Hp and S’ = S, [vi, vac]. Then we show the right disjunct of (1) by taking
v = [Vie, Voc] and W’ = >3 W,, noting that W C Wp C W; T W, C W’ by Lemma 1.5.
All that remains is to show that (W’, [vi, vac]) € V[|7]], which by definition requires
that
(W’, V1C), (W,, VZC) € (V[[ H Recall that (Wl, V1) € (V[[Tw]] by (2) and (Wg, V2) <€ (V[[Tz]]
and (3) Then we simply apply Lemmas 1.4, 1.6.
2) Y(W,P)e&[[l7]]. (W, (P, C|.jnr, x 1)) € E[m x 2]
Expanding the definition of &[] in the goal, we are to show that
S"=FailcAc€ OKERRV Iy, W I W.(S"=S,vAH : W A (W,v) € V[r x 1] (4)
given arbitrary W,P,H:W, S, H’,S’, j < W.k such that (W,P) € E[|r|] and
(H;S;P, Clijory X 1) N (H’;S’;-) -». The claim is vacuous when W.k = 0, so consider
W.k > 0. Applying Lemma 1.2, there is Hp, Sp, jp < j such that (H;S; P) A (Hp;Sp;-) -».
Then by expanding the definition of E[-] in the premise and specializing where appropriate,
either:

e Sp=S5"=Failc Ac € OKERR and Hp = H’.
In this case, we have the left disjunct of (4).

[ ]
Jvp, Wp 3 W.(SPIS,VP/\HP:WPA(WP,VP)E(V[ ]]
and (Hp;Sp; C| 7, % 1) I (H’;S’;-) —». Expanding the definition of V[|7]], we
have that

vp = [vi, .., vn ]l A (Wp,vy) € V[ A ... A (Wp,vy) € V7]



for some vy, ..., vy. Expanding the definition of C|, 7, x 7, and applying the opera-
tional semantics of StackLang,

(Hp;S, [Vi, - -, va]; DUP, .. Y 25 (Hp;S, [V, . . ., va], 23 if0 fail Conv, ...
where n; € {0, 1} is a bit indicating whether n < 2. Here, the operational semantics
gives us two cases:
- n7 = 0. Continuing,
(Hp;S, [v1,...,Vn], 0;if0 fail Conv,...) A (Hp; Fail Conv; )

In this case, S’ = Fail Conv and we have the left disjunct of (4).
— ny = 1. Then by construction, n > 2. Continuing,

(Hp;S, [Vi,Vas - - -, V], 15if0 fail Conv, DUP,...) = (Hp;S, [V1,Vas .. ., vn]; DUP, . ..)

5
i <HP;S, [V1,V2,...,Vn],V1;C =T >
Applying Lemma 1.2 again, there is Hy, S1, j1 < j — jp — 5 such that

(Hi; S, [vi,va, ..o ovn v Cosry) N (H1;S1;-) —». Appealing to the inductive hy-
pothesis that 7 ~ 77 is sound, expanding the definition of &[], and specializing
as appropriate, we have that

S; = Fail ¢ A ¢ € OKERR V
3V1C, W] | Wp.(51 = S, [V1,V2,. . .,Vn],V1c A H1 : W1 A\ (Wl,Vk) (S (V[Iﬁ]]

If we have the left disjunct, then we have the left disjunct of (4). Then suppose
we have the right disjunct. By the operational semantics of StackLang, we have

®)

6
(Hi;S, [vi,va, oo, Vi, vigs SWAP, L) — (H1; S, vie, vas Crsry )
Applying Lemma 1.2 again, there is Hy, Sy, j» < j — jp — ji — 6 such that

(H1;S,vie, v2; Crsry ) LN (Hy;S2; ) . Appealing to the inductive hypothesis
that 7 ~ 7, is sound, expanding the definition of &[], and specializing as appro-
priate, we have that

S, = Fail ¢ A c € OKERR V
vy, Wy 3 Wg.(Sz =S, Vi, Voc AHz : Wo A (Wa,vy) € (V[[T2ﬂ

If we have the left disjunct, then we have the left disjunct of (4). Then suppose
we have the right disjunct. By the operational semantics of StackLang, we have

(6)

(Ha; S, vie, Vac; lam xp.lam xq.push [xq, x2]) 3 (Ha;S, [Vies Vacl; +)

so H" = Hy and S’ = S, [vic, vac]- Then we show the right disjunct of (4) by
taking v = [Vic, vac] and W’ = >3 W,, noting that WC Wp C Wy C W, C W’ by
Lemma 1.5. All that remains is to show that (W', [vic, vac]) € V|7 X 1], which
by definition requires that (W’,vi) € V[r;1] and (W', vy.) € V[r2] . Recall that
(W1, vic) € V][] by (5) and (Wa, va) € V[r2] by (6). Then we simply apply
Lemmas 1.4, 1.6.

T~

N Ty~ — 1+~ ‘ ]
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(1) V(W,P) € &[r1 + ). (W, (P, Cry + 1o (1011)) € Eint]].
Expanding the definition of &[] in the goal, we are to show that
S =FailcAce€ OKERRV Iy, W I W.(S"=S,vAH : W A (W',v) € V[[int]] (7)
given arbitrary W, P,H:W,S,H’,S’, j < W.k such that (W,P) € E[r + ;] and
(H;S;P, Cry + o210 i> (H’;S’;-) -». The claim is vacuous when W.k = 0, so consider

W.k > 0. Applying Lemma 1.2, there is Hp, Sp, jp < j such that (H;S; P) ﬂ (Hp;Sp;-) .
Then by expanding the definition of E[-] in the premise and specializing where appropriate,
either:
e Sp=S"=Failc Ac € OKERR and Hp = H’.
In this case, we have the left disjunct of (7).
[ ]
dvp, Wp O W.(Sp =S,vp AHp: Wp A (WP,VP) € (Vﬂ’ﬁ + Tz]]
and (Hp;Sp; Cr, x 1)) = (H’;S’;-) -». Expanding the definition of V[ x 3],
we have that
(vp = [0, vi] A (Wp,v1) € V[r1]) V (ve = [1, vo] A (Wp, V) € V[r])V 8)

for some vy, vo. Without loss of generality, suppose we have the left disjunct. Expanding
the definition of Cr, + r,i.| and applying the operational semantics of StackLang,

(Hp:S, [0,v1]: DUP, ...} > (Hp:S, 0,v1: Cryisinir .. )

Applying Lemma 1.2 again, there is Hy, S1, j1 < j — jp — 19 such that
(Hp;S,0,v1; Crymint) EiN (H1;S1;-) . Appealing to the inductive hypothesis that 7 ~
, expanding the definition of &[], and specialzing where appropriate, we have that
S; = Fail ¢ A ¢ € OKERR V

9
ElV]C, W1 | WP.(S] = S, 0,vic A H1 : W1 A (Wl,V1C) € (V[[ ]] ( )

If we have the left disjunct, then we have the left disjunct of (7). Then suppose we have
the right disjunct. By the operational semantics of StackLang, we have that

(Hp;S,0,vi;Crmrs - ) N (H1;S, 0, vic; lam xy.lam x¢.push [x¢, xy]) 2 (H1;S, [0, vicl; )
so H = Hy and S = S, [0, vic]. Then we show the right disjunct of (7) by taking
v=[0,vi] and W’ = /" W), noting that W C Wp C W; C W’ by Lemma 1.5. All
that remains is to show that (W’, [0,vic]) € V[ ], which by definition requires
that
(W’,0), (W', vqc) € V[int]. The former we have by definition. For the latter, recall
that (W1, vic) € V[int] by (8). Then we simply apply Lemmas 1.4, 1.6.
The other case is analogous, exchanging 0, 1 and 71, 7, where appropriate.

) Y(W,P) € &[lint]]. (W, (P, Clinijsr; + 1)) € E[m + 2]

Expanding the definition of &[] in the goal, we are to show that

S"=FailcAce€ OKERRV Iy, W I W.(S"=S,vAH : W A (W',v) € V[r + 1] (10)
given arbitrary W, P, H:W, S, H’,S’, j < W.k such that (W,P) € 8] ] and
(H;S;P, Clinijsry X 1) ER (H’;S’;-) -». The claim is vacuous when W.k = 0, so consider

W.k > 0. Applying Lemma 1.2, there is Hp, Sp, jp < j such that (H;S; P) kLA (Hp;Sp;-) .
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Then by expanding the definition of E[-] in the premise and specializing where appropriate,
either:
e Sp =S5’ =Fail c Ac € OKERR and Hp = H’.

In this case, we have the left disjunct of (10).
e Sp # Failcand P’ = -, s0 (Hp; Sp; Clini |1y + 1) = (H’;S’;-) . Now, expanding
the definition of &[] in the premise, specializing as appropriate, and remembering

that Sp # Fail ¢, we have that
vp, Wp I W.(Sp=S,vp AHp : Wp A (Wp,vp) € V[|int]]
Expanding the definition of V[|int|] and V[int], we have that
vp = [ny,...,ng]

for some ny, ..., ny. Expanding the definition of C|i,;;)~r, + 7, and applying the opera-
tional semantics of StackLang,

(Hp; S, [Vi,...,val; DUP, ...} = (Hp;S, [V1, ..., Val, no; if0 fail Conv, .. )
where n, € {0, 1} is a bit indicating whether n < 2. Here, the operational semantics
gives us two cases:
- n7 = 0. Continuing,
(Hp:S, [n1,..... 0], 0;f0 fail Conv, ...) = (Hp; Fail Conv;-)
In this case, S’ = Fail Conv and we have the left disjunct of (10).
- ny = 1. Then by construction, n > 2. Continuing,

(Hp:S, [y, Ny, - .., 0], 150 fail Conv, DUP,...) = (Hp:S, [Ny, na, ..., ni]; DUP, ...)

5 .
= (Hp;S,ny,ny,ny;if0 (..) (L.)),...)
Here, the operational semantics gives us two cases:
* ny = 0. Continuing,

(Hp; S, n2,0,05i0 (..) (...),...) = (Hp;S, ny, 0; SWAP, oo ...)

4

_><HP;S,O,]']2;C -7 )
Applying Lemma 1.2 again, there is H, Sc, jo < j — jp — 4 such that
(Hp;S,0,n2; Cirinry ) % (He¢; Se; ) —». Appealing to the inductive hypothe-

sis that int ~ 7y is sound, expanding the definition of &[], and specializing
as appropriate, we have that

S¢ = Fail ¢ A ¢ € OKERR V
Ave, We 2 Wp.(Se =S,0,ve AHe : We A (We,ve) € V]

If we have the left disjunct, then we have the left disjunct of (10). Then sup-
pose we have the right disjunct. By the operational semantics of StackLang,
we have

(11)

(H¢; S, 0, ve; lam xy.lam x¢.push [x, xy]) 2, (He; S, [0, ve];+)
soH =H;and S’ =S, [0, v.]. Then we show the right disjunct of (10) by tak-
ingv=[0,v.] and W’ = >3W,, noting that W E Wp E W, C W’ by Lemma
1.5. All that remains is to show that (W’, [0,v.]) € V[r + 1], which by
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definition requires that (W’,v.) € V[r] . Recall that (W,,v.) € V[r] by
(11). Then we simply apply Lemmas 1.4, 1.6.
* ni # 0. Continuing,

(Hp; S, ng, np, nsif0 (. ) (.),...) = (Hp3S, g, ny; DUP, ..)

2 (Hp; S, ng, ny, (ng — 1);if0 (..) (fail Conv),...)
Here, the operational semantics again gives us two cases:
- (ny—1) = 0. That is, n; = 1. Then we proceed as in the previous case,
exchanging 0, 1 and 77, 7, where appropriate.
- (ny — 1) # 0. That is, n; # 1. Continuing,
(Hp; S, Ny, 1, n13if0 (...) fail Conv, ...) = (Hps; Fail Conv;-)
In this case, S” = Fail Conv and we have the left disjunct of (10).

1.6 Logical Relation Soundness

1.6.1 Supporting Lemmas.

LEMMA 1.4 (WORLD EXTENSION).
(1) If (Wy,v) € V[r] and Wy T W, then (W,,v) € V7]
(2) If (W1,y) € G[T] and W, C W, then (W, y) € G[I]

Proor.

(1) By induction on 7. The only interesting cases are:
o If (Wy, thunk lam x.P) € V[r; — o] and (W; T W,) then (Wa, thunk lam x.P) € V[, — 1].
Expanding the definition of V[r; — 73] in the goal, we are to show that
(W', [x > Vv]P) € &[]
given arbitrary W’ 1 W, and v such that (W’,v) € V[r;]. We have that W; C W,
and W, C W’ so Wi C W’ by Lemma 1.5. Then we finish by expanding the definition
of V[r; — 2] in the premise and specializing as appropriate.
o If (W, ¢) € V[ref 7] and (W; T W,) then (W,, t) € V[ref 7].
Expanding the definition of V[ref 7] in the goal, we are to show that
W2 ¥(0) = [ V[l wax
Expanding the definition of V[ref 7] in the premise, we have
WX (0) = V][] wix
Expanding the definition of C and specializing where appropriate, we have that
Wak < Wik A [WL.Y () [wak = L Wo. ¥ (€) wak

Then we finish by substituting |V [z] ] w1« for W;.¥(£) and expanding the definition
of |-]., noting in particular that for any world W, | W.¥(I) ]y, = W.¥(]).
(2) By induction, appealing to the previous case where appropriate.

LEMMA 1.5 (WORLD EXTENSION TRANSITIVE).
I_le C W2 and WZ C W3 then W1 C Wg.
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Proor. Suppose (ki, ¥1) C (kp, ¥2) and (kz, ¥,) £ (ks3, ¥3). Unfolding the definition of C in the
goal, we are to show that
ks < ki A L¥1(0) ]k, = [¥3(0) I,
given arbitrary £ € dom(¥;). Unfolding in the premises, we have that
kz < kl A L“Ijl([)sz = L\Ilz(f)sz A
k3 < kZ A L‘Ijz(f)Jk3 = |_\P3(f)Jk3
where on the second line we appeal to the fact that dom(¥;) € dom(¥;) C dom(¥;) by definition
of C. For the left disjunct, we have
ks <k, <k;
by transitivity of <. For the right disjunct, it is sufficient to show that
L% (0) ]k, = 20,
because = is transitive. Expanding the definition of | -]., we are to show that
{(W,v) | (W,v) e ¥1(£) A Wk <ks} = {(W,v) | (W,v) € ¥,(£) A Wk < ks3}
and we have that
{(W,v) | (W,v) e ¥1(£) A Wk <ky} ={(W,v) | (W,v) € ¥a(£) A Wk <k}
Since k3 < ky, k < ky if k < k3, so we are done. ]

LEMMA 1.6 (LATER HEAPS). IfH: W then H : > W.

Proor. Suppose H : (k, ¥). Expanding the definition of >, we are to show that
H:(k—1,[¥]k-1)
Expanding the definition of :, >, and | -|., we are to show that
((k—2,|¥]g—2),v) ERAk-2<k-1
for some ¢, v, R such that ¥(¢) = R and H(¢) = v. The right disjunct is trivial, so we are to show
the left disjunct. Expanding the definition of :, >, and |-|. in the premise and specializing where
appropriate, we have that
((k - 1> L‘PJk—I) ’V) €R
Then since R € Typ and (k — 1, [¥]x-1) E (k — 2, [¥]k-2), ((k —2,[¥]k-2),V) € R by definition
of Typ,.
[m}
LEMMA 1.7 (VALUE LIFTING). If (W,V) € V[1], then (W, push v) € §[7].

Proor. Expanding the definition of &[z], we are to show that
S’ =FailcAc€ OKERRV Iv, W I W. (S"=S,vAH : W A (W',v) € V[r])) (12)
given arbitrary W,v,H:W,S,H",S’, j < W.k such that (W, v) € V[] and

(H; S; push v) EN (H";S";+) »

By the operational semantics of StackLang, we have that j = 1, H’ = H,and S’ = S, v. Then we have

the right disjunct of (12) by taking v = v, W’ = >W and appealing to Lemmas 1.4, 1.6. O
THEOREM 1.8 (FUNDAMENTAL PROPERTY). If I Fe: 7 then ;1 e 7] andif I3 e : 7 then
[[ i TFe: T]].

Proor. By induction on the typing derivations, using the compatibility lemmas. O
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THEOREM 1.9 (TYPE SAFETY FOR ). If- v e : 1 then forany H : W, if (H;-;e") 5
(H’;S’; P"), then either (H’;S’; P’y — (H”;S”;P”), or P’ = - and either S’ = Fail ¢ for some
c € OKERR or S’ = v.

Proor. Suppose (H;-;e™) N (H’;S’; P’} for some natural number n. Then, either (H’;S’; P’} —
(H”;S”";P"") or (H’;S’; P’} is irreducible. If (H’;S’; P’} is irreducible, then P’ = - by Lemma 1.1.

Next, by the Fundamental Property, since ¢ typechecks under empty environments, ((n +
1,0),¢*) € E[7].. Thus, since n < n+ 1 and (H; ;%) L (H’;S';-), we find that either S’ = Fail ¢
for some c € OKERR or S’ = -, v, as was to be proven. m]

THEOREM 1.10 (TYPE SAFETY FOR RefHL). If ;- + e : 7 then forany H : W, if (H;-;e™) 5
(H’;S’; P"), then either (H';S"; P’y — (H";S”;P”), or P’ = - and either S’ = Fail c for some
c € OKERR orS’ = v.

Proor. This proof is identical to that of . O

1.6.2 RefHL Compatibility Lemmas.

LEMMA 1.11 (CompAT ()).
[[5T F () s unit]

Proor. Expanding the definition of [-] and -*, we are to show that
(W, close(yr, close(yr, push 0))) € Efunit]

given arbitary W, yr, yr such that (W,y) € G[I] and (W,yr) € G[I']. Since push 0 is already
closed, the close operators have no effect. Then we are to show that

(W, push 0) € Efunit]
Then applying Lemma 1.7, we are to show that
(W,0) € V[unit]
which we have by definition of V[unit]. o

LEmMMA 1.12 (ComPAT B).
beB = [T +b:bool]

PROOF. Asin Lemma 1.11, except that in the case where b = false, b* = push 1and so 11is used
as the witness for v. ]

LEMMA 1.13 (COMPAT X).
[[5T,x: 7k x: 7]

Proor. Expanding the definition of [-] and -*, we are to show that
(W, close(yr, close(yr, push x))) € &E[7]

given arbitary W, yr, yr such that (W,yr) € G[I] and (W,yr) € G[I,x : 7]. Expanding the
definition of G[], we have that

yr=ylxe= VAW, v) e V[ A (Wy) € G[T]
for some y, v. Since yr(x) = v and v is closed, we are to show that
(W, pushv) € &[]
Then applying Lemma 1.7, we are to show that
(W,v) € V[7]

which we have by assumption. O



LEMMA 1.14 (CompaT inl e).

[ITre:n] = [T rinle:n + 1
Proor. Expanding the definition of [-] and -* and pushing substitutions in the goal, we are to
show that

(W, (close (y , close (yr, e+)) , lam x. (push [0, x]))) € & + ]

given arbitary W, yr, yr such that (W, ;) € G[I'] and (W, yr) € G[I']. Expanding the definition of
&[], we are to show that

S =FailcAc€ OKERRV IV, W I W. (S =S,;vAH : W A (W', v) e V[r +1])) (13)
given arbitrary H: W, S,H’, S’, j < W_.k such that

(H; S; (close (yr, close (yr, e*)), lam x. (push [0, x]))) EN (H;8;-) -»
The claim is vacuous when W.k = 0, so consider W.k > 0. Applying Lemma 1.2, there is
Je < J, He, Se such that
(H; S; (close (yr, close (yr, €%)))) 2 (He; Ses )

Then by expanding &[] in the premise and specializing as appropriate, either:

(1) Se =S’ = Fail ¢ A c € OkERR and H, = H’.

In this case, we have the left disjunct of (13).
(2)
Ave, We I W. (Se =S,ve AHe : We A (We,ve) € V[ri])

and .
(He; Se; lam x. (push [0, x])) I (H;S";) »

By the operational semantics of StackLang,
(He; S, ve; lam x. (push [0, x])) 4 (He; S; push [0, ve])

5 (He:S, [0, vel;-) -

soH =H,and S’ =S, [0, ve]. Then we show the right disjunct of (13) by taking v = [0, v,]
and W’ = >2W,, noting that W C W, C W’ by Lemma 1.5. All that remains is to show that
(W', [0, ve]) € V[r1 + 12], which, by definition, requires (W’,ve) € V[r]. Recall that
(We,ve) € V[r1]. Then simply apply Lemmas 1.4, 1.6.

O
LEMMA 1.15 (COMPAT inr e).
[[ ;erzrz]] = [[ ;Fl-iﬂt”e:ﬁ+7_'2ﬂ
ProoF. Asin Lemma 1.14, exchanging 71, 7, and 0, 1 where appropriate. O
LEMMA 1.16 (COMPAT if).
[[ ;Fl-e:bool]]/\[[ I ke :T]]/\[[ ;erz:rﬂ = [[ ;T Rifeeq 8221']]

Proor. Expanding the definition of [-] and -* in the goal and pushing substitutions, we are to
show that

(W, (close (y , close (}/1', e+)) , if0 close (y , close ()/1', e +)) close (y , close (y1~, ez+)))) € &[]
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given arbitary W, yr, yr such that (W, 1) € G[I'] and (W, yr) € G[I']. Expanding the definition of
&[], we are to show that

S =FailcAce€ OKERRV v, W I W. (S =S,vAH : W A (W',v) € V[1])) (14)
given arbitrary H: W, S,H’,S’, j < W.k such that

(H; S; close (yr, close (yr,e*)), ifo (...) (...)) 2 (H;S%;) -»
The claim is vacuous when W.k = 0, so consider W.k > 0. Applying Lemma 1.2, there is
Je < j,He, Se such that
(H:S; close(yr, close(yr, €%)) = (He; Se: ) =
Then by expanding E[-] in the premise and specializing as appropriate, either:
(1) Se =S’ = Fail c A c € OKERR and H, = H’.
In this case, we have the left disjunct of (14).

(2)
Ave, We I W. (Se =S, ve AHe 1 We A (W, ve) € V[bool])

and
(He; Se; if0 close (yr, close (yr, e1¥)) close (yr, close (yr, e,%))) =g (H;S";-) -
Expanding the definition of V[bool], we have that
Ve=n
Without loss of generality, suppose ve = n = 0. Then by the operational semantics of
StackLang,
(He; Se, 0;if0 close (y ,close (yr, e1+)) close (y ,close ()/1“, e2+)))

RN (He; S; close (yr, close (yr,e1%)) )

Now, by expanding the definition of [-] and &[] in the second premise and specializing
where appropriate, we have that

S"=FailcAc€ OKERRV v, W I W,. (S'=S,vAH : W A (W' v) € V[]))

If we have the left disjunct, then we have the left disjunct of (14). If we have the right
disjunct, then we have the right disjunct of (14) since W C W, T W’ by Lemma 1.5.

The case in which v,, = n # 0 proceeds analogously over the third premise, exchanging 0, n
where appropriate.
[m}
LEMMA 1.17 (ComPAT match).
[[ ;er:T1+T2]]A[[ ;X0 m F ey :T]]/\[[ ;F,y:rzl-ezzfﬂ
= [T+ match e x{e1} y{ex} : 11 + 2]
Proor. Expanding the definition of [-] and -* in the goal and pushing substitutions, we are to
show that
(W, (close(yr, close(yr, €¥)), P,
ifo (lam x.close(yr, close(yr, €1 %))) (lam y.close(yr, close(yr, €,%))))) € E[7]
where P = DUP, push 1,idx, SWAP, push 0, idx



19

given arbitary W, yr, yr such that (W, 1) € G[I'] and (W, yr) € G[I']. Expanding the definition of
&[], we are to show that

S =FailcAce€ OKERRV v, W I W. (S =S,vAH : W A (W',v) € V[1])) (15)
given arbitrary H: W, S,H’,S’, j < W.k such that

(H;S; close(yr, close(yr, €*)), P, ifo (lam x....) (lamy....)) EN GIEED!
The claim is vacuous when W.k = 0, so consider W.k > 0. Applying Lemma 1.2, there is
Je < Jj, He, Se such that
(H;S; close(yr, close(yr, €*)),) £ (He; Ses ) +
Then by expanding E[-] in the premise and specializing as appropriate, either:
(1) Se =S’ = Fail c A c € OKERR and H, = H’.
In this case, we have the left disjunct of (15).
(2)
Ave, We I W. (Se =S,ve AHe : We A (W, ve) € V] +12])
and o
(He;Se; P, if0 (lam x....) (lamy....)) "= (H’;S";-) =»
Expanding the definition of ‘V[r, + 7], we have that
(Fvive = [0,vi] Avi € V][r]) V (Fvave = [1,v2] Avy € V[12])
Without loss of generality, suppose we have the left disjunct. Then by the operational
semantics of StackLang,
(He; Se, [0, vi]; P, if0 (lam x....) (lamy....)) 4 (He; S, vy, 0;if0 (lam x....) (lamy....))
BN (He; S, vi; (Ilam x.close(yr, close(yr, e17))) )

= (He; S; close(y, close (yrx.r; [x > vil, &%)

where in the last step we push the substitution inside y;. Now, by expanding the definition
of [-] and &[] in the second premise and specializing where appropriate, we have that

S"=FailcAc€ OKERRV Iv, W I W,. (S'=S,vAH : W A (W',v) € V[1]))

If we have the left disjunct, then we have the left disjunct of (15). If we have the right
disjunct, then we have the right disjunct of (15) since W C W, T W’ by Lemma 1.5.

The case in which v, = [1, v3] proceeds analogously over the third premise, exchanging
71,7, and 0, 1 and x, y where appropriate.

[m]
LEMMA 1.18 (COMPAT (e, €5)).
[[;erwznﬂ/\[[ ;Fl-ezll'zﬂ - [[ ;FF(61,62)1T1XT2]]

Proor. Expanding the definition of [-] and -* in the goal and pushing substitutions, we are to
show that

(W, (close(yr, close(yr, e1™)), close (yr, close (yr, e2")), lam xp.lam x5. (push [x1, x21))) € E[r1 x 1]



20 Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed

given arbitary W, yr, yr such that (W, 1) € G[I'] and (W, yr) € G[I']. Expanding the definition of
&[], we are to show that

S =FailcAc€ OKERRV IV, W I W. (S =S,vAH : W A(W',v) € V[ x1]))  (16)
given arbitrary H: W, S,H’,S’, j < W.k such that

(H; S; close(yr, close(yr, e1™)), close (yr, close (yr,e2¥)),...) EN (H’;S;) -»

The claim is vacuous when W.k = 0, so consider W.k > 0. Applying Lemma 1.2, there is
J1 < Jj,Hy, Sy such that

(H;S; close(yr, close(yr, e1))) LN (Hy;S;0) »
Then by expanding E[-] in the premise and specializing as appropriate, either:
(1) S; =S’ = Fail c A c € OKERR and H; = H’.
In this case, we have the left disjunct of (16).
(2)
E|V1, W1 aJw. (51 = S,V] A H] : Wl A (Wl,V]) S (V[[Tw]])
and

(H1; Sy; close (yr, close (yr, e2+)) ,lam x;.lam xq. (push [x1, x2])) j;{] (H";S";-) -»

Applying Lemma 1.2 again, there is j, < j — jj, Hz, Sy such that

(H;S; close(yr, close(yr, e:%))) ELS (Hy;So;+) =
Then by expanding &[] in the premise and specializing as appropriate, either:
(@) S; =S’ =Fail c A c € OKERR and H, = H’.
In this case, we have the left disjunct of (16).
(b)
dv,, Wy, O WL (Sz =S,vy AHy: Wy A (Wz, V2) € (V[[Tzﬂ)

and

(Ha; Sz; lam x;.lam x;. (push [x4, x2])) L GEEDES

Recall that S; = S, vy, s0 Sz = S, v, = S, vy, vo. Then by the operational semantics of
StackLang,

(H2; S, v, vas lam xg.lam xq. (push [x1, x2])) = (Ha: S, [vi, val;-)
so H" = Hy and S* = S, [vy, v,]. Then we show the right disjunct of (16) by taking
v = [v,v2] and W’ = »3W,, noting that W C W; C W, C W’ by Lemma 1.5. All that
remains is to show that (W’, [vy,v2]) € V[ X 12], which requires (W’,v1) € V[r]
and (W’,v,) € V[r,]. Recall that (Wy, vq) € V[r1] and (W, v,) € V[r,]. Then sim-
ply apply Lemmas 1.4, 1.6.
O

LEMMA 1.19 (COMPAT fst e).

[[;Fl—e:an'gﬂ il [[;Fl—fste:ﬁ]]
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Proor. Expanding the definition of [-] and -* and pushing substitutions in the goal, we are to
show that
(W, (close (y , close ()/r, e+)) , push 0, idx)) € &[]
given arbitary W, yr, yr such that (W, ;) € G[I'] and (W, yr) € G[I']. Expanding the definition of
&[], we are to show that
S =FailcAc€ OKERRV IV, W I W. (S =S,vAH : W A (W, v) e V[n])) (17)

given arbitrary H: W, S,H’, S’, j < Wk such that

(H; S; close (yr, close (yr,e*)), push 0, idx) EN (H;S%;) -
The claim is vacuous when W.k = 0, so consider W.k > 0. Applying Lemma 1.2, there is
Je < J, He, Se such that
(H; S; close (yr, close (yr, e™))) A (He; Se; )
Then by expanding &[] in the premise and specializing as appropriate, either:
(1) Se =S’ = Fail c A c € OKERR and H, = H’.
In this case, we have the left disjunct of (17).

(2)
Ive, We I W. (Se =S,ve AHe : We A (We,ve) € V] X 12])

and B
(He; Se; push 0, idx) sy
Expanding the definition of V[, X 7] we have that
Ve = [V1,V2] A (We,v1) € (V[[ﬁ]] A (We, Vz) c (V[[Tzﬂ

Then by the operational semantics of StackLang,

(Hes S, [vi,val; push 0, idx) = (H; S,va3 )
so H" = H, and S’ = S, v;. Then we show the right disjunct of (17) by taking v = v; and
W’ = >2W,, noting that W C W, C W’ by Lemma 1.5. All that remains is to show that
(W', vq) € V[r1]. Recall that (W, v1) € V[r1], so simply apply Lemmas 1.4, 1.6.
[m}
LEMMA 1.20 (COMPAT snd e).
[[ e szﬂ e [[ ;Fl—sndezrz]]

ProoF. Asin Lemma 1.19, exchanging 7, 7, and 0, 1 where appropriate. O

LEMMA 1.21 (COMPAT Ax : 7.€).
[T,x:mre:n] = [TrAx:Te: 1y — 15

Proor. Expanding the definition of [-] and -* in the goal and pushing substitutions, we are to
show that
(W, push (thunk lam x.close (yr, close (yr, €*)))) € E[r1 — ]
given arbitary W, y, yr such that (W, y) € G[[I'] and (W, yr) € G[I']. Applying Lemma 1.7, we
are to show that

(W, (thunk lam x.close (yr, close (yr,e%)))) € V[r — 2]
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Expanding the definition of ‘V[r; — 7,] and pushing the substitution into yr, we are to show that
(W', close (yr, close (yrx.r; [x = v], %)) € &[]

given arbitrary W’ J W and v such that (W’,v) € V[r;]. We have this by expanding the definition
of [-] in the premise and specializing where appropriate. O

LEMMA 1.22 (COMPAT € €)).
[[;FF812T1—>T2]]/\[[ ;rl—eziﬁ]] - [[;Tke1 ezifzﬂ

Proor. Expanding the definition of [-] and -* in the goal and pushing substitutions, we are to
show that

(W, close(yr, close(yr, e1)), close (1, close(yr, €,7)), SWAP, call) € &[]
given arbitary W, yr, yr such that (W, ;) € G[I'] and (W, yr) € G[I']. Expanding the definition of
&[], we are to show that
S"=FailcAc€ OKERRV IV, W I W. (S =S,vAH : W A (W', v) € V[r])) (18)
given arbitrary H: W, S,H’, S’, j < W.k such that

(H;S; close(yr, close(yr, 1)), close(yr, close(yr, e2%)), SWAP, call) EN (H';S';-) =
The claim is vacuous when W.k = 0, so consider W.k > 0. Applying Lemma 1.2, there is
j1 < j,Hy, S1 such that

(H;S; close(yr, close(yr, e1%)),) 2> (Hi; S1; ) —»
Then by expanding &[] in the premise and specializing as appropriate, either:
(1) Sy =S’ =Fail c Ac € OKERrR and H; = H’.
In this case, we have the left disjunct of (18).
2
@ v, Wi W (S1=S,vi AH : Wi A (Whve) € Vo — ])
and .
(Hy; Sy; close(yr, close(yr, e,%)), SWAP, call) = (H’;S';-) »
Applying Lemma 1.2 again, there is j, < j — ji, Hz, S such that

(H;S; close(yr, close(yr, €2%)),) S (H;Sq;-) =
Then by expanding &[] in the premise and specializing as appropriate, either:
(@) S, =S’ = Fail c A c € OKERR and H, = H’.

In this case, we have the left disjunct of (18).

(b)

vy, Wy O W (Sz =S,vay AHy: Wy A (Wz, Vz) € (V[[Twﬂ)
and o
(Ha3 So3 SWAP, call) " 557 (H; 875y —»

Recall that (W3, vq) € V[ — 1], so by expanding the definition of V[r; — 7,] and
specializing as appropriate, we have that

vi = thunk lam x.P A (Ws, [x — v1]P) € &[]
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Recall that S; = S, vy, 50 S; = Sy, vy = S, thunk lam x.P, v,. Then by the operational
semantics of StackLang,

(Hs; S, thunk lam x.P, vo; SWAP, call) 2 (Ha; S, vy, thunk lam x.P; call)
—1> (Hy; S, vo; lam x.P)

2 (Hy: S: [x - v2]P)

j*j3276 <H/; SI; )

+
Now, recall that (W, [x - v,]P) € ][], so by expanding the definition of -] and
specializing where appropriate, we have that
S"=Failc Ac € OKERRV Iv, W I W,. (S'=S,vAH : W A (W',v) € V[r]))

If we have the left disjunct, then we have the left disjunct of (18). If we have the right
disjunct, then we have the right disjunct of (18) since W T W; C W, T W’ by Lemma
1.5.

m}

LEMMA 1.23 (COMPAT ref e).

[[;Fl—e:rﬂ =>[[;Fl—refe:refr]]

Proor. Expanding the definition of [-] and -* in the goal and pushing substitutions, we are to
show that
(W, close(yr, close(yr, €*)), alloc) € E[ref 7]

given arbitary W, yr, yr such that (W, ;) € G[!'] and (W, yr) € G[I']. Expanding the definition of
&[], we are to show that

S =FailcAc€ OKERR VIV, W I W. (S =S,vAH" : W A (W',v) € V[ref 7])) (19)
given arbitrary H: W, S,H’, S’, j < Wk such that

(H;S; close(yr, close(yr, €*)), alloc) ER (H;S";-) »

The claim is vacuous when W.k = 0, so consider W.k > 0. Applying Lemma 1.2, there is
Je < Jj,He, Se such that

(H; S; close(yr, close(yr, €¥)),) % (He; Ses ) =+
Then by expanding E[-] in the premise and specializing as appropriate, either:
(1) Se =S’ = Fail c A c € OKERR and H, = H’.

In this case, we have the left disjunct of (19).

(2)
Ave, We I W. (Se =S,ve AHe : We A (W, ve) € V[1])

and o
(He; Sezalloc) "= (H/:S%;-) =+

By the operational semantics of StackLang,

(Hes S, vesalloc) = (He W {€ > v} S, £5-) =
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for some ¢, so H = H, W {¢ > v.} and S’ = S, £. Then we have the right disjunct of (19)
by taking v = £and W’ = (We.k — 1, | We. ¥ ]w, k-1 W {€ — [ V[]]w, k-1}), observing that
(W', £) € V][ref 7] by definition and W C W, E W’ by Lemma 1.5.

[m]

LEMMA 1.24 (COMPAT le).
[[;Fl—e:refrﬂ = [[ ;Fl—!e:Tﬂ

Proor. Expanding the definition of [-] and -* in the goal and pushing substitutions, we are to
show that
(W, close(yr, close(yr, €¥)), read) € &[]
given arbitary W, yr, yr such that (W, 1) € G[I'] and (W, yr) € G[I']. Expanding the definition of
&[], we are to show that
S =FailcAce€ OKERRV v, W I W. (S =S,vAH" : W A (W',v) € V[1])) (20)
given arbitrary H: W, S,H’,S’, j < W.k such that

(H;S; close(yr, close(yr, €*)), read) EN (H;S";) -+
The claim is vacuous when W.k = 0, so consider W.k > 0. Applying Lemma 1.2, there is
Je < j, He, Se such that
(H;S; close(yr, close(yr, €*)),) 25 (Hes Ses )
Then by expanding E[-] in the premise and specializing as appropriate, either:
(1) Se =S’ = Fail c A c € OKERR and H, = H’.
In this case, we have the left disjunct of (20).

()
Ive, We I W. (Se =S,ve AHe : We A (We,ve) € V]ref 7])

and o
(He; Sesread) =5 (H';S';) —»
Expanding the definition of V[-], we have that
Ve =l AW, YY) = I.(V[[T]]JWe.k
so He = H, W {¢ > v;} for some v, such that v, € |['V[7]]wex- Then by the operational
semantics of StackLang,
(H, W {t — v, }; S, ¢;read) 4 (H, W {€ — vp};S,vp;-)
soH =H,w{f— v,} and S’ = S, v;. Then we have the right disjunct of (20) by taking
v =v,and W’ = >W,, noting that W C W, E W’ = >W, by Lemma 1.5.
[m}
LEMMA 1.25 (COMPAT e = e5).

[T ke ref e AT Fey 7] = [0 ke == ey :unit]
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Proor. Expanding the definition of [-] and -* in the goal and pushing substitutions, we are to
show that

(W, (close(yr, close(yr, e1™)), close (yr, close (yr, e2*)), write, push 0)) € E[unit]

given arbitary W, yr, yr such that (W, ;) € G['] and (W, yr) € G[I']. Expanding the definition of
&[], we are to show that

S =Failc Ac€ OKERRV IV, W I W. (S"=S,vAH : W A (W,v) € V]unit])) (21)
given arbitrary H: W, S,H’, S’, j < W.k such that

(H;S; close(yr, close(yr, e1 %)), close (yr, close (yr, e:")), write, push 0) L8y -
The claim is vacuous when W.k = 0, so consider W.k > 0. Applying Lemma 1.2, there is
j1 < j,Hy, S1 such that

(H;S; close(yr, close(yr, e1%)),) N (H1;S1;-) -+
Then by expanding &[] in the premise and specializing as appropriate, either:
(1) Sy =S’ =Fail c Ac € OkErr and H; = H".
In this case, we have the left disjunct of (21).
()
HV], W1 JW. (Sl = S, Vi A H1 : W1 A\ (Wl,V1) S (VHY'Q'F T]])
and .
(H1; Sy; close (yr, close (yr, e2¥)) , write, push 0) = (H;S";) »
Expanding the definition of ‘V[ref ], we have that
vi =t AWLY () = V][] lwik

for some ?.
Applying Lemma 1.2 again, there is j, < j — ji, Hy, Sz such that

(H1; Sy; close(yr, close(yr, e2)),) 4 (Ha;Sg5+) -+

Then by expanding &[] in the premise and specializing as appropriate, either:
(@) S =S’ =Fail c A c € OKERR and H, = H’.

In this case, we have the left disjunct of (21).

(b)

vy, Wy 3 Wi (S2=S1,va AHz t Wa A (Wa,va) € V[1])
and o
(Ha; S2; write, push 0) AN (H’;S";) »

Recall that W1.¥(¢) = |'V[7] w1k - Then since W; T W, we also have that
WL ¥ () = |'V[r] w2k - Then since Hy : W,, we may write Hy = H) W {f > v,} for
some v, such that vy € | V[7]Jwa.k-
Recall that S; = S, ¢, s0 S; = S1,v; = S, £, v,. Then by the operational semantics of
StackLang,

(H, @ {£ > ve}s S, £, vas write, push 0) —> (H} W {£ — v3}; S, 0; )
so H = H, W {f — v,} and S’ = S,0. Then we show the right disjunct of (19) by
taking v = 0 and W’ = >2W,, noting that W T W; T W, C W’ by Lemma 1.5. All that
remains is to show that (W’,0) € V[unit], which we have by definition.
O
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LEMMA 1.26 (CoMPAT (e)),).
[T ket AT~r = [I5TF (€),: 7]
Proor. Expanding the definition of [-] and -* and pushing substitutions in the goal, we are to
show that
(W, (close (yr, close (y , +)) ,C ,_)T)) € &[]

given arbitary W, yr, yr such that (W,yr) € G[I'] and (W, yr) € G[I'].
We proceed by appealing to Theorem 1.3, which says that it suffices to show that:

(W, (close (yr, close (yr,<*)))) € &[]
But this is exactly what our hypothesis tells us, appropriately applied. O

1.6.3 Compatibility Lemmas.

LEMMA 1.27 (COMPAT n).
[T;0 F n:int]
ProoF. Asin Lemma 1.11, exchanging unit, int and 0, n where appropriate. O

LEMMA 1.28 (COMPAT x).

[T, x:rkx:7]

Proor. Asin Lemma 1.13, exchanging 7, - where appropriate. O
LEMMA 1.29 (COMPAT ).
[T ke s A AT ke, ] = [1;0F 2 7l]
Proor. Asin Lemma 1.18, exchanging 7, 7, with [ 7| and generalizing n # 2 where appropriate.
O
LEmMMA 1.30 (COMPAT ).
[T ke s [2]J AT Feyint] = [0 F 7]

Proor. Expanding the definition of [-] and -* and pushing substitutions in the goal, we are to
show that

(W, (Close ()/1‘, close (y , +)) , close (}/1‘, close (y , +)) , idx)) € &[]
given arbitary W, yr, yr such that (W, yr) € G[I'] and (W, yr) € G[I]. Expanding the definition of
&[], we are to show that
S =FailcAce€ OKERRV Iv, W I W. (S =S,vAH : W A (W',v) € V[])) (22)
given arbitrary H: W, S,H’, S’, j < W .k such that

(H;S; close (y1~,close (yr, +)), close (yy,close (y , +)), idx) EN (H;S";) »
The claim is vacuous when W.k = 0, so consider W.k > 0. Applying Lemma 1.2, there is
Jj1 £ j,Hy, Sq such that

(H;S; close ()/1‘, close (y , +)), close (yy,close (y , +)), idx) £> (Hy;Sq;) =+
Then by expanding E[-] in the premise and specializing as appropriate, either:

(1) S; =S’ =Fail c Ac € OKERR and H; = H’.
In this case, we have the left disjunct of (22).



27

(2)
3V1,W1;W. (S]ZS,V]/\HlZWl/\(Wl,V1)€(V[[ H)

and .
(H1; Sy; close (yr, close (yr, e.)), idx) L (H;S';) -
Expanding the definition of ‘V[|7]|] we have that
vi= [V, VT A (W) € V] Ao A (Wh,vy) € V]
Applying Lemma 1.2 again, there is j, < j — ji, Hz, S such that

(Hy; Sy; close (yr, close (yr, e.*)), idx) % (Hy;S2;+) =
Then by expanding &[] in the premise and specializing as appropriate, either:
(a) S =S’ =Fail c A c € OKERR and H, = H’.

In this case, we have the left disjunct of (22).

(b)
v, Wy 3 Wl.(SZZS,Vz/\Hgt Wz/\(Wz,Vz)G(V[[ ]])
and o
(Hy; Sy; idx) A (H;S";-) »
Expanding the definition of V[int] we have that
Vo = Nj

for some n;.

Recall that S; = S, [v],...,Vv/], 50 Sp = Sy, n; = S, [v},..., v, ], ni. Then there are two
cases:
(i) nj € [1,...,n]. Then by the operational semantics of StackLang,

(H23S, Vi, vil misi) = (Has S, v )
so H" = Hz and S’ = S,v/.. Then we have the right disjunct of (22) by taking
v = v, and W’ = >W,, noting that W E W; C W, C W’ by Lemma 1.5 All that
remains is to show that (W’,v/ ) € V[]. Recall that (Wy,v/.) € V[7], so simply
apply Lemmas 1.4, 1.6.
(i) n; € [1,...,n]. Then by the operational semantics of StackLang,

(Ha; S, [V, ..., v ], nis idx) 4 (Hy; S; error)

= (Hy; Fail ¢; )
so S’ = Fail ¢ A ¢ € OKERR. Then we have the left disjunct of (22).

[m}

LEMMA 1.31 (ComPAT if0).
[T ket AL D Re crf AT eyt = [0 F |
Proor. Asin Lemma 1.22, exchanging bool, 7 with where appropriate. O
LEMMA 1.32 (COMPAT ).
[r; Fe:n] = [Tk : |

ProoF. Asin Lemma 1.21, exchanging 71, 7, with where appropriate. O
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LEMMA 1.33 (CompPAT )-

LT ke AT Res ] = [I;0F |
ProoF. Asin Lemma 1.22, exchanging 71, 7, with where appropriate. O
LEMMA 1.34 (COMPAT ).

[0 e s AT Fey:in] = 151+ : int]

Proor. Expanding the definition of [-] and -* and pushing substitutions in the goal, we are to
show that
(W, (close (yr, close (yr, ¢1*)), close (yr, close (yr, ¢.*)), add)) € &[int]
given arbitary W, yr, yr such that (W, yr) € G[I'] and (W, yr) € G[I]. Expanding the definition of
&[], we are to show that
S’ =FailcAceOKERRV Iv, W I W. (S =S,y AH : W A (W,v) € V[ini]))  (23)
given arbitrary H: W, S,H’,S’, j < W.k such that

(H; S; close (yr, close (yr, e ™)), close (yr, close (yr, e.")), add) ER (H’;8%;4)

The claim is vacuous when W.k = 0, so consider W.k > 0. Applying Lemma 1.2, there is
J1 < Jj,Hy, Sy such that

(H; S; close (yr, close (yr, 1)), close (yr, close (yr,¢.*)), add) N (Hy;Sq;-) »
Then by expanding E[-] in the premise and specializing as appropriate, either:
(1) S; =S’ = Fail c A c € OKERR and H; = H’.
In this case, we have the left disjunct of (23).

2
@ vy, Wi D W. (S =S,vi AHy: Wi A (Wy,vq) € V[int])
and o
(Hy; Sy; close (yr, close (yr, e.)), add) I (H;8;-) -
Expanding the definition of V[int] we have that
Vi=m

for some ny. Applying Lemma 1.2 again, there is j, < j — ji, Hz, S such that

(Hy; Sq; close (yr, close (yr, e.*)), add) L (Hy: Sy )
Then by expanding &[] in the premise and specializing as appropriate, either:
(@) S =S’ =Fail c A c € OKERR and Hy, = H’.
In this case, we have the left disjunct of (23).

b
® vy, Wy 3 Wi (S2=S,va A Hz : Wy A (W, v,) € V]int])
and o
(Hy; Spsadd) " 557 (H; %) »
Expanding the definition of V[int] we have that
V2 =y

for some nj.
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Recall that S; = S, ny, s0 S; = S1, ny = S, ny, ny. Then by the operational semantics of
StackLang,

(Hs; S, nq, ny; add) N (Hy;S, (nq +ny);-) +»

so H” = Hy and S’ = S, (n; + ny). Then we have the right disjunct of (23) by taking
v =ny+n; and W’ = >W,, noting that W C W; C W, C W’ by Lemma 1.5 and that
(W’,ny 4+ ny) € V[r] by definition.

O
LEMMA 1.35 (COMPAT ).
ﬂr; Fe: ]] i [T; - : ﬂ
Proor. Asin Lemma 1.23, exchanging 7, - where appropriate. O
LEMMA 1.36 (COMPAT l¢).
[[5T ke ] = [0k le:q]
ProoF. Asin Lemma 1.24, exchanging 7, - where appropriate. O
LEMMA 1.37 (COMPAT ).
[T;0 ke AT ke, 7] = [0 F s int]
Proor. Asin Lemma 1.25, exchanging 7, - where appropriate. O

LEMMA 1.38 (CoMPAT (é€)),).
[[;TrestfAar~7 = [0 F (€ : 7]

PrOOF. As in 1.26, exchanging 7, 7 where appropriate. O
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2 CASE STUDY: AFFINE WITH DYNAMIC SAFETY

In this setting, we have two source languages: MiniML and A¥ri1. The former is a functional language
with polymorphism and mutable references: a scaled down ML, essentially. The latter is an affine
lambda calculus, built by allowing weakening at the base out of a linear lambda calculus.

2.1 MiniML Language
Type © = unit|int|zXc|r+r|r—> 7| VYar|a|refr
Expressione := ()|Z|x]|(e,e)]|fste|snde]|inle|inre|matche x{e} y{e}
|Ax:r.e|ee|Aa.e|e[r] |refe|le|e:==¢e] (),

This is a functional language with higher-order mutable state and polymorphism. Note that
we have syntax for an embedding the foreign (Arr1 language) terms at a native type 7 (written
(e);). In order to support open terms within boundaries, we write the typing judgments including
a typing context from A¥¥1, written as shorthand € (though standing for I'; ©O), which is threaded
through the typing judgments of MiniML — a simpler model of interoperability takes this to be
empty, retains nearly identical typing rules to the original source, and thus only allows closed
terms to be embedded.

Typing.
AvrT x:7€eTl
CATEQ :unitm @ CATRZ:intw@© CGATEX:TwE
CuANTrRe i mw (@, Co; AT ey : o mw (g CATre: T Xpw @

CuMAT R (er,e): 1 Xow B C;A;TEfste:r @/

CATre: iy Xpww A+ CATre: 1w Avr 1 CATre:w(E
C;A;TEsnde: w7 CATrinle:g+mw@E CATrinre:g+nw@’

CuNTre:m+mw(, CuAT[x:n]reritmEy CuANTy ] rey:tm(Ey
Ci; AT Fmatch e x{e1} y{es} : 7w ;4

CAT[x:y]re:mmwE CuMNTre: T/ -5 1m0, CouAsTre 7@y
CATHFAX:me:m > Thw (@ CiATree :7m (@,
CA T re: T CAFT AT Fe:Varmw (@
C;ATFAae : Yarm Ef C;ATrelr] st fa] m E7
CATre: T @ C;ATre:refras (@’
C:A;TrFrefe:reframs (@’ CATEle: 7w G
CuMNTre:reftm(@, CuATrey: T @4 CATre: w0 T ~T
CiATFep :=ey:unitw @y CATF (e : T €

where the typing rule for foreign terms uses the following macro in its assumptions:

CGATERe: 7w 230,.0=0. Q' AT =T"AANT; Qe tmw AT
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2.2 AFfri Language

unit | bool |int |z o 7 |!r|t&r|T® 7T

() | true | false [n|x|a]da:re|ee]| (e)]!v]let!'x=eine’
(e,e’y | el ]e2]| (ee)]|let(aa’)=eine’
OlAa:ze|!v](ee)]| (v,v)

<
Il

Typing.
a:7€Q x:7€l
CTOra:rmC CTOrx:Tw(E CLOF () s unitw © CTIOrn:intmwC

C:;T;Q F true : boolw € C;T;Q F false : bool ws €

Ch0la=n]re:mwE

CI;Qrla:re:r o pwE

Q=0Q;WQ, @1;F;91F61:T1—0T2W(£2 (Sz;F;QzI-ez:TI'V\')(£3

CiiTQke ey pmw s

G Fvitas @
CToFlv:lzmse @

Q=0Q,¥Q, CulQire:lrm(E, CuTlx=1];Q re : 7" w3
Ci;QFlet!x=eine m @5

CulQre i mE, CuliQrey:mw @y C0re: & w
CiTQ R (e, e9) : & m» €y C:TQrel @

C0re: &~ G/
C0re2: @

Q:QlLﬂQz G1;F;Qll—€11’[]"/v>€2 Gz;r;le—ezifz’V\')G:g
G:‘];F;Q + (61,62) T ®T2'VV>(£3

Q=0,9Q, CiO ke @mw(E, CuliQla=r,a" =1r]re 7/ w3

Ci;T;Qrlet (a,a’) =eine’ : 7/ w E3

Cr;Qre:7m @’ T ~T
CLOr(e), it €
where the typing rule for foreign terms uses the following macro in its assumptions:

COre: w23V A=A AT=T"AT; QAT e w50
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2.3 LCVM Language

Expressions e = ()|Z|r]|x]|(ee)|fste|snde]|inle]|inre|ife{e} {e}
| match e x{e} y{e} | letx=eine| Ax{e} |ee|refe|le]|e:=e
| fail ¢
Values v = O|Z]|r](v,v)]|Axe
Error Code ¢ := TypE | ConVv
Heap H = fov,...
Evaluation Context K == [-] | (K,e) | (v,K) | inl K | inr K | match K x{e} y{e} | if K {e} {e} |

letx=Kine|Ke|vK]|refK| K|K:=e|v:=K
This is an untyped lambda calculus with pairs, sums, and references. Our operational semantics is
presented, below, using evaluation contexts to lift steps on subterms into steps on whole programs.

2.3.1 Operational Semantics.

v # (vi,v2)
(H,fst (v,v")) = (H,v) (H, fst v) — (H, fail TypE) (H,snd (V/,v)) — (H,v)

v # (VlaVZ) n # 0
(H, snd v) — (H, fail TYpE) (H,if 0 {e1} {e2}) — (H,eq) (H,if n {e1} {e2}) — (H,e2)

-/
(H,if v{ei} {e;}) — (H,fail TypE) (H, match inl v x{e1} y{e;}) — (H, [x—>v]e)

v ¢ {inrv/,inl v’}

(H, match inr v x{e1} y{ez}) — (H, [y—v]ey) (H, match v x{e1} y{e2}) — (H, fail TypE)

(H,let x =vine) — (H, [x—vV]e) (H, Ax{ep} v) — (H, [x—V]ep)
v # Ax{e} fresh ¢ H[f] =v
(H,v V') — (H, fail TypE) (H, ref v) — (H[t—0], £) (H,!¢) — (H,v)
v#EL v#L
(H,!v) — (H, fail TypE) (H, ¢ :=v) = (H[t—V], () (H,v := V") — (H, fail TypE)
(H,e) = (H",¢") K#[]
(H,K[e]) = (H’,K[e’]) (H, K[fail c]) — (H, fail ¢)

2.4 Compilers

For MiniML, we take the standard approach of erasing types. That means that most terms are
translated to syntactically analogous terms without type annotations (where present). The only
exceptions have to do with the type-only feature: polymorphism. There, we take a simple approach:
translate « to type unit (our target is untyped, so this guides our translation, rather than showing
up in target types), so that Aa.e turns into a normal value-level target lambda and e[7] turns into
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e*(). For foreign wrapper terms, we insert appropriate target-level wrappers ; we will describe in
much more detail what these mean and where they come from later on.

0 ~ ()

Z ~w 7

X ~m X

(er,€2) ~ (et er")
fste ~ o fstet

snd e ~»  snd et
inle ~» inl et
inre ~ inret
match e x{e1} y{e2} ~» matche* x{e;*} y{e,*}
Ax:T.€ ~ o Axfet}
el e ~wooete,t
Aa.e ~ A {et}
e[r] w et ()

ref e ~  ref et

le ~ o et

e =ey ~my et izeyt
(e)< ~ Chsr(et)

For A¥Fi, the compilation is again primarily about erasing types, but there are places where we
need to account for affinity and it is not directly achievable. Note in particular that ! is a no-op,
as statically we know that the term it is applied to is (affinely-)closed, which means there are no
affine variables in it and thus nothing we have to do with it. Our lazy products have to compile to
explicit thunks, to ensure that the resources (affine variables) that can be shared between both are
not evaluated twice, since the pair should only have one component used.

thunk(e) £ let resh = ref 1in A_{if !resh {fail CONV} {rfresh := 0;e}}

0 ~ ()

X ~w X

true ~ 0

false ~wo ]

n ~n

a ~ al()

la: e ~ o Aad{et}

er e ~s et (let x = e,™ in thunk(x))

v ~woovt

let!'x =eine’ o letx=etine™*

(e, e’) ~w (A{eth A {e’))

e.l ~ o (fstet) ()

e.2 ~> (snde™) ()

(e,e’) ~w o (et e’

let (a,a’) =eine’ ~»  let Xgesh = €™ in let Xf,'resh = fst Xgesh in let X;;esh = snd Xgegh iN
let a = thunk(x{ ) in let a’ = thunk(x{/_, ) in ¢’*

(e > Cros(e?)
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2.5 Convertibility

We incorporate type checking of embedded foreign terms by means of a convertibility relation that
defines when we can safely convert between (terms of) a type in one language to (terms of) a type
in the other language, which is defined up to the possibility of (well-defined) operational failure.
This is written as 7 ~ 7, which indicates that we can convert from 7 to 7 and the reverse, though
either can produce a (well-defined) runtime failure.

The above descriptions are our informal description. Formally, we split the definition into two
steps: first, we define declarative rules for the judgment. Second, we prove that these are sound
with respect to the logical relation. These are in the form of compatibility lemmas for our new rules,
which we appeal to in the typing rule for a embedded foreign term. A type checking algorithm
could then use the syntactic rules, knowing, based on the proof of soundness, that the result would
be sound. Our rules are the following:

C t runit ~ unit C :int ~ bool

unitunit Cunit»—)uni intsbool Clmoh—> int

CT]HTW’C‘LWHQ S add| CT_Y'—}Tzi c‘L’zHQ 2~

Crlx‘r;Hﬁ X Tzscﬁ X T @7, 11 @ T2 ~ 71 X 12

Crll—>T1:CT1l—>n S Eada| CTzHQ:CT_rb—»TZ P2~ T

Cronm(unit - 1) = 122 Cunit — 1) = rroryor, 171 0 2~ (Uit > 1) o7

Cunit»—mnil (e) e
Cunitr—»unit (e) e
Cint»—>lnml(e) e
C\m(v]»—)int (e) ife01

let x =e in (C;isry (fst x), Crysr, (snd x))
let x =e in (Crysr, (fst X), Cryisr, (snd x))
let x = e in Ax¢hnk-let Xconv = Cﬁ T (Xthnk ()
in let Xaccess = thunk(xconv) in Cr_n—»Tz (X Xaccess)
let x = e in AX¢hnk-let Xaccess = thunk(Cr,s7; (Xthnk ())) in Cryisz, (X Xaccess)

C ®TyT1 X T (e)
CT1 X TzHTISOTJ(e)
C

L 1 | [ [ T 13

mwrz'—)(unit - 1) >0 (e)

11>

C(unit — 7)) > T on (e)

2.6 Logical Relation

Our MiniML language has state, and so our relation contains worlds W that are made up of a
step-index k, a heap typing ¥ that captures the invariants of our heap, and an affine variable flag
set ©.

2.6.1 Worlds. A world W is drawn from:
World,, = {(k,¥,0) | k < n A¥Y C HeapTy, A dom(¥)#dom(O)}

World = U World,,

Where k is the step index, ¥ is a heap typing, and © is the set of pairs of locations that are affine
variable flags. To be well-formed, dom(W.0) is disjoint from dom(W.¥).
This heap typing has the following shape:
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HeapTy, = {(¢,£) » Typ,,...}
Where ¢ are heap locations. This is a simplified model as compared to the complex models for
state, but sufficient for our motivation. The locations map to the following relations:

Atom, = {(W,e,e2) | W € World, }

where for any expression e, FL(e) denotes all of the locations which appear in e. This condition
ensures that all locations which appear in e also appear in the world.

AtomVal, = {(W,v1,v,) € Atom,}
Atom = U Atom,,
n

AtomVal = U AtomVal,
n

Typn = {R € 247°™Valn | V(W,vy,v;) e RYW . WE W = (W',v4,v;) € R}
Typ = {R € 24"V | Vk.| Rk € Typi}
The affine flag set maps pairs of locations to {0, 1}, which we interpret as booleans. Let USED
denote 0 and UNUSED denote 1.

Restrictions. We define restriction based on indexing over relations as:
I.RJj = {(W,e1,62) | (W,e1,e2) ERAWE< ]}

L¥]; ={(6, &) = [R]; | (&, 6) — Re ¥}

Later. We define a > (later) modality defined as restricting the index to the current one, which
forces the worlds “forward” one step (as it cuts out everything with the current step index). On a
world W, bW = (W.k -1, [W.¥]y k-1, W.O), and 1> naturally extends to other definitions with
step indexes.

World Extension. We next define world extension, (k, ¥,0) C (j, ¥’,®’) (between well-formed
worlds), as:

J<k

AY(f, ) € dom(W). [ ¥ (4, )] = V' (f, 6)

AY(,6) € dom(0).(41,£,) € dom(O') A (B(fy, ) =0 = O'(f,£) =0)
As in, the step index can shrink, modulo loss of information due to decreasing step index.
We also define a strict version, that requires that the step index actually decreased:

WiC Wy 2 Wik>Wok AW, C W,
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Heaps. A heap H is:

H={f+ o}
And we define when a pair of heaps Hy, H; satisfy a world as Hy, H, : W:

(V(fl,fz) — Re W.Y. (|>W, Hl(fl), Hz(fz)) S R) A (V([l,fz) —>be W.OVice {1,2} Hl([l) = b)

i.e., locations must point to closed values that are in the relation specified by the heap typing
and the affine flags must be in the heap.

Expression Relation. We define an expression relation on closed terms as follows:

&[], = {(W, ey, ey) | freevars(e;) = freevars(e;) = 0 A
VHy, Ho: W, €, HY, j < Wok. (Hy,eq) 5 (H] €])
= e = fail Conv Vv (Iv,H; W',
(Hy, €2) — (Ho,va) AW E W AHLHY : WA (W el va) € V[r],)}
This relation is entirely standard — all of the interesting bits (capturing the semantics of affine
references at runtime) is captured in our operational semantics, which is described by our world.
In order to properly close the terms, we need to separately interpret environments from our two
source languages, and separate the affine and unrestricted environments from ArFr.
For any binary substitution y:
y'2{t->vile— (vi,va) €y}

Y 2{t > vy | t— (vi,vy) €y}

guard(e, £) = A_.{if !¢ {fail Conv} {¢ := UsED; e}}

Gll, = {(W,) | W e World}
g[[l",xzr]]p = {(W,ysx=(vi,v2)) | (W, vq,v2) G(V[[T]]p/\(Ws)’) EQ[[F]]/)}
Gll.x: ], = A(W,ysx=(vi,v2) [ (W,vi,v2) € V[, A (W,y) € G[1],}

Gla: 7], = {(W,y;a—(guard(vy, £), guard(vy, £))) |
([1,{72) e WOA (W,V1,V2) S (V[[Z'ﬂp A (W, }/) € Q[[Q]]p
Aty ¢ FL(v1) U FL(cod(y!)) A & ¢ FL(v;) U FL(cod(y?))}

Our interpretation of type environments is typical. Note that we write this in MiniML colors
because Arr1 does not have polymorphism, so the only type environment we will be interpreting
will be a MiniML one.

D[] {}
DAa] = {pla Rl |ReTypApe DAL}
Where Typ was defined earlier as an arbitrary relation on pairs of target values.
Then we define an interpretation for each source typing judgment (as these judgments have
different shapes).
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LA TRe eyt =VWNpyryrvo
p € D[A] A (W,yr) € G[T], A (W, yr) € GII]. A (W, y0) € G[O].
= (W, close; (yr, close; (yr, close; (yo, e17))), closes (yr, closez (yr, closez (yo, €2%)))) € 8[[7]]p

[T Re fey:t=VWNpyryrvo
p € D[A] A (W,yr) € G[T], A (W.yr) € G[T]. A (W, y0) € G[O].
= (W, close; (yr, close; (yr, close; (yo, €1%))), closes (yr, close, (yr, closes (yo, e2%)))) € &[],

AT;T;QF e ey tmw AT =
AT;TQ ke s AT
ANT; Qe e AT
AN=AN AT =T"AT; ;AT ke eyt
Ty ATRey ey it =
O AT Re w750
A AT ey im0
ATO.QO=0. Q' AT =T"AT;Qu;A;T ey ey
We will use these shorthands frequently when stating compatibility rules about our type systems.

2.6.2  Value Relation. Our value relation is indexed by the source types of both MiniML and AFrFi.
Note, however, that what inhabits the relation is just the target: these source types are purely
logical constructs.

V([unit], = {(W. 0,0}
V[int], {(W,n,n) | n€Z}
Vo x ], {(W, (Via, vaa), (Vib, Vab)) | (W, via,vip) € V[ ]p A (W, vaa, vap) € V[12],}
Vo + 2], {(W,inl vy, inlva) | (W,vy,v2) € V[ri],}
U {(W,inrvy,inrvy) | (W,vq,v2) € V][], }
Vn =), = {(W,Ax{e1}, Ax{ex}) [Vviva W.W LT W A (W, vi,vy) € V[ri],
= (W', [xvi]ey, [xvaer) € E[n],}

(V[[ref T]]p = {(W, [1,[2) | W.‘I’([l,fz) = L(V[[T]]p_] W.k}
V[Va.1], = {(W,A_ei,A_e)) [VReETyp, W.WL W = (W, ey er) € E[1]p[amr]}
(V[[O‘ﬂp = p(a)

Our relation for types from AFFr is similar.
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Vil = {(W.0.0)
V[bool], = {(W,0,0)} U{(W,nq,ny) | ny #0Any #0}
V[int]. = {(W,n,n) | neZ}

(V[[Tl —0 TQHA = {(W,/l a.e1,/1 a.ez) | VV] Vo w’ fl [2.

WL W AW, vi,vp) € V[r]. A(f, &) & dom(W.¥) Udom(W’.0)
= (W'.k,W.¥,W .0 (f, ) — UNUSED),
[ar>guard(vy, &1)]eq, [arsguard(vy, &)]ey) € E[n].}
V[']. = {(W,v,v2) | (W, vy,v2) € V[7].}
V[n @] {(W, (V1a,vaa), (Vib, Vab)) | (W, via,vip) € V). A (W, vaa,vap) € V[12].}
V[n&n]. {(W, (A_{ewa}, A_{ea}), (A_{ew}, A_{en}))
| (W,e]a,61b) € 8[[71]]. A (W, €22, ezb) € (SH‘QH}

2.7 Logical Relation Soundness
LEMMA 2.1 (EXPRESSION RELATION CONTAINS VALUE RELATION).
VIzl, < &l
Proor. All terms in the value relation are irreducible, and thus are trivially in the expression

relation. m]

LEMMA 2.2 (SPLIT SUBSTITUTIONS). For any world W and substitution y such that
(W,y) € G[0 W Q]
there exist substitutions y1, y, such thaty = y; Wy, and
(W) € G[2],

and
(W, y2) € G[2],
Moreover, for any i, j € {1,2}, foranyI'; Qj; A;T ke s T 1750,
close;(y, e*) = close;(y;, ")
and for any A;T515Q5 ke - 7w ATV,
close;(y, e*) = close;(yj, ™)
Proor. First, we need to show that there exist substitutions y; and y,. This follows from the
inductive structure of G[©)] ,, where we can separate the parts that came from G[©;], and G[©2:] .

The second follows from the fact that the statics means that the rest of the substitution must not occur
in the term, and thus close; (y, e*) = close;(y1, close;(y2, e*)) = close;(y1, e*) (for example). )

LEMMA 2.3 (WORLD EXTENSION).
(1) If (Wl,V],Vz) € (V[[T]]p and W1 c Wg then (Wz,V],Vz) € (V[[T]]p
(2) If (W1,)’1,}’2) (S Q[[F]]p and W1 C Wz then (Wz, Y1, )/2) € Q[[Fﬂp

Proor. We note that world extension allows three things: the step index to decrease, the heap
typing to add bindings (holding all existing bindings at same relation, module decreasing step
index), and add flag references (ensuring existing flag references can go from UNUSED to USED,
but not the other way). In all cases, this is straightforward based on the definition (relying on
Lemma 2.4 in some cases). O

LEMMA 2.4 (WORLD EXTENSION TRANSITIVE). If Wy E W, and W, & W5 then Wy & Ws.
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Proor. Straightforward based on the definition. O

LEmMMA 2.5 (HEAPS IN LATER WORLD). For any W € World and Hy,Hy : W, it holds that
Hy,Hy : > W.

Proor. Since heap typings map to relations that are by definition closed under world extension,
and world extension cannot remove locations, only restrict them to future step indices, this holds
by definition. O

LEMMA 2.6 (LoGICAL RELATIONS FOR MiniML IN Typ). Forany A, p € D[A], and 7, if A + 7, then
V], € Typ.

ProoF. By the definition of Typ, it suffices to show, for all natural numbers n, |V[7],]n € Typn.
This requires us to show two things: first, that it is in pAtomValy and second that it is closed under

world extension. The latter holds by Lemma 2.3. For the former, we note that we are required to
show that the worlds are in World,,, which holds by definition. O

LEMMA 2.7 (COMPOSITIONALITY). (W, vy,v;) € (V[[T]]p[m—)(V[[T,]]p] = (W,vy,v2) € V[r[r'/]],

Proor. It suffices to show V[7]
7. We show the interesting cases:

plamsV[T'],] = V[rl7'/a]]p, which we will do by induction on

Case 7 = 0.
Vila - 1], = V['], (by sub)
= pla = V['],](a) (by lookup)
= (V[[a]]p[qu,[[T/ﬂp] (by def V[].)
Caser=f # a.
Vil 1pl, = VIS, (by sub)
=p(p) (by def V[-].)

= plec > V[T,1(8)  (by lookup)
= (V[[ﬁ]]p[al—)(vﬂl',]]p] (by def(V[H].)

The other cases are straightforward by expanding the definitions of V[-]., &[-]. and applying the
induction hypotheses. O

LEMMA 2.8 (EXPRESSION RELATION FOR CLOSED TYPES). For anyMiniML type T where - + 7 and
any p,

&[], = &[]
Proor¥. Since &[7], is defined in terms of V[],, this proof is analogous to Lemma 2.7, though
since what we are substituting is not used, the interpretation can be arbitrary. O

LEMMA 2.9 (CLOSING MiniML TERMS). For anyMiniML term e where [;Q; A;T F e i tws 17 Q)

3 =S

for any W, yr, yr, yo, p where p € D[A], (W, yr) € G[I],, (W, yr) € G[I., and (W, y0) € G[].,
it holds that

close; (yr, close; (yr, close; (yo, €*)))
and

close; (yr, close; (yr, closes (yo, €*)))
are closed terms.
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Proor. Since free variables are compiled to free variables, and no other free variables are
introduced via compilation, this follows trivially from the structure of G[I'],. ]

LEMMA 2.10 (CLosING ArF1 TERMS). For any Arrr term e where A;T;1,Q F e : 7~ ATV, for

any W, yr,yr, yo, p where p € D[A], (W, yr) € G[I'],, (W,yr) € G[I']., and (W,y0) € G[]., it
holds that

close; (yr, close; (yr, close; (yo, "))
and

close; (yr, close; (yr, closes (yo, €¥)))
are closed terms.

Proor. Since free variables are compiled to free variables, and no other free variables are
introduced via compilation, this follows trivially from the structure of G[I'],,. ]

LEMMA 2.11 (ANTI-REDUCTION). If (W’ e}, e}) € &[1],, then Vj e; e W Hy Hy H] H). W C

W' Aj< WkAHLHy: WA (Hyjeq) ER (Hi,e7) A (Hy ) 5 (Hye)) AHLH) : WA Wk >
W.k — j A freevars(ey) = freevars(e;) =0 = (W, ey, e,) € E[1],

Proor. Expanding the expression relation, given

VHy, Ha: W, €%, HY, j' < Wk, (Hyer) 5 (HI el) -

we must show either e] is fail Conv or there exist v, H;, W* such that
(Ha,e2) 5 (H3vo) A WE W* AHLHE : W5 A (W el vo) € V[,
By confluence, if (H;, e1) EN (H1,e}) and (Hy, eq) i) (Hj,e}) —», then
(i) S (H e

Thus, by applying (W’, e/, e}) € &[], since j'—j < W.k—j < W’ .k, we find either e] is fail Conv,
in which case we are done, or there exist vy, H}, W* such that

(Hj,e5) 5 (Hiva) A W/ T W* AHLHS : W5 A (W5 el v,) € V[,
Now, since W C W’ and W’ & W*, we have W T W* by Lemma 2.4. Moreover, since (H, ;) 5
(H3,e7) and (HJ, e)) 5 (H3, v,), we have (H,, e;) — (HZ, v,). This suffices to finish the proof. O

THEOREM 2.12 (CONVERTIBILITY SOUNDNESS). If74 ~ 7 then
YV (W,erey) € Efta]. = (W, Crimrz(€1), Crysrg(€2)) € Etp]. A Y (W, e1,e;) € E[1p]. =
(W, Crgsry (e1), Crgrory (e2)) € SHTAH -

Proor. We prove this by simultaneous induction on the structure of the convertibility relation.

There are two directions to this proof:

v (W’ €1 eZ) € 8[[unit]]. = (W’ Cunit»—>unn(e1)’Cunit»—mmt(eZ)) € 8[[unil]].
and:
v (W’ €1, eZ) € 8[[11111[]]. = (W’ Cunilb—»Unit(e1)’ CunilHUnit(ez)) € Sﬂunlt]]

Both directions are trivially similar to each other, so we will only prove the first direction.
Expanding the definition of the convertibility boundaries, we refine this to:
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VY (W, e, ep) € Eunit]. = (W, eq,ez) € Eunit].
From the expression relation, we first need to show ey, e, are closed. This follows directly from
the fact the assumption that (W, eq,e;) € E[unit]., and all terms in the expression relation are
closed. Next, we need to show that given:

VHy, Hy:W, €, HY, j < Wk. (Hyer) 5 (H].el) »
then it holds that:

e1 = fail ConvV (IvaHy W' .(Hy, e3) 5 (Hy, va) AW E W/ AHL HY : W A(W e, vp) € V]unit].)
By instantiating the assumption (W, ey, e;) € E[unit]. with Hy, Hy, we find that

e; = fail CONVV(HVzH;W/.<H2,ez> —*> <H;, V2>/\W C W’/\Hi, H; : W'/\(W',e;,vz) € (V[[unlt]])

Ergo, it suffices to show that if (W, e/, v,) € V[unit]., then (W', e/, v,) € V[unit].. However,
this is trivial because V[unit]. = V[unit]. = {(W, (), ))}.

There are two directions to this proof:

Y (W, €1, ez) € 8[[1“1:]] - (W, Cintl—ﬂ)(ml(e1)’ CintHl)«)()l(ez)) S 8[[b001]]
and:
v (W’ €1, eZ) € 8[[b0()1]]. = (W’ Clvﬁolr—)iﬂt(eT)’ Cbonlr—)int(eZ)) € 8[[1!’11:]].

Consider the first direction.
Expanding the definition of the convertibility boundaries, we refine this to:

V (W, e, ep) € Efint]. = (W, eq,e3) € E[bool].
From the expression relation, we first need to show ey, e; are closed. This follows directly from
the fact the assumption that (W, ey, e;) € E[int]., and all terms in the expression relation are
closed. Next, we need to show that given:

VHy, Hy: W, €, HY, j < Wk. (Hyer) 5 (H],el)
then it holds that:

e} = fail ConvV (IvaH, W .(Hg, e3) — (HLv)) AW T W/ AHIL HY : W AW, el va) € V[bool].)
By instantiating the assumption (W, ey, e;) € E[int]. with Hy, H,, we find that

e} = fail ConvV (3v,Hy W’ (Hy, e5) — (H)va) AW C W/ AH)LHL : WA (W, €}, v,) € V[int].)

Ergo, it suffices to show that if (W', e],v,) € V[int], then (W', e/, v,) € V[bool].. However,
this is trivial because V[int]. € V[bool]..
Next, consider the second direction. Expanding the convertibility boundaries, we must show:

V (W, e, ep) € E[bool]. = (W,ife; 0 1,ife; 01) € Efint].
Expanding the expression relation, we must show that given

VHy, Ha: W, €/, HY, j < Wk. (Hy,if e; 01) D (H].el) -
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it holds that:
e} = fail ConvV/(3vaHy W .(Hay, if €3 0 1) = (Hj, v))AW C W/AHY, HY : WA(W', ¢}, vy) € V[int],)}

By (W, ey, ey) € E[bool]., we find that either (Hy, e1) either steps to fail Conv, in which case
(Hy, if 1 0 1) takes another step to fail Conv and we are done, or steps to an irreducible configura-
tion (Hj, e}), in which case (Hj, e,) steps to an irreducible configuration (H}, ;) and there exists
some world W’ such that W C W', H],H; : W', and (W', e],e}) € V[bool].. There are then two
cases:

(1) e} = e, = 0. In this scenario, we have

(Hy,if e 01) 5 (H%if 00 1) — (H,0)
and
(Hy,if €20 1) 5 (HZ,if 00 1) — (H3, 0)
Then, we have from before that W T W’ and H},H; : W’, and one can easily see that
(W’,0,0) € V[int]., which suffices to finish the proof.
(2) €7 = n;y and €] = n, with ny, n, # 0. In this scenario, we have

(Hyif e; 01y 5 (Hif ny 0 1y — (H:, 1)
and .
(Hy,if €3 0 1y 5 (H3,if np 0 1y — (H3, 1)

Then, we have from before that W T W’ and H},H; : W’, and one can easily see that
(W’,1,1) € V[int]., which suffices to finish the proof.

‘ T ®Ty ~T1 X1 ‘There are two directions to this proof:

v (W> €1, 62) € 8[[T1 ® 7‘—21]' == (W, Cn%rﬂ—»ﬁ X Ty (31)>Cr1®m—>ﬁ X Ty (62)) € 8[[71 X TZ]]'
and:

v (W: €1, eZ) € 8[[T1 X TZ]]- - (W’ CT] X To11 Q1) (61): CT] X To 1191, (eZ)) € 8[[2—1 ® TQ]]'
Both directions are trivially similar to each other, so we will only prove the first direction.
Expanding the definition of the convertibility boundaries, we refine this to:

" (W,e1,62) (S (CJHTl ® Tz]]. =
(W,
let x = ey in (Cpsry (fst x), Crmr, (snd X)),
let x = ey in (Cr,isry (fst x), Cpnr, (snd x))) € E]1y X 12].
From the expression relation, we first need to show the two expressions in the conclusion
are closed. This follows from the fact that ey, e, are closed, by the assumption that (W, ey, e;) €

E[r1 ® 1,])., and that the new expressions do not introduce any new free variables. Next, we need
to show that given:

VHy, Hp:W, €}, HY, j < Wek. (Hy,let x = e; in (C,.o.r; (fst x), C.isr, (snd X)) 2> (H, €}) =
then it holds that:
e} = fail Convv

(FvoH, W (Hy, let x = €5 in (C 1, (fst x), C,1, (snd X)) 5 (H’,vy)
AWE W AHLH,: WA (W el,va) € V[ X 12].)
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First, since the let expression in the first configuration terminates to an irreducible configuration,
by inspection on the operational semantic, it must be the case that (H;, e;) terminates to some

irreducible configuration (H7, e7). Then, by assumption, it follows that either e] = fail Conv, in

which case the whole let expression steps to fail Conv, or that e] is a value, in which case (Ha, e5)
also steps to some irreducible configuration (H;, ej_) and there exists some world W; where W C W,
H}, H; : Wi, and (Wy,e],e5) € V[r @ r,].. By expanding the value relation definition, we find
that e] = (vj,v5) and e} = (v;r, v;r) where (Wi, v}, v;r) € V[r]. and (Wl,vz,vz) e V[=]..
Thus, the first configuration steps as follows:

(Hylet x =eq in (C;,sry (fst x), Cr,r, (snd x))) 5

(Hi, let x = (v}, v}) in (Csry (fst x), Cr sz, (snd X)) —

(H1, (Crmry (fst (v1,V3)), Criry (snd (v, V3)))) —

<HT’ (Cr]b—>1'1 (VT), Cz‘,z'—>7.'2 (V;)»

By a similar argument, the configuration on the other side with H; steps to
(H3. (it (V). Coiory (V)))
Since (Wi, Vi, v 1) € V[r]. € &[n]. and (Wy,v3, 2) € V[r]. € &[r]., by the induction
hypothesis, we have that
(W1, Coory (v), Copory (V) € &[]
and
(ng CT)HTZ (V;), CT)HTZ (V;)) € 8[[72]] .

By the first fact, either (H}, C,—r, (v])) steps to fail Conv, in which case the original configura-
tion with H; steps to fail Conv, or it steps to an irreudicble configuration (HT, Vi), in which case
(H5,Cr ity (v:)) also steps to an irreducible conﬁguration (H;, v;*) and there exists some world
W, where W; C W, H H : Wy, and (Wg, ] y *) S (V[[ﬁﬂ..

Once the first component of the pair in the configurations above have stepped to values vi* and
v5*, the pair will continue reducing on the second component. Then, by Lemma 2.3, since Wi C W),

(Wy, Cm—ﬂ.’z (Vz), Cm—>l’2 (Vz)) € 8[[72]]'

Thus, either (HI, C.1, (V3)) steps to fail Conv, in which case the original configuration also
takes a step to fail Conv, or it steps to an irreducible configuration (Hf, V™), in which case
(HT Cror, (vl)) also steps to an irreducible conﬁguration (Hf ,V;"") and there exists some world
Ws where W, C Wi, HY HY - Wi, and (Ws, vi™,v5™) € V[r.]..

Thus, the original configuration with H; steps to (Hf , (vi",v]™)) and the original configuration
with H; steps to <H]2F, (v3",v3™)). We have Hf, Hf : W3 and, since W C W;, W; C W,, and
W, T Ws, it follows that W C W;. Moreover, since Wz W3 and (W, vi*,vi*) € V[r]., we have

1’2

(Ws,vi",v5") € V[ri].. Finally, we also have (Ws, vi™,v;**) € V[r].. Ergo,
(Ws, (Vi", V™), (V35 v5™)) € V]m x 2.
which suffices to finish the proof.

‘T]‘OTZN(Unit—)T1)—>T2‘

There are two directions, we first prove the former implication, that is, that:

V(W,ee) € & <] =

(W’Cn o (UNit > 77) > (61)’Cr] ors(UNit — 1) — TZ(EZ)) € &[(unit — 1) — 7].
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Expanding the definition of the convertibility boundaries, we refine our goal to:

(W, let x = ej in Axthnkc]e’[ Xconv = Cﬁl—»rl (Xthnk ())
in let Xaccess = thunk(xcony) in Cm—fl’z (x Xaccess)s
let x = e; in Axthnk.let Xcony = CT]»—)ﬁ (Xthnk ())
in let Xaccess = thunk(xconv) in CQb—ﬂ.'z (X Xaccess))
€ &[(unit — 1) — ).
From the expression relation, we must show first that the terms are closed, which follows from

out hypothesis given we did not introduce any new free variables. Then, we need to show that
given:

VHi, Ha:W, ¢, HY, j < Wok.

. J
<H1, let x = eq in AX¢hnk-let Xcony = CT1»—>r] (Xthnk ()) > - <H,a e;> -
in let Xaccess = thunk(xcony) in Cm—ﬂ'z (X Xaccess)

We can demonstrate that either e] is fail Conv, or there exists v,, Hj, W’ such that:

<H2, let x = €3 in AxX¢hnk.let Xcony = CT1>—>T1 (Xthnk ()) > _*) <H,: V2>
in let Xaccess = thunk(xcony) in Coor (X Xaccess)
AWE W AHLH,: WA (W el,va) € V[(unit — 1) — 1].

To figure out what e/ is, we know from the operational semantics that first we will evaluate e,
until it is a value and then will substitute. From our hypothesis, which we can instantiate with H;
and H,, we know that e; will run with H; to either fail Conv (in which case this will lift into the
entire term running to fail Conv) or will run to a value v; related at a future world W to another
value v; that e, will run with H; to, where the heaps have evolved to HY, H; W,

Now, our original term will take another step and substitute v, for x (note that the operational

semantics lifts steps on the subterm to steps on the whole term), which results in the following
term:

AXthnk-let Xcony = CT1b—m (Xthnk ()) in let Xaccess = thunk(xconv) in CQHTZ (V1 Xaccess)
This is clearly irreducible (it is a value), so we now need to show that the other side similarly
reduces to a value, which follows in the same way from our hypothesis, and thus what remains to
show is that these two values are related at W in V[(unit — ;) — 1,]..
The definition of V[[(unit — 7;) — 1,]. says that we need to take any wt - w, vy, and v)
that are in V[unit — 7]. and show that

(W’, [Xthnk'_)vq]let Xconv = Cﬁ»—)z‘] (Xthnk ()) in let Xaccess = thunk(xconv) in CQ»—>7.'2 (Vl Xaccess)a
[XthnkF V5 llet Xeony = Cry s, (Xthnk () in let Xaccess = thunk(xcony) in Cr, 7, (V2 Xaccess)) € E[72].

Where if we substitute, we get:

(W’, let Xcony = CT1|—>T1 (V; ()) in let Xaccess = thunk(xconv) in CT;»—)TZ (V1 Xaccess)s
let Xcony = CTm—)r] (V; ()) in let Xaccess = thunk(xconv) in CT_)'—)TZ (VZ Xaccess)) € 8[7——2]]‘

Now we can expand the definition of thunk(-), to get:
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(W', let Xconv = CTW 7 (V; ()) in let Xaccess =
(let Ifresh = ref 1in A_{]f Ifresh {fall CONV} {rfresh = OQXconv}}) in CT;»—)TZ (V1 Xaccess):
let Xcony = CT1>—>71 (V; () in let Xaccess =
(let reesh = ref 1in A_{if !rgesh {fail CONV} {rfresh := 0;Xconv}}) in Crsry (V2 Xaccess))
S 8[[1'2]].

From our induction hypothesis, instantiated with W’, we know that, if they don’t run forever
or fail, (W', Cr;sr, (0] (), Cryimr, (05 () will be in 7 ]. if (W', v} (),v5 () is in E[r1]. Since
we got v} and v} from V[unit — 7], the latter holds, and thus we know the converted terms
will eventually run to related values vcq and ve, at some future world W’ of W’ in V[r;]. We can
further step, substituting those values and reducing to a future world W’ that has in W’”’.© a
pair of fresh locations (#;, £;) pointing to UNUSED:

(W, Crmr, (vi (A_{if 14 {fail Conv} {f; := 0;vcq}})),
CTgl—VZ'z (Vz (A_{If 'fz {fall CONV} {fz = O;VCZ}}))) € 8[[‘[2]}4
Our induction hypothesis reduces this to proving that:

(W vi (A_{if 16, {fail Conv} {£; == 0;vei}}), va(A_.{if 16 {fail Conv} {& == 0;vc,}})) € E[r].

If we return to how we got v; and v,, we know they are in V[r; —o 7,]. with world W7, but via
Lemma 2.3, they are also related under W’””. From that definition, we know that v; has the form
A a.e;, and that:

(W*k, W*¥, W*.© W (£, ,) — UNUSED),
close({a — guard(vi*, £)}, €1), close({a — guard(vy*, &)}, e2)) € E[n].

Given any related values v;* and v,™ at a future world W* of W’”’. If we expand out the definition
of guard(-), we note that it exactly matches the terms that we have, and thus our vc; and vc, are
exactly v¢* and v¢*, which we already know are related at ‘V[r;]., and due to Lemma 2.3, they are
related not only at W’ but also at W*. Thus, we are done with the first direction.

Now we have to prove the other direction, that is, that:

VY (W,er,ep) € E[(unit —» 1) - ], =
(W’ C(unit i T1) - Tz#—)r;wr)(eo’c(unit - T1) — TpP11—°1; (62)) € 8[[1—1 — TZ]]'

Expanding the definition of the convertibility boundaries, we refine our goal to:

(W, let x = ey in AXthnk-let Xaccess = thunk(cm—)ﬁ (Xthnk ())) in Csz—)Tg(X Xaccess)y
let x = ey in AXthnk-let Xaccess = thunk(cr]»—»ﬁ (Xthnk ())) in CTZ'—)T; (X Xaccess))
€ 8[[2'1 —0 Tzﬂ.
From the expression relation, we must show first that the terms are closed, which follows from
out hypothesis given we did not introduce any new free variables. Then, we need to show that
given:

VHy, Ho:W, e/, Hl, j < Wk.

. . J
(Hy let x = ey in Axthnk.let Xaccess = thunk(CnHﬁ (Xthnk ())) in CTz»—)r_) (X Xaccess)) = <H’,e§> -+
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We can demonstrate that either e/ is fail Conv, or there exists v,, Hj, W’ such that:

<H2: let x = e) in AXthnk-let Xaccess = thunk(cnn—)ﬁ (Xthnk ())) in C7.'20—>Q (X Xaccess)> i) <H;, V2>
AWE W AHLH, : WA (W el va) € V[r — 1.

To figure out what e] is, we know from the operational semantics that first we will evaluate e,
until it is a value and then will substitute. From our hypothesis, which we can instantiate with H;
and H,, we know that e; will run with H; to either fail Conv (in which case this will lift into the
entire term running to fail Conv) or will run to a value v; related at a future world W' to another
value v; that e, will run with Hj to, where the heaps have evolved to HT, H;r W,

Now, our original term will take another step and substitute v; for x (note that the operational
semantics lifts steps on the subterm to steps on the whole term), which results in the following
term:

AxXthnk.let Xaccess = thunk(cm—)’ﬁ (Xthnk ())) in CTQ*-’T) (vq Xaccess)
This is clearly irreducible (it is a value), so we now need to show that the other side similarly
reduces to a value v,, which follows in the same way from our hypothesis, and thus what remains
to show is that:

(Wi /lxthnk-let Xaccess — thunk(crw—)ﬁ (Xthnk ())) in Csz—»Q (V1 Xaccess)a
AXthnk-let Xaccess = thunk(CnHﬁ (Xthnk ())) in Csz—»r: (VZ Xaccess))
€ V]r — ).
The definition of V[r, — 7,]. says that we need to take any W' = W, vy, Vi, 61, &, where
(W', v),v)) are in V[r,]. and (£, &) are not in either W’.¥ or W’.© and show that

(w’, [Xthnk'_)guard(\/;, &)]let Xaccess = thunk(cm—)ﬁ (Xthnk ())) in CTZ!—)Q (V1 Xaccess)»
[Xthnk'_)guard(vé’ £)]let Xaccess = thunk(cru—»’ﬁ (Xthnk ())) in CTZH'Q (V2 Xaccess))
S SHTzﬂ

Where if we substitute, we get:

(W', let Xaccess = thunk(crlr—)’ﬁ (guard(Vﬁaﬁ) ())) in CTZP—)T; (V1 Xaccess )s
let Xaccess = thunk(C. 7, (guard(v), &) ())) in Crysr, (V2 Xaccess))
€ Sﬂfz]] .
First, let’s expand the definition of thunk(-):

(W', let Xaccess = let resh = ref UNUSED in ,
A_{]f IFfresh {fall CONV} {rfresh ‘= USED; Cm—)ﬁ (guard(V;>f1) ())}) in C‘L’zn—»r,v (V1 Xaccess)
let Xaccess = let rgesh = ref UNUSED in )
A_A{if resh {fail CONV} {rfresh := USED; Cm—ﬂ'w (guard(vé, %) ()))}in Csz—W; (V2 Xaccess)
€ 8[[‘['2]] .
From Lemma 2.11 we can take three steps forward: allocating a new reference (¢/), substituting
it for reesh, and then substituting all of X,ccess, and thus suffices to show that:

(wt, Cryisr, (vi (A_{if 1] {fail Conv} {¢] := USED; C, sy (guard(v, 1) ())})),
Cryisr, (v2 (A_{if 1&) {fail Conv} {£; := USED; C,, 11y (guard(vy, £2) ())}))
(S 8[[2'2]].
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Where W' has a new pair of references in W'.© (set to UNUSED), a smaller step index, but
otherwise is identical to W".
For this, we can appeal to our induction hypothesis, which requires us to show that:

(WT vy (A_{if '¢] {fail Conv} {f] := USED; C;, 7, (guard(v], £1) ())}),
vy (A_{if ¢, {fail Conv} {f; := USED; C, 1, (guard(v), &) ())}))
S Sﬂfzﬂ.
Recalling that v; and v, came from V[(unit — 77) — 12]., we can proceed by appealing to the
definition of that relation, which tells us that for any arguments in V[unit — 7;]., the result of
substituting will be in &[] .. It thus remains to show that:

(W=, A_{if !¢; {fail Conv} {f; := USED; C,, 7, (guard(vy, £1) ()},
A_J{if ¢, {fail Conv} {¢; := USED; C,, 11, (guard(vy, &) ())})
€ V[unit — ¢].

Where W* is some future world of W. From the definition of V [unit — 71]., we have to show
that substituting () for the unused argument results in terms in E[r;]., at some arbitrary future
world W**.

We proceed first by case analysis on whether the affine flags (£/, £;) have been set to USED, which
they can be in a future world. If they have been, we can expand the definition of the expression
relation, choose heaps HY*, H* : W**, and show that

(Hy, if ¢ {fail Conv} {£] := USED; C,, 7, (guard(vy, £1) ())) 2 (Hy, fail Conv)

At which point we are done.

Thus, we now consider if (£, t’z’) are still set to UNUSED. If that’s the case, we instead appeal to
Lemma 2.11, taking three steps to move into the else branches and update the affine flags to USED.
That means we reduce our task to showing that in a world W***, which now has those locations
marked used in ©, we need to show:

(W™, Cnry (guard(vy, &1) (), Criory (guard(vy, &) ())) € 8]
We now again appeal to our induction hypothesis, expanding the definition of guard(-) at the
same time to yield the following obligation:

(W, (A_{if 4 {fail Conv} {f; := usED; V| }}) (), (A_{if !& {fail Conv} {£, := USED;V,}}) () € E[n].

We can appeal to Lemma 2.11 to take one step, eliminating the pointless beta-reduction (for
simplicity, we use the same name for the world, even though it is a future world):

(W, if 16, {fail Conv} {£; := USED; v, }}, if 16, {fail Conv} {£, := UsED; V) }) € E[r].

Now we again do case analysis on whether (¢, £;) is USED in W***.©. If it is, then, as before, we
trivially reduce the left side to failure and are done. If it is not, then we update those affine flags
and reduce both sides to the values v} and v/, at a future world wfinal Now we knew, originally,
that those values were in V[r;]. at world WT, but since, through many applications of Lemma 2.4
and Lemma 2.3, that also means that they are related at wfinal e are finally done.

O

THEOREM 2.13 (FUNDAMENTAL PROPERTY). If[; O A;T Fe:r~ws 1750 then; Qs AT e <e:tws 70

and if ;T;T5Q ke taa AT then AT, QFe < et AT
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Proor. By induction on typing derivation, relying on the following compatibility lemmas, which
have to exist for every typing rule in both source languages. O
THEOREM 2.14 (TYPE SAFETY FOR MiniML). For anyMiniML term e where ;+;-;- F e : T~ ;- and

r”

for any heap H, if (H, e*) 5 (H’, e’), then either ¢’ = fail Conv, €’ is a value, or there exist H”, e
such that (H', e’y — (H”,e"’).
Proor. This follows as a consequence of the fundamental property and the definition of the

logical relation, as follows: if (H, ™) 4 (H’, e’), then consider a trivial world W with k > n, an
empty heap typing and empty affine store. Then, since the term is closed, the fundamental property
says that (W, e, e*) € E[r].. This means that it runs to a stuck state, which is either at n or greater
than n. If it’s greater than n, then we have a further step that can be taken. If it gets stuck at n, then
we know that is either fail CoNV or a value. )

THEOREM 2.15 (TYPE SAFETY FOR AFFI). For any Arrr term ¢ where -;-;+;- F e : T~ ;- and for

any heap H, if (H, e*) 5 (H’,e’), then we know from the logical relation that either ¢’ = fail Conv,
e’ is a value, or there exist H”, e”" such that (H’,e’) — (H”,e”’).
Proor. This proof is identical to that of MiniML. O
LEMMA 2.16 (COMPAT unit).
LOATE() Z()iunitaw ;0
Proor. One can see that O = - W Q and I' = I'. Moreover, [; Q; A; T+ () : unit~»I;Q by the

unit typing rule. Ergo, it suffices to show that I'; ; A; T F () < () : unit.
Expanding the conclusion, given

YWNpyryryo.p € D[A]A (W, yr) € G[T]p, A (Wyr) € G[1T]. A (W, y0) € G[].
we must show
(W, close; (yr, close; (yr, close; (yo, ()%))), closex (yr, closez (yr, closez (yo, ()7)))) € Eunit],
()* = () is a closed term, so the closings have no effect. Ergo,
close; (yr, close; (yr, close: (yo, ()7))) = closex (yr, closez (yr, closez(yo, ()7))) = ()

One can easily see (W, (), ()) € V[unit],, which suffices to show (W, (), ()) € E[unit], by
Lemma 2.1. This suffices to finish the proof.
O
LEMMA 2.17 (COMPAT int).

O TRZ L7 intwI5Q
PRrOOF. One can see that Q = - W Q and ' =T. Moreover, [; Q; A;T F Z : int ~» [, Q from the int

typing rule. Ergo, it suffices to show that I';-; A;T Fn < n: int for any n € Z.
Expanding the conclusion, given

YW.Npyryryo.p € DA A (W, yr) € G[T]p A (W, yr) € GII]. A (W, y0) € G[].
we must show
(W, close; (yr, close; (yr, close; (yo, n*))), closex (yr, closez (yr, closes (yo, n%)))) € E[int],
n* = nis a closed term, so the closings have no effect. Ergo,
close; (yr, close; (yr, close; (yo, n*))) = close, (yr, closes (1, closez (yo, n*))) = n

Since n € Z, one can easily see (W, n,n) € V[int],, which suffices to show (W,n,n) € E[int],
by Lemma 2.1. This suffices to finish the proof. O
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LEMMA 2.18 (COMPAT X).
ArtAx:7Tel = I ATEXSXx:Tw];Q
ProOF. One can see that Q = - W Q and I' = I'. Moreover, I'; O;A;T F x : 7~ 13 Q from the

variable typing rule. Ergo, it suffices to show that I'; ; A; T F x < x : 7.
Second, expanding this conclusion, given

VWNVpyryryo.p € D[A] A (W, yr) € G[T], A (W, yr) € GITT. A (W, yo) € G[T
we must show
(W, close; (yr, close; (yr, closes (yo, x*))), close, (yr, closez (yr, close; (yo, x¥)))) € &[],
Notice that x* = x. Then, since x ¢ - and (W, yq) € G[]., we have
close; (yo, x) = closez(yo, X) = x
Next, since x ¢ ["and (W, yr) € G[I]., we have
close; (yr, x) = close, (yr, x) = x
Finally, since x : 7 € T and (W, yr) € G[I']., there must exist vy, v, such that
yr() = (vi,v2) A (W, vy,v2) € V7],
Thus,
close; (yr, x) = vq A closey(yr, X) = v,
Ergo, since (W, vy,v,) € V[1],, this suffices to show that
(W, close; (yr, close; (yr, close; (yo, x*))), closex (yr, closex (yr, closez (yo, x¥)))) € V][],

By Lemma 2.1, V[r], € &[], so this suffices to finish the proof. ]
LEMMA 2.19 (COMPAT X).

I'; QAT Fe e iy ms Iy Q)
Ao Qo AT ey et mp w0
= I';Q5 AT F(e1,6) X (e1,67) : 1y X 1w 3, Q5
Proor. Expanding the hypotheses, we find that I'; = I';, = I'; and there exist Q., Q. such that
O =0, WO, where I'; Qo; AsT Fep <ep:rypand Q) = Q)W O3 where I';; QL AT Fey <ep: 1.
Therefore, Q; = (Q. W Q) W Q3. Moreover, I'1; Q;; A;T F (e1,e2) < (e1,€2) : 1y X 13w [5; Q5 by
the pair typing rule. It thus suffices to show that I';; Q. W QL AT F (eq,e2) < (e, e2) : 1y X 1.
Expanding the conclusion, we must show that given
VWVP yryryo.p € D[[A]] A (W, }/r) € g[[r]]p A (W, )/1) € g[r]] A (W, }/Q) € g[[.Qk V) _QZ]]
then

(W, close; (yr, close; (yr, close; (yo, (e1,€2)™))), closez (yr, close, (yr, closez (yo, (e1,€2)%)))) € E[ry x ],

Notice that both of the expressions have no free variables by Lemma 2.9.
We can push the compiler and substitutions through the pair to refine that to:

(W, (close; (yr, close; (yr, close; (yo, e17))), close; (yr, close; (yr, close; (yo, €27)))),
(close (yr, close; (yr, closes (yo, e17))), closes (yr, closez (yr, closez (yo, €2%))))) € E[r x 2],

Then, we can expand the definition of the expression relation to get that given:
VH], HzZW, e;, H;, ] < Wk.
(Hy, (close; (yr, close; (yr, close; (yo, e17))), close; (yr, close; (yr, close; (yo, €27))))) ER (Hyep) »
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we need to show that either e is fail Conv, or there exists v,, H), W’ such that:

(Hz, (closey (yr, closes (yr, closez (yo, e17))), closes (yr, closez (yr, closez (yo, €2))))) 5 (HJ,v2)
AWE W/ AHLH, : WA (W ,el,va) € V[ x12],
In order to proceed, first notice that, by Lemma 2.2, yo, = y; W y, where
(W,n) € G[Q].
and
(W, 1) € G[].
and, for any i € {1, 2}
close;(yo,e1) = close;(y1, e1)
and
close;(yo, e2) = close;(y2, €2)
Next, we need to know what e} is. From the operational semantic, we know that our pair will

first run its first component using the heap H; until it reaches a target value (or gets stuck). By
appealing to our first induction hypothesis, instantiated it with W, yr, yr, y1, p, we get that:

(W, close; (yr, closes (yr, close; (y1, €1 7)), closes (yr, closes (yr, closez (y1, €17)))) € E[r1],

And in particular, can then use this, choosing the heaps to be Hy, and H;, (which satisfy W),
to conclude that either (H, close; (yr, close; (yr, close; (y1, e17)))) reduces to fail Conv (with any
heap, as it doesn’t matter), in which case the entire term will take another step to fail Conv, or it
will reduce to some irreducible intermediate configuration (HT, e}), at which point the other side
will reduce to a corresponding intermediate configuration (H;, er) and both will be in V[r;], for
some world W; that is a future world of W such that H}, H} : W;.

Since terms in the value relation are target values, our original pair will continue reducing
on the other subexpression according to the operational semantics. To figure out what happens,
we can appeal to our other induction hypothesis, this time using Wj, which we can do since
G, 6] G[9L]. is closed under world extension (Lemma 2.3), and choosing heaps Hj, H;.

From that hypothesis, we again either get that

(H7, close; (yr, close; (yr, close; (y2, €27))))

either runs to fail Conv, in which case the entire term takes another step to fail Conv, or to an
irreducible configuration (H/, e,*) such that the other side runs to some configuration (H, e;)
and both are in V[r,] p for some world W, that is a future world of W;, with Hi, H; : W,. Since
terms in the value relation are values, our original pair, with H;, has now run to the configuration
(H1, (e7, e3)), which is a pair of values and thus is irreducible.

Now we just need to show that there is a value on the other side, corresponding heap, and
extended world such that the resulting pairs are in V[, x 7,] ,. The former two we have gotten
along the way, from our induction hypotheses, which composed together give us that

(Ha, (close, (yr, close, (yr, closes (Yo, e1%))), close, (yr, close, (yr, closes (Yo, €2%)))))
runs to the irreducible configuration (H/, (eln, e;)). The future world that satisfies the resulting
heaps H{ and H, is W5. Because world extension is transitive (Lemma 2.4), this is a future world
not only of Wj but of W, as needed.
Finally, to show that our pairs are in the value relation at that world, we need to show that
each corresponding component is in the value relation at the component type. For 7, this is by
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definition. For 77, we know that e} and e} are related at W, but need to show that they are related

at W,. But this is exactly Lemma 2.3, and so we are done.
O

LEMMA 2.20 (COMPAT fst).

O ATre<e:mXnw[Q = A THfste<fste:g~I;Q

Proor. Expanding the hypotheses, we find that I' = I and there exists . such that Q© = Q. w Q'
where I; O; A;T e < e: 1y X 1. Moreover, [; Q; A;T F fst e : 7y m» I/, Q7 by the fst typing rule.
It thus suffices to show that I'; Q.; A;T + fste < fste: 7.

Expanding the conclusion, we must show that given

YWNpyryryo.p € DIA] A(W,yr) € G[T], A (W, yr) € G[I]. A (W, y0) € G[O].
then
(W, close; (yr, close; (yr, close; (yo, fst €¥))), closes (yr, closes (yr, closez (yo, fst €%)))) € E[n],

Notice that both of these expressions have no free variables by Lemma 2.9.
We can push the compiler and substitutions through fst to refine that to:

(W, fst close; (yr, close; (yr, close; (yo, e*))), fst closez (yr, closex (yr, closez (yo, €¥)))) € [ ]]p
Expanding the expression relation definition, we find that given
VHy, Hy:W, ¢/, HY, j < Wok.
(Hy, fst close; (yr, close; (yr, close; (yo, €*)))) EN (H,e}) »

we must show either e} = fail Conv or there exist v,, Hj, W’ such that:

(Ha, fst close, (yr, closez (yr, closez (yo, €™)))) 5 (H),vy)
AWE W AHLH, : WA (W, el v2) € V[r],
To proceed, we must find what e} is. From the operational semantic, we know fst will run its
argument using H; until it reaches a target value or gets stuck. From the induction hypothesis
instantiated with W, yr, yr, yo, p, we find that:

(W, close; (yr, close; (yr, close; (yo, €%))), closes (yr, close, (yr, closez (yo, €%)))) € Er x rz]]p

By instantiating this fact with Hj, Hy, we find that (Hy, close; (yr, close; (yr, close; (yo, €¥))))
either reduces to fail Conv, in which case the entire term reduced to fail Conv, or it will re-
duce to some (H7,e;"), in which case the other side with H, will reduce to some (H, e;") and
(Wi e, ei") € V[r x 7] for some world W; where W C W; and HY, H} : W;.

Then, by expanding the definition of the value relation, we find there exist v1a, Vip, V2a, Vb such
that € = (v1a,V2a), €] = (Vib, Vab), (Wi, Via, vip) € V[11]p, and (Wi, v, vap) € V1],

Thus, the original configuration with H; runs to the configuration (H7, fst (via, v22)), which
steps to (H}, via), which is a value and thus irreducible. Ergo, we have e = vy,.

Moreover, on the other side, the original pair with H, runs to the configuration (H3, fst (vip, vap)),
which steps to (H;, vi,), which is a value and thus irreducible.

Then, since H} and H} both satisfy the world Wy, it suffices to show (Wi, via, vip) € V[ri],.
This is true by definition of vy,, vip, which suffices to finish the proof. ]

LEmMMA 2.21 (CoMPAT snd).

A Tre<e:mXnw[Q = IO;A;TFsnde<snde:m~ ;0

Proor. This proof is essentially identical to that of fst. O
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LEMMA 2.22 (CompAT inl).
Ar o AT; ;A Tre<e: I Q) = ITO;A;TrRinle<inle:r +p w7/ Q)
Proor. Expanding the hypotheses, we find that I' = I and there exists (2. such that Q© = Q. w Q'
where I'; Q; A; T F e < e : 7. Moreover, [; Q; A; T+ inl e : 1y 4+ 15 ~» I7; Q7 by the inl typing rule.
It thus suffices to show that I'; Q.; A;T F inle <inle: 7 + 1.
Expanding the conclusion, we must show that given

YWNpyryryo.p € DIA] A (W,yr) € G[TT, A (W, yr) € GIIT. A (W, y0) € G[O].
then
(W, close; (yr, close; (yr, close; (yo, inl €¥))), closes (yr, closes (yr, closes (yo, inl e¥)))) € E[r + ]p

Notice that both of these expressions have no free variables by Lemma 2.9.
We can push the compiler and substitutions through inl to refine that to:

(W, inl close; (yr, close; (yr, close; (yo, e*))), inl closez (yr, close, (yr, closey(yo, €7)))) € E[r1 + 2],
Then, expanding the expression relation definition, we find that given
VHy, Hy: W, e, HY, j < Wk
(Hy, inl close; (yr, close; (yr, close; (yo, €%)))) EA (Hi,e}) »

we must show either e} = fail Conv or there exist v,, Hj, W’ such that:

(Ha,inl closes (yr, closes (yr, closes (yo, €7)))) — (HJ,v2)

AWE W AHLH, : WA (W el,va) € V[r +12],
To proceed, we must find what e] is. From the operational semantic, we know inl will run its
argument using H; until it reaches a target value or gets stuck. From the induction hypothesis

instantiated with W, yr, yr, yo, p, we find that:

(W, closey (yr, close; (yr, close; (yo, €7))), closes (yr, closes (yr, closez (yo, €7)))) € E[z1],

By instantiating this fact with Hj, Hy, we find that (Hy, close; (yr, close; (yr, close; (yo, €*))))
either reduces to fail Conv, in which case the entire term reduced to fail Conv, or it will re-
duce to some (H7,e;"), in which case the other side with H, will reduce to some (H, e;") and
(Wi, eir,eqf) € V[r], for some world Wy where W C W; and Hj, H; : W;.

Thus, the original pair with H; runs to the configuration (H7, inl ej), which is a value and thus
irreducible. Ergo, we have e; =inle].

Moreover, on the other side, the original pair with H, runs to the configuration (H3, inl e?),
which is also a value and thus irreducible.

Then, since H} and H} both satisfy the world Wi, it suffices to show (Wj,inl e], inl ej) €
V[ + 12] . This holds true because (W, e, e:) € V[r1],, which suffices to finish the proof. O

LEMMA 2.23 (COMPAT inr).

Ar AT A Tre<e: w0 = ITO;A; TFinre<inre:m+nwIl/;Q

Proor. This proof is essentially identical to that of inl. O
LEMMA 2.24 (ComPAT match).
I'; QA Tre<e:n+mwIh; Q)
ALy Qs AT [x ] Fey e im0y
Ao Qs ATy i ] Fep S ep:tmw 350
= T';Q;A;T Fmatch e x{e1} y{e,} <matche x{e 1} y{er}: 1w T3;Q5
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Proor. Expanding the hypotheses, we find I'; =", = I's and there exist Q., Q. such that Q; =
Q.wQ, where';; O ;AT Fe <e:rp+and Q) = QWO where I'y; Qs AT [x ] Fep <ep 7
and ['y; Qs AsT'[y : 72] F ey < eyt 7. Moreover, I'1; Q3 A; T F match e x{e1} y{es} : 7~ I'5; Q3 by
the match typing rule. It thus suffices to show that

I;Q1A;T Fmatch e x{e1} y{eo} <matche x{e;} y{ex}: 7

Expanding the conclusion, we must show that given

YWNpyryryo.p € DIA] A (W,yr) € G[T], A (W, yr) € GII]. A (W, y0) € G[Q w QL.
then
(W, close; (yr, close; (yr, close; (yo, match e x{e1} y{e2}™))),
close;, (yr, close, (yr, close; (yo, match e x{e 1} y{e;}")))) € &[],
Notice that both of the expressions have no free variables by Lemma 2.9.
We can push the compiler and substitutions through the match to refine that to:
(W, match close; (yr, close; (yr, close; (yo, €*)))

x{close; (yr, close; (yr, close; (yo, e1%))) } y{close; (yr, close; (yr, close; (yo, €2*))) },
match close, (yr, closes (yr, closez (yo, €*)))

x{close (yr, close, (yr, closez (yo, €1%)))} y{close, (yr, close; (yr, closey (yo, e2%)))}, € &[],
We can expand the definition of the expression relation to get that given:
VHy, Hy:W, €, H, j < Wik,
(H1, match close; (yr, close; (yr, close; (yo, €*)))
x{close; (yr, close; (yr, close; (yo, 1))} y{close; (yr, close; (yr, close; (yo, €27))) }) EA (Hi,e}) »

we need to show that either e] is fail Conv, or there exists v,, H), W’ such that:

(Hgz, match close; (yr, close (yr, closez (yo, e*)))
x{close, (yr, close, (yr, close; (yo, e} y{close; (yr, close; (yr, close, (yo, e = (H, v2)
AWE W/ AHLH, : WA (W, el v,) € V][],

In order to proceed, first notice that, by applying Lemma 2.2 twice, we find that yo = y1 Wy,
where

(W, 1) € G[O.].
and
(W.r2) € G[X].
and for any i € {1, 2},
close;(yo, e) = close;(y1, e)
and
close;(yo, e) = close;(ys, e1)
and
close;(yo, e) = close;(yz, €2)
Next, we need to know what e} is. From the operational semantics, we know that the match
expression will run its first subexpression using the heap H; until it reaches a target value or gets
stuck. From our first induction hypothesis, instantiated with W, yr, yr, y1, p, we find that

(W, close; (yr, close; (yr, close; (yo, €))), close, (yr, closez (yr, closez (yo, €%)))) € E[r1 + 1]
We can instatiate this with the heaps H;, H, (which satisfy W) to conclude that either
(Hy, close; (yr, close; (yr, close; (yo, €7))))
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reduces to fail Conv, in which case the entire term will take another step to fail Conv, or it

will reduce to some irreducible configuration (Hj, e7), at which point the other side will reduce to
another intermediate configuration (H, e:), and both will be in V[r; + 7,], for some future world
Wi where W C W; and HY, H; - W).

Given (Wy, e}, ej) € V[ + ], there must exist v}, v;f such that either e] = inl vj, eI =inl v:,

and (Wl,v”;,vj) € V[r],oref =inrvj, eI =inr vj, and (Wl,vj,v:) € V[r],.

First, consider the case where e] = inl v and e;f =inl v:. Then, by the operational semantic, the
configuration with H; and the original match expression must step to
(H3, [x = vj]close; (yr, close; (yr, close; (y2,€17))))

and, on the other side, the configuration with H, must step to
(H3, [x — vi]close (yr, closez (yr, closes (v, 1))))

Next, notice that (W, ya[x — (v”{,v:)]) € G[I'[x : 1]], because (W1, y,) € G[I'], (by W C W;
and Lemma 2.3) and (W, Vi, v;r) € V[r] p- Therefore, we can instantiate the second induction
hypothesis with Wy, yr, yr, y2[x — (vj,vf)],p, because W C W; and G[I'],, G[I]., G[]. are
closed under world extension by Lemma 2.3. We then find that:

(W1, [x — vi]close; (yr, close; (yr, close; (y2, €17))), [x — v?]closez(yr, close; (yr, close; (y2,€17)))) € &[],
Ergo, since H} : Wi, the configuration above with H] must either step to fail Conv, in which
case the whole expression steps to fail Conv, or it must step to (Hi, e;") for some H}L : W, where
Wi E W,. Moreover, on the other side, the configuration above with H} must step to (HT, ef} for
some H; : Wy, with (Wy, e77, e:T) € V[r],. Then, since W E W; and W; C W,, we have W C W,
(by Lemma 2.4), which suffices to finish the proof for this case.
Now, consider the case where e] = inr vj and er =inr v:. Then, by the operational semantics,
the configuration with H; and the original match expression must step to
(H1, [y — vilclose; (yr, close (yr, close; (y2, €27))))

and, on the other side, the configuration with H, must step to

(H3, [y — vi]closes (yr, closes (yr, closes (y2, €2%))))

The rest of the proof for this case is trivially similar to the proof for the first case, where x, x, 77, €;
is replaced with vy, y, 75, e,, respectively. m]
LEMMA 2.25 (COMPAT —).

LOAT[x:n]lre<e:nwl;Q0 = AT FAX e K AX i1y = w0

Proor. Expanding the hypotheses, we find that I' = I and there exists Q. such that Q = O, w Q'
where I; Q; A;T[x : 7] F e < e : 1o. Moreover, [; Q; A;T F Ax i 1y.e 1 1y — 1w [7;Q by the A
typing rule. It thus suffices to show that I Qo ; AT FAX i e < Ax ey — 1.

Expanding the conclusion, we must show that given

YWNpyryryo.p € D[A] A (W, yr) € G[T]p A (W, yr) € GIIT]. A (W, y0) € G[O.].
then
(W, close; (yr, close; (yr, close; (yo, Ax : 71.€7))), closez (yr, closex (yr, closez (yo, Ax : 71.€%)))) € E[r1 — ],

Notice that both of the expressions have no free variables by Lemma 2.9.
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We can push the compiler and substitutions through the lambda to refine that to:
(W, Ax.close; (yr, close; (yr, close; (yo, €%))), Ax.close, (1, closes (1, closez (yo, €*)))) € E[r — o],
Expanding the expression relation definition, we find that given
VHy, Hp:W, €, HY, j < Wok.
(H1, Ax.close; (yr, close; (yr, close; (yo, €*)))) EN (H},e}) »

we must show either e] = fail Conv or there exist v,, H), W’ such that:

(Ha, Ax.closes (yr, closes (yr, closes (yo, €*)))) 5 (H’,vy)
AW E W AHLHY: WA (W€, v) € Vo — 1],
Clearly, (Hy, Ax.close; (yr, close; (yr, close; (yo, €*)))) —» because this expression is a target value.
Therefore, e} = Ax.close; (yr, close; (yr, close; (Yo, €¥))). Moreover, we trivially have

(Hg, Ax.close; (yr, close, (yr, closez (yo, €¥)))) 2 (Ha, Ax.close, (yr, close, (yr, closes (yo, e*))))
and Hy, Hy : W and trivially, W C W. Therefore, it suffices to prove that
(W, Ax.close; (yr, close; (yr, close; (yo, €%))), Ax.closes (yr, closes (yr, closez (yo, e*)))) € V[ — Tzﬂp
Consider arbitrary vy, v,, W where W C W’ and (W', vy,v2) € V[r1],. Then, we must show
(W', [x = vi]close; (yr, close; (yr, close; (yo, €7))),
[x = va]close, (yr, closey (yr, closey(yo,e%)))) € E[n],

Notice that yr[x — (vi,v2)] € G[I'[x: 71]], because (W’,yr) € G[I'], (by W & W’ and
Lemma 2.3) and (W, vy, v3) € V[r] p- Then, we can instantiate the first induction hypothesis with
W', yr[x = (v, v2) ], yr, Yo, p because W T W’ and G[I'] ., G[I']., G[©]. are closed under world
extension by Lemma 2.3. Therefore,

(W', close; (yr[x — (v1,v2)], close; (yr, close; (yo, €%))),
closez (yr[x — (vi,v2)], closex (yr, closez (yo, €%)))) € E[n],

We can simplify the above statement by bringing x — vy out of the close; on the left side and
bringing x — v, out of the close, on the right side. This suffices to finish the proof. O

LEMMA 2.26 (COMPAT app).

Tl,Ql,A,F Feir<e:11 >0 Wrz,gzz A F2,£22,A,F Fe,<ex:n wrg;Qg -
FI,Q],A,F Fejer,<eer:n WF;;;Q:;

Proor. Expanding the hypotheses, we find that I'y = I', = I'; and there exist Q., Q. such that
O =Q.wQ, where I'; Q; A;T ey ety — pand Q) = QL wWOs where I'; QL AT Fep <ep
71. Therefore, Q; = (Q. W Q) W Q5. Moreover, [';; Q1;A;T + e e; < e1 e; 1 1w ['3;Q5 by the
application typing rule. It thus suffices to show that I';; Q. W Q; A;T Feqe; <ej ey 1o

Expanding the conclusion, we must show that given

YWNpyryryo.p € D[A] A (W,yr) € G, A (W,yr) € GIT. A (W, y0) € G[Qc W Q.
then
(W, close; (yr, close; (yr, close; (yo, €1 €2*))), closez (yr, closes (yr, closes (yo, €1 €,%)))) € 8[[72]]p

Notice that both of the expressions have no free variables by Lemma 2.9.
We can push the compiler and substitutions through to refine that to:
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(W, close; (yr, close; (yr, close; (yo, e17))) close; (yr, close; (yr, close; (yo, €2%))),
close, (yr, closez (yr, closez (yo, e1))) close (yr, closez (yr, closes (yo, e:%)))) € 8[n],

Expanding the expression relation definition, we find that:
VHI,Hzlw, e;, H{, _] < Wk.
(Hy, close; (yr, close; (yr, close; (yo, e1%))) closes (yr, close; (yr, close; (yo, €27)))) EN (Hi,e}) »

we must show either e} = fail Conv or there exist v,, Hj, W’ such that:

(Ha, close; (yr, closes (yr, closez (yo, e1%))) closez(yr, closes (yr, closez (yo, €:%)))) 5 (H’,vy)
AWE W/ AHLH,: WA (W el va) € V[r2],

In order to proceed, first notice that, by Lemma 2.2, yo = y; W y, where

(W.y) € Gl
and
(W) € GO
and, for any i € {1, 2}
close;(yo, e1) = close;(y1, €1)
and
close; (yo, e2) = close;(y2, €2)
Next, we need to know what e} is. From the operational semantics, the application will run the
first subexpression using the heap H; until it reaches a target value or gets stuck. By appealing to
our first induction hypothesis, instantiated with W, yr, yr, y1, p, we get that:

(W, closes (yr, closes (yr, close; (y1, €1))), closes (yr, closes (yr, closez (y1,e17)))) € E[n — 2],
We can instantiate this fact with H; and H,, both of which satisfy W, to find that

(Hy, close; (yr, close (yr, close; (y1, €1))))
either reduces to fail Conv, in which case the whole expression steps to fail Conv, or to some
irreducible configuration (H7, ej), in which case on the other side, the configuration reduces to
some irreducible configuration (H, e;r), and there exists some W; such that W T Wy, H], H; : W,
and (Wl,e;‘,ef) € V[ — ],

Since terms in the value relation are target values, the original application will continue re-
ducing on the second subexpression according to the operational semantics. Then, we can ap-
peal to the second induction hypothesis instantiated with Wi, yr, yr, y2, p, because W E W; and
G, GII']..G[I']. are closed under world extension by Lemma 2.3. Thus,

(W4, close; (yr, close; (1, close (y2, e2%))), close, (yr, close, (yr, closez (y2, €27)))) € &1 1,
We can instantiate this fact with H] and H3, both of which satisfy Wi, to find that

(H1, close; (yr, close; (yr, close; (y2, €27))))
either reduces to fail Conv, in which case the whole expression steps to fail Conv, or to some
irreducible configuration (H}*, e3), in which case on the other side, the configuration reduces to
some irreducible configuration (H}", e;), and there exists some W, such that Wy & W, H*, H* : W,
and (Wo, e, e;) € V[nl,.
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Then, instantiate (W, e}, ej) € V[r; — 1], withej, e;, >W,.Because Wy C Wyand W, T >W,,
it follows that W; T >W,. Moreover, (>W,, e, e;) € V[r:], (because (Wa, e, e;) € V[r], and
W, C >W,), so we find that there exist ez, e:; such that

* %
e; = Ax.e,

and
eI = Ax.el
and
(>Wa, [x = e3]ep), [x — e;]eZ)) € &[],

Now, by the operational semantics, the original configuration with heap H; steps to (H}", Ax.e; e3)
and, on the other side, the original configuration with H, steps to (H}", Ax.el eg). Both of these con-
figurations step to (H{", [x — ej]e;) and (H}", [x — eZ]eE), respectively. Then, since H}", Hy" : Wy,
by Lemma 2.5, it follows that H}*, H;* : >W,, so we can instantiate the above fact with H*, H;" to
deduce that either the first configuration steps to fail Conv, in which case the original configura-
tion with H; steps to fail Conv, or the first configuration steps to some irreducible configuration
(H{ ,€), in which case the configuration on the other side steps to some irreducible configuration

(Hg, e;), and there exists some W5 such that >W, T W5, H{, HJ; : W3, and (W5, e}, e'f}') € V[r],.
This suffices to show that e] = e; and that e] is in the value relation at 7, along with the value that
is stepped to by the original configuration on the right hand side. Then, since W & W;, W; E W,
W, E >W,, W, E Ws, we have W £ W3, which suffices to finish the proof. O

LEMMA 2.27 (CoMPAT V).
AT re<e:rtwmwl;Q0 = IO0A0 T FAxe < Aae :VYar~»17;0/

Proor. Expanding the hypotheses, we find that I' = I and there exists . such that Q© = O, w Q'
where I'; Q; A, o; T - e < e : 7. Moreover, I, Q; A; T F Aae : Va.r ~»17; Q) by the type abstraction
typing rule. It thus suffices to show that I'; O.; A;T F Aa.e < Aa.e : Va.t.

Expanding the conclusion, we must show that given

YWNpyryryo.p € D[A] A (Woyr) € GIT]p A (Woyr) € GITT. A (W, yo) € GO
then
(W, close; (yr, close; (yr, close; (yo, Aar.e™))), closes (yr, close (yr, closex (yo, Aa.e™)))) € E[Vea.7],

Notice that both of the expressions have no free variables by Lemma 2.9.
We can push the compiler and substitutions through the pair to refine that to:

(W, A_.close; (yr, close; (yr, close; (yo, €%))), A_.closes (yr, closes (yr, closes (yo, €%)))) € 8[[Va.f]]p
Expanding the expression relation definition, we find that given
VHy, Hy:W, e/, HY, j < Wok.
(Hy, A_.close; (yr, close; (yr, close; (yo, €*)))) EA (Hi,e}) »

we must show either e} = fail Conv or there exist v, Hj, W’ such that:

(Hz, A_.close; (yr, close, (yr, closes (ya, €1)))) 5 (H’,vy)
AW E W AHLH, : WA (W el v,) € V[Va.1],

Clearly, (Hy, A_.close; (yr, close; (yr, close; (yo, €7)))) —» because this expression is a target value.
Therefore, e} = A_.close; (yr, close; (yr, close; (yo, €*))). Moreover, we trivially have

(Ha, A_.close; (yr, closes (yr, closes (yo, €¥)))) > (Ha, A_.close, (yr, closes (yr, closes (yo, €¥))))
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and Hy, Hy : W and trivially, W C W. Therefore, it suffices to prove that

(W, A_.close; (yr, close; (yr, close; (yo, €*))), A_.close, (yr, close, (yr, closez (yo, €¥)))) € (V[[Va.rﬂp
Consider some arbitrary R € Typ and W’ such that W C W’. We must prove that
(W', close; (yr, close; (yr, close; (yo, e*))), closez (yr, closez (yr, closes (yo, €)))) € E[7] piar]

Since R € Typ and p € D[A], it follows that p[a > R] € D[A, «]. Thus, we can instantiate the

first induction hypothesis with W, yr, yr, yo, pla + R], because W T W’ and G[I'] ., G[I'].. G[©].

is closed under world extension by Lemma 2.3. This suffices to prove the above fact. O
LEMMA 2.28 (COMPAT [7/]).

Ar T AT; QT re <e:VarwIl;Q0 = T AT reld] Leld] [t /a] w17,

Proor. Expanding the hypotheses, we find that I' = I and there exists (2. such that Q© = Q. w Q'
where I'; O.; A;T e < e : 7. Moreover, [; O; A;T F e[ 7] : z[7"/a] m» T7; Q' by the type application
typing rule. It thus suffices to show that I; Q.; A;T ke[| < e[7'] : z[7'/a].

Expanding the conclusion, we must show that given

YWNpyryryo.p € DIA] A (W,yr) € G[T], A (W, yr) € GIIT. A (W, y0) € G[O].

then

(W, close; (yr, close; (yr, close; (yo, e[7']7))), close (yr, closes (yr, closez (yo, e[7']%)))) € E[z[7' /],

Notice that both of the expressions have no free variables by Lemma 2.9.
We can push the compiler and substitutions through the type application to refine this to:

(W, close (yr, close; (yr, close (yo, %)) (), close, (yr, closes (yr, closes (yo, €¥))) () € 8[[f[r’/a]]]p
Expanding the expression relation definition, we find that given
VHy, Hy:W, e/, HY, j < Wok.
(Hy, closey (yr, close, (11, close, (1o, %)) () & (H e]) =
we must show either e} = fail Conv or there exist v, Hj, W’ such that:
(Ha, closes (yr, closes (yr, closes (yo, €%))) ()) = (Hj, va)
AW E W AHLH, : WA (W, el vo) € V[r[r'/a]],

To proceed, we must find what e is. From the operational semantic, we know the application
will run its subexpression using H; until it reaches a target value or gets stuck. From the induction
hypothesis instantiated with W, yr, yr, yo, p, we find that:

(W, close; (yr, close; (yr, close; (yo, €¥))), closex (yr, closez (yr, closes (yo, €)))) € E[Va.7],

By instantiating this fact with Hj, H,, we find that (Hy, close; (yr, close; (yr, close; (yo, €™))))
either reduces to fail Conv, in which case the entire term reduced to fail Conv, or it will reduce to
some (HJ, e;*), in which case the other side with H, will reduce to some (H, e,y and

(Wi, ei*,ei’) € V[Va.1],

for some world W; where W £ W, and Hj, H} : W;.
Then, we can instantiate this fact with V[7’], and >W;. (Note that V[7'], € Typ by Lemma

2.6.) Since W C >W; (as W C W; and W; C >W)), we find that there exist ez‘), ez such that
e;=A_e

Ty o
e, =A_e
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and
s T
(l> Wi, €y eb) € 8[[T]]p[a—>(V|IT/ﬂp]

Ergo, by the operational semantic, the original configuration with heap H; steps to (H},A_.e; ())
and, on the other side, the configuration with H, steps to (H*,A_.e:) ()). Next, both of these
configurations take a step to (Hj, e;) and (H3, ez), respectively. (Notice that () is not substituted
anywhere because the binding in the lambda values are unused.) Next, since H}, H; : Wj, by Lemma
2.5, it follows that H}, H} : >W, so we can instantiate the above fact with H}, H; to deduce that
either the first configuration steps to fail Conv, in which case the original configuration with H;
steps to fail Conv, or the first configuration steps to some irreducible configuration (Hi", ef), in
which case the second configuration also steps to some irreducible configuration (H;*, eg), and there
exists some W, where D,.Wl C Wo, HY', H* : W,, and (¢W2, e/, e:) € (V[[Tﬂp[a—)q/[[‘["ﬂp]' Therefore,
by Lemma 2.7, (Wa, e;‘, efl) S (V[[T[T’/a]]]p. Ergo, e] = e;, so this suffices to show e] is in the value
relation at 7|7’ /«| along with the value stepped to by the configuration with H, on the other side.
Finally, since W & W;, W; C >Wj, and >W; C W,, we have W & W, (by Lemma 2.4), which
suffices to finish the proof. ]

LEMMA 2.29 (CoMPAT ref).

IOsATre<e:twI; Q0 = IO A;Trrefe<refe:refrwIl7/;Q
Proor. Expanding the hypotheses, we find that I' = I and there exists (2. such that Q = Q. w Q'
where I; Q; A; T+ e < e : 7. Moreover, I'; Q; A;T' F ref e : ref 7 17; Q' by the ref typing rule.

It thus suffices to show that I'; Q.; A;T +ref e < refe:refr.
Expanding the conclusion, we must show that given

YWNpyryryo.p € DIA] A (W,yr) € G[T], A (W, yr) € GIIT. A (W, y0) € G[O].
then
(W, close; (yr, close; (yr, close; (yo, ref €¥))), close; (yr, closes (yr, closez (yo, ref €¥)))) € E[ref 7],

Notice that both of the expressions have no free variables by Lemma 2.9.
We can push the compiler and substitutions through the type application to refine this to:

(W, ref close; (yr, close; (yr, close; (yo, e*))), ref close, (yr, closex (yr, closez (yo, €¥)))) € E[ref r]]p
Expanding the expression relation definition, we find that given
VHy, Hy: W, €, HY, j < Wk
(Hy, ref close; (yr, close; (yr, close; (yo, €%)))) EN (Hyep) »
we must show either e} = fail Conv or there exist v, Hj, W’ such that:
(Hy, ref close, (yr, closey (yr, closes (yo, €%)))) 5 (H3,va)
AWE W AHLH, : WA (W e, vy) € V[ref 7],

To proceed, we must find what e is. From the operational semantic, we know ref will run its
argument using H; until it reaches a target value or gets stuck. From the induction hypothesis
instantiated with W, yr, yr, yo, p, we find that:

(W, close; (yr, close; (y1, close; (yo, €*))), closes (yr, close, (yr, closes (yo, €*)))) € & [[rﬂp

By instantiating this fact with Hj, H,, we find that (Hy, close; (yr, close; (yr, close; (yo, e™))))
either reduces to fail Conv, in which case the entire term reduced to fail Conv, or it will reduce to
some (H7J, e;"), in which case the other side with H; will reduce to some (H, e;"yand (Wy, e, ej) €
V[r], for some world Wy where W C W and Hj, H : W;.
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By the operational semantic, it follows that the original configuration with Hy steps to (H7, ref e7)
and, on the other side, the configuration with H; steps to (H;, ref ej). Ergo, since e], e? are target
values, the first configuration steps to (Hj[#; — e7], #1) for some ¢ ¢ H] and the second configura-
tion steps to (H; [ — ej], t,) for some ¢, ¢ H3. To finish the proof, we must find some world W,
such that W € W; and Hi[# — e]], H[£ — el'] : Wy and (W, £y, 6) € V[ref 7],.

Note that, since H},H} : Wj and £ ¢ H},& ¢ H}, it must be that £,£ ¢ dom(W;.¥) and
t1, 6, ¢ dom(W;.0).

Then, let

Wy = (Wik, [WL.Y ] w, k[ (01, &) — [V]]p)w, k], W1.9)
Notice that Wo.k = Wik < Wi.k. Also, for all (¢£,¢;) € dom(W;.¥), we have W, ¥(¢/,£;) =
[Wi.¥|w, (£, 4) = | W1.Y(£],£;) | w, k. Finally, W,.0 = W;.0, so all the affine flags in W, are
clearly present and unchanged in W,. Ergo, Wi E W;.

Next, we would like to show Hj[# — e]], H;[f>» — e:] : Wh.

Forany (¢],€,) — R € W,.¥, there are two cases: (1) (£}, £,) = (1, ), in which case W,.¥ (¢, £2) =
[V[],lw, k- Then, since (Wy, e}, eTT) € V[r],, it follows by Lemma 2.3 that (W5, e], ej) e V[,
and thus (>W,, ej,er) € |VIrlplwyks or (2) (£,¢,) € dom(W;.¥), in which case Hj[f, —
e7](¢) = H{(#)) and H} [ £, — ei](t’z’) = H;(£)). Exgo, (> Wy, H] (£)), H;(£)) € W1.¥ (¢, £;) because
Hi, H3 : Wi. Then, since W1 C W,, it follows that >W); C >W,, so by Lemma 2.3, it holds that
(oW, HI(¢)), H3(£,)) € LWL Y (8], £5) lw, k = W2 W (8], £;).

Then, for any (¢}, £,) — b € W,.0 = W;.0, we know that £/ # £; and £, # £,, so since H, H; : W,
we have

Hi[er — e7]1(8) = Hi (&) = W1.0(¢], &) = W,.0(¢,,£;)
and
H3[ — el1(6) = Hi(6) = W1.0(£], £) = W2.0(¢], £3)

This suffices to show that H][#; — e]], H} [, — ej] : W,. Then, since W C W; and W; C W,,

we have W £ W,. Finally, we have

W ¥ (6, 6) = [V[rlplwik = LVl plwok

which suffices to show (W, f1, &) € V[ref 7],. O
LEMMA 2.30 (ComPAT !).

iOsA;Tre<esrefrw ;) = IOATRle<le:raw ;)
Proor. Expanding the hypotheses, we find that I' = I and there exists Q. such that O = Q. w Q'
where I; Oc; A;T F e < e : ref 7. Moreover, I, Q; AT + le : 7w [7;Q by the ! typing rule. It thus

suffices to show that I'; Q.; A;T F le <le: 7.
Expanding the conclusion, we must show that given

YWNpyryryo.p € D[A] A (W,yr) € G[T], A (W,yr) € GI] A (W, o) € GO
then
(W, close; (yr, close; (yr, close; (yo, 'e™))), closez (yr, close; (yr, closez (yo, 'e¥)))) € &[],

Notice that both of the expressions have no free variables by Lemma 2.9.
We can push the compiler and substitutions through the dereference to refine this to:

(W, close; (yr, close; (yr, close; (yo, e*))), Icloses (yr, close (yr, closes (yo, €¥)))) € & [Tﬂp
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Expanding the expression relation definition, we find that given
VHy, Hy: W, e, HY, j < Wk
(Hy, Iclose; (yr, close; (yr, close; (yo, €9)))) 2 (H/,e!) -

we must show either e} = fail Conv or there exist v,, Hj, W’ such that:

(Ha, !close; (yr, closes (yr, closes (yo, €¥)))) 5 (HJ, v2)
AW E W AHLH) : WA (W e, v)) € V1],

To proceed, we must find what e] is. From the operational semantics, we know ! will run its
argument using H; until it reaches a target value or gets stuck. From the induction hypothesis
instantiated with W, yr, yr, yo, p, we find that:

(W, close; (yr, close; (yr, close; (yo, €*))), closex (yr, closes (yr, closes (yo, €%)))) € Eref 7],

By instantiating this fact with Hj, H,, we find that (Hy, close; (yr, close; (yr, close; (yo, €™))))
either reduces to fail Conv, in which case the entire term reduced to fail Conv, or it will reducle to
some (HJ, e;"), in which case the other side with H; will reduce to some (H3, e;"yand (Wi, e, e)) €
V[ref 7], for some world W; where W C W; and H}, H; : W;.

By expanding the definition of the value relation, we then see that

WY (4, 6) = I_(V[[T]]pJ Wi.k

By the operational semantics, it follows that the original configuration with H; steps to (HJ, le])
and, on the other hand, the configuration with H, steps to (H’z‘, !el'). Since Hj, Hj : Wy, we have that
f; € dom(H7}) and £, € dom(H}). Ergo, by the operational semantics, the two configurations step to
(H1, Hi(#1)) and (H3, H;(£2)), respectively. Then, by the above fact, we have (Wi, H] (), H; (%)) €
V(r],. Since W C W, this suffices to finish the proof. ]

LEMMA 2.31 (COMPAT :=).

Fl,Ql,A,r Fep <ep: ref T’V\?Fz,gzl A r2,£2z,A,I‘ Fe,<ep: T’V\’)F3;g23
- F],£21,A,F Fejr:=ey<e =¢ep: Unit’\'\’)r‘jg;gz'j

Proor. Expanding the hypotheses, we find that I'; = I', = I'; and there exist (., Q/ such that
Qp =Q.WQ, whereI'; Q; AT Fey <ep:ref rand Q) = Q WO, where I'); QAT Fey <ep: 7.
Therefore, Q) = (Q. W Q) W Q5. Moreover, I';; Q; A; T+ eq := e, : unit m» I'5; Q5 by the := typing
rule. It thus suffices to show that I';; Q. W Q; AsT F ey :=e; < ej:=e;:unit.

Expanding the conclusion, we must show that given

VWVP Yryryo.p € .D[[A]] A (W, }/r) € Q[[F]]p A (W, )/r) (S g[[r]] A (W, }/Q) c Q[[QA V] QL/]]

then

(W, close; (yr, close; (yr, close; (yo, €1 := e;%))), close (yr, closez (yr, closey (yo, €1 := ;%)) € E[unit],

Notice that both of the expressions have no free variables by Lemma 2.9.
We can push the compiler and substitutions through the assignment to refine that to:

(W, close; (yr, close (yr, close; (yo, e17))) := close; (yr, close; (yr, close; (yo, €2%))),
close; (yr, close, (yr, closes (yo, e1%))) := closes (yr, close; (yr, closey (yo, e:%)))) € E[unit],

We can expand the definition of the expression relation to get that given:
VHl, HZZW, e;, H;, _] < Wk.
(Hy, close; (yr, close; (1, closes (yo, e1*))) = closes (yr, closes (yr, close; (yo, €,%)))) 2 (Hi,e}) »

we need to show that either e] is fail CoNv, or there exists v,, H), W’ such that:
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(Ha, close; (yr, close, (yr, closes (yo, e1%))) = closey (yr, closes (yr, closes(ya, €27)))) 5 (H3, v2)
AW E W/ AHLH, : WA (W, e, v,) € V]unit],

In order to proceed, first notice that, by Lemma 2.2, yo, = y; W y, where

(W) € G[O].
and
(W.y2) € g[].
and, for any i € {1, 2}
close;(yo,e1) = close;(y1, e1)
and
close; (yo, e2) = close;(y2, €2)
Next, we need to know what e/ is. From the operational semantic, we know that := will first run
its first component using the heap H; until it reaches a target value (or gets stuck). By appealing to
our first induction hypothesis, instantiated it with W, yr, yr, y1, p, we get that:

(W, close; (yr, close; (yr, close; (y1,e1%))), closez (yr, close, (yr, closey (y1,€17)))) € E[ref 7],

And in particular, can then use this, choosing the heaps to be H; and H, (which satisfy W),
to conclude that either (H, close; (yr, close; (yr, close; (y1, e1™)))) reduces to fail Conv (with any
heap, as it doesn’t matter), in which case the entire term will take another step to fail Conv, or it
will reduce to some irreducible intermediate configuration (H7, e*{), at which point the other side

will reduce to a corresponding intermediate configuration (H, er) and (W, e], e':) € V[r], for
some world W; where W C W, and H}, H} : W;.

Then, since e], e: are target values, the original := expression will continue reducing on the
second subexpression. Then, we can appeal to the second induction hypothesis with Wy, yr, yr, y2, p,
which we can do because G[I'],, G[I2]., G[2]. are closed under world extension by Lemma 2.3.
Ergo,

(W1, closey (yr, close; (yr, close; (y2, €27))), closez (yr, close (yr, closez (y2, €2)))) € E[7],

By instantiating this fact with Hj, H}, we get that

(H}, close; (yr, close; (yr, close; (y2, €27))))

either steps to fail Conv, in which case the original configuration with H; steps to fail Conv, or
steps to an irreducible configuration (H{, e7), in which case the configuration on the other side
steps to some irreducible configuration (HJ, e,) and there exists a world W, where W; C W, and
(W, e, e;) € V[r],.

Thus, the original configuration with H; has run to (Hj, e} := e}) and the original configuration
with H, has run to (HJ, e: = e;r). Then, if we expand (W, ], e];) € V[ref 7] ,, we find there exist
locations #1, £, such that e] = £, e; = £, and

WY (6, 6) = [Vl plw ok
Then, since W; C W,, it follows that
Wo W (b, 6) = | V]e]plw, i
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Ergo, by the operational semantic, we find the configuration with H] steps to (H{[&; — €5], ())
and the configuration with HJ steps to (Hj[¢, — e;], ())- Since we have (W, e}, e;) € V[r],, it
follows that
(>We.ehe)) € LVl plwok = Wo ¥ (01, )
Thus, since Hj, H} : W, and the only location in the new heaps that has changed is , £,, and the
values at those locations still satisfy the heap typing W. ¥, we find that H] [#; — 7], H)[£, — eg] :
W,. Moreover, we trivially have (W5, (), ()) € V[unit],. Finally, since W T Wy and Wy C W;, we
have W C W, (by Lemma 2.4), which suffices to finish the proof. O
LemMa 2.32 (CompAT () ;).

Q=QWAAl=T"AAT;Qcke et tmw A TAT~ 7 = TOATF(e), < (et oAt~ 1w 17507
Proor. We have O = Q. w O’ and I' = [/ by the first two assumptions. Moreover, ['; O; A; T

(e) : = by the conversion typing rule. Ergo, to prove the conclusion, it suffices to show I'; Q.; A; T -
(e)- < (e)- : 7. Thus, we must show that given

YW.Npyryryo.p € DIA] A (W, yr) € G[T]p A (W, yr) € G[IT]. A (W, y0) € G[O.].
then
(W, close; (yr, close; (yr, close; (yo, (). 7)), closes (yr, closes (yr, closez (yo, (€) . 7)))) € &[],
We can push the compiler and substitutions through to refine that to:
(W, C.rsr(closes (yr, close; (yr, closer (yo, €%)))), Cosr (closez (yr, closes (yr, closez (yo, €%))))) € E[7],
Now, by instantiating our induction hypothesis with W, yr, yr, yo, p, we find that:
(W, close; (yr, close; (yr, close; (yo, €¥))), close, (yr, close, (yr, closez (yo, €¥)))) € E[7].
Therefore, by Theorem 2.12, we have
(W, C.isr(close; (yr, closey (yr, closes (yo, €7)))), Crsr (closes (yr, closes (yr, closes (yo, 7)) € &[]
Finally, by Lemma 2.8, we have
(W, C.sr(closes (yr, close; (yr, close; (yo, €%)))), Crr (close (yr, closes (yr, closez (yo, €%))))) € E[7],

as was to be proven. O
LEMMA 2.33 (COMPAT unit).

A TTQF () < () s unitws AT
Proor. Clearly, A = A and I' = I". Moreover, A; I'; 15 Q F () : unit »» A; T' by the unit typing rule.
Ergo, it suffices to show that A; T;T;Q F () < () @ unit.
Expanding this definition, given
YWNpyryryo.p € DIA] A (W,yr) € G[T], A (W, yr) € G[I]. A (W, y0) € G[9].
we must show
(W, close; (yr, close; (yr, close; (yo, ()1))), closes (yr, closes (yr, closez (yo, ()*)))) € Eunit].
()* = () is a closed term, so the closings have no effect. Ergo,
close; (yr, close; (yr, close; (yo, ()*))) = close; (yr, closez (yr, closes (Yo, ()7))) = ()

One can easily see (W, (), ()) € V[unit]., which suffices to show (W, (), ()) € E[unit]. by
Lemma 2.1. This suffices to finish the proof. O
LEMMA 2.34 (COMPAT true).

A;T5T5Q F true < true : bool mw» A; T
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Proor. Clearly, A = A and I' = I'. Moreover, A; ;1 Q + true : bool~s A; T by the true typing
rule. Ergo, it suffices to show that A; T';T'; O + true < true : bool.
Expanding this definition, given

YWNpyryryo.p € D[A] A (W.yr) € G[T]p A (W.yr) € G[T]. A (W, yo) € G[O].
we must show
(W, close; (yr, close; (yr, close; (yo, true™))), closez (yr, closez (yr, closes (yo, true*)))) € E[bool].
true* = 0 is a closed term, so the closings have no effect. Ergo,
close; (yr, close; (yr, close; (yo, true*))) = close, (yr, closez (yr, close, (yo, true*))) = 0

One can easily see (W, 0,0) € V[bool]., which suffices to show (W, 0,0) € E[bool]. by Lemma
2.1. This suffices to finish the proof. O
LEMMA 2.35 (COMPAT false).

A;T;T5Q F false < false : bool ms» A; T
Proor. This is very similar to the proof for true, except false™ = 1, and since 1 # 0, (W, 1,1) €

V[bool]. by the second clause. ]

LEMMA 2.36 (COMPAT int).
AT TQFn <ncintw AT

Proor. Clearly, A = A and T’ = T. Moreover, A;T;1;Q + n : intw A; T by the int typing rule.
Ergo, it suffices to show that A;T;T;Q F n < n :int.
Expanding this definition, given

YW.Npyryryo.p € DIA] A (W,yr) € G[T], A (W, yr) € GIIT]. A (W, y0) € G[O].
we must show
(W, close; (yr, close; (yr, close; (yo, n*))), closez (yr, closez (yr, closes (yo, n*)))) € Efint].
n* = nis a closed term, so the closings have no effect. Ergo,
close; (yr, close; (yr, close; (yo, n*))) = closez(yr, closes (yr, closes (yo, n*))) = n

Since n € Z, one can easily see (W, n,n) € V[int]., which suffices to show (W, n,n) € E[int].
by Lemma 2.1. This suffices to finish the proof. O
LEMMA 2.37 (COMPAT a).

a:7€Q = A QFra<aitwwA T
Proor. One can easily see that A = A and I' = I'. Moreover, A;T;15Q + a : 7w A;T by the

variable typing rule. Ergo, it suffices to show that A; ;15 Q Fa <a: 7.
Expanding the conclusion, given

YW.Npyryryo.p € DIAJ A (W.yr) € G[T]p, A (W.yr) € G[TT. A (W, y0) € G[O].
we must show
(W, close; (yr, close; (yr, close; (yo, a*))), closez (yr, closez (yr, closez (yo, a%)))) € E[7].
We can push the compiler and substitutions through this expression to refine this to:
(W, close; (yr, close; (yr, close; (Yo, ))) (), closez(yr, closes (yr, closez (yo, a))) () € E[7].
Since (W, y0) € G[Q]., there must exist (£, £) € W.O and values vy, v, such that
close; (yo, a) = guard(vy, £1) = A_.if 14 {fail Conv} {¢; := USED;v;}}
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and
close,(yo, a) = guard(vy, &) = A_.if 16, {fail Conv} {¢, := USED; v, }}
and (W, vq,v,) € V[7]..
Ergo, we must show
(W, A_if 14 {fail Conv} {¢; := usep;v1}} (), A_.if 16, {fail Conv} {£, := useD; v, }} () € E[7].

Notice that both expressions have no free variables because v, and v, are closed, as they are in
the value relation.
Expanding the definition of the expression relation, we find that given
VHI, HzZW, e;, H;, _] < Wk.
(Hy, A_.if ¢y {fail Conv} {f; := USED; v1}} () ER (Hi,e}) »
we need to show that either e] is fail Conv, or there exists v,, H), W’ such that:

(Ha, A_if 16, {fail Conv} {£, := USED; v2}} ()) — (HJ,v2)
AWE W AHLH, : WA (W e, vs) € V[r].
To proceed with the proof, we must figure out what e/ is. First, by application, we have
(Hy, A_.if &y {fail Conv} {#; :== useD;vi}} ()) — (Hy,if 14 {fail Conv} {f; := USED; Vv }})
and
(Ha, A_if 16 {fail Conv} {£; := USED; va}} ()) — (Ha, if 16 {fail Conv} {£ := USED; v, }1})

Next, since H, Hy, : W and (£, 6) € W.0, we have that Hi(£;) = Hy(f) = W.O(f,86) €
{UsED, UNUSED}. If W.O(#,, £,) = USED, then the configuration steps to fail Conv, in which case
we are done. Otherwise, if W.©(#;, f) = UNUSED, then

(Hy, if 14 {fail Conv} {£; := USED; Vv }}) — (Hy, £; := USED; v;)
and
(Ha, if 16, {fail Conv} {£ := USED;V;,}}) — (Ha, £, := USED;Vv;)
Then, by the operational semantic,
(Hy, £; := USED; v1) — (H;[f; — USED], vq)
(H,, £, := USED; v,) — (Hs[f;, — USED], v»)
Now, consider
W' = (W.k WY, W.O[(f, ;) — USED])
W E W’ because W’ has the same heap typing and W and W’ has the same affine flags as
W except that the affine flag at (£, ;) has switched from UNUSED to USED. Next, notice that
H;[#; — UseD],H;[f, — USED] : W’ because Hy, H, : W and the only change from W to W' is
that W’.©(#, £;) = UseD, which is satisfied by both H;[#; — UsEDp] and H;[¢f, — UsED]. Finally,
we have by assumption that (W, vy,v,) € V[]., so by Lemma 2.3, we have (W', vy, v;) € V[7].,
which suffices to finish the proof. O
LEMMA 2.38 (COMPAT x).

x:7€l = AL OFx <x:7vwA; T
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Proor. Clearly, A = A and T =T. Moreover, A;T;T;Q F x : 7~ A; T by the variable typing rule.
Ergo, it suffices to show that A;T;T;Q F x < x: 7.
Expanding the conclusion, given

YWNpyryryo.p € D[A] A (W.yr) € G[T]p A (W.yr) € G[T]. A (W, yo) € G[O].
we must show
(W, close; (yr, close; (yr, close; (yo, x*))), closes (yr, closes (1, closez (yo, x¥)))) € E[7].
Notice that x* = x. Then, since x ¢ Q and (W, yo) € G[Q]., we have
close; (yo, x) = closez(yo, X) = x
Then, since x : 7 € I'and (W, yr) € G[I]., there must exist vy, v, such that
yr(x) = (vi,v2)
and (W, vq,v,) € V[r].. Ergo,
close; (yr, x) = vq A closeyz(yr, X) = v,
Since (W, v, v3) € V[r]., this suffices to show that
(W, close; (yr, close; (yr, close; (yo, x))), closez (yr, closes (yr, closez (yo, x)))) € V[r].

By Lemma 2.1, ‘V[7]. € &[], so this suffices to finish the proof. ]
LEMMA 2.39 (COMPAT —o).

AT Qa:mre<e:mwA T = AT;LQ RAla:nne<la:ne:r —o mwALTY

Proor. Expanding the hypothesis, we find A = A’ and I' = I'". Moreover, A; ;150 F Aa: 7y.e:
71 —o 15w A’; T by the 1 typing rule. Ergo, it suffices to show A;T;15Q F da:7.e < da:1p.e :
1 —© Ty.

Expanding the conclusion, given

YW.Npyryryo.p € DIA] A (W,yr) € G[T], A (W, yr) € G[I]. A (W, y0) € G[O].
we must show
(W, close; (yr, close; (yr, close; (yo, Aa : 71.€%))), closes (yr, closes (yr, closez (yo, Aa : 71.€)))) € E[r; — ).

Notice that both of these expressions have no free variables by Lemma 2.10.
We can push the compiler and the substitutions to refine that to:

(W, Aa.close; (yr, close; (yr, close; (yo, €*))),
Aa.close; (yr, closes (yr, closex (yo, €7)))) € E[r1 — w].

Expanding the expression relation definition, we find that given
\7’H1,H2:W, e;, H;, ] < Wk.
(Hy, Aa.close; (yr. close; (1, close; (yo, €)))) <> (HY,e}) -»

we must show either e] = fail Conv or there exist v,, Hj, W’ such that:

(Ha, Aa.close; (yr, closes (yr, closes (yo, €7)))) 5 (HJ,v2)
AWE W AHLH,: WA (W el va) € V[ — 1],
Clearly,
(Hy, Aa.close; (yr, close; (yr, close; (yo, €7)))) -
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because this expression is a target value. Ergo, e/ is the expression in the above configuration.
Moreover, (Hy, Aa.close; (yr, closes (yr, closes(yo, €)))) is also irreducible. Thus, it suffices to show

(W, Aa.close; (yr, close; (yr, close; (yo, €7))),
Aa.close; (yr, close; (yr, closes (yo, €%)))) € V[ — ],
Expanding the value relation definition, given
Yviva W.W L W A (W, vi,va) € V][]
we must show
(W .k, W ¥, W .09 () — UNUSED),

[a—>guard(vy, £1)]close; (yr, close; (yr, close; (Yo, €1)))),

[arsguard(vy, £2) ] closes (yr, closes (yr, closez (yo, €7))))) € E[].
Notice that W' = (W’.k, W ¥, W .© W ({1, £,) — UNUSED) is a world extension of W’ because

it has the same heap typing as W’ and has all the affine flags as W’ plus one new affine flag which

is disjoint from any affine flag in W’. Ergo, since W C W’ and W’ & W”', we have W C W”'. Next,
notice that:

(W, yola - (guard(vy, £1), guard(vy, £))]) € G[Q.a = 11].
because (#1,£) € dom(W”.0), (W”,vi,v5) € V][r]. because (W, vy,v5) € V[r;]. and Lemma
2.3, and (W",yq) € G[Q]. because (W, yo) € G[2]. and Lemma 2.3. Therefore, we can instantiate
the first induction hypothesis with W, yr, yr, yo[a — (guard(vy, £1), guard(vy, £))], p to find
(W”, close (yr, close; (yr, close; (yo[a — (guard(vy, £1), guard(va, £))],€%))),
close; (yr, closes (yr, closex (yo [a — (guard(vy, &), guard(vy, £))],e*)))) € E[x].
which is equivalent to what was to be proven. O
LEMMA 2.40 (COMPAT app).
Al;rl;T;£21 F ey < €1 :71 =© Tz’\'\')Az;Fz A AZ,TZ,F,QZ F ey < €2 : T AA’)A3;F3
= AT QW ke ey <epey:mpwAg s
Proor. Expanding the hypotheses, we find Ay, = A; = Az and I} = I, = I5. Moreover,
AT 150, WOy Foeg ey oo v As; I3 by the application typing rule. Ergo, it suffices to show
A;F;F;Q Fejpey < epe: 1.
Expanding this definition, given
YW.Npyryryo.p € DIA] A (W,yr) € G[T], A (W,yr) € G[I]. A (W, y0) € G[Q].
we must show
(W, close; (yr, close; (yr, close; (yo, €1 €57))), closes (yr, closes (yr, closez (yo, €1 €2%)))) € E[r].
Notice that both of these expressions have no free variables by Lemma 2.10.
We can push the compiler and substitutions through the application to refine this to:
(W, close; (yr, close; (yr, close; (yo, €1%))) (let x = close; (yr, close; (yr, close; (yo, €2%))) in thunk(x)),
closez (yr, closez (yr, closez (yo, e1))) (let x = close, (yr, closes (yr, closez(yo, €27))) in thunk(x))) € E[z].
Expanding the expression relation definition, we find that given
VHy, Ho: W, €}, HY, j < Wk
(Hy, close; (yr, close; (yr, close; (yo, €17)))
(let x = close; (yr, close; (yr, close; (yo, €2%))) in thunk(x))) EN (Hi,e7) -»
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we must show either e} = fail Conv or there exist v,, Hj, W’ such that:

(Ha, closey (yr, closes (yr, closez (yo, e1%)))
(let x = closex (yr, closez (yr, closes (yo, €27))) in thunk(x))) 5 (H’,vy)
AWE W AHLH, : WA (W el va) € V[r].
To proceed, we must figure out what e] is. First, notice that, by Lemma 2.2, yo = y; W y» where

(W, y1) € G[Q.].
and
(W.y2) € G[].
and, for any i € {1, 2}
close;(yo, e, ") = close;(y1,e1)
and
close; (yo, e2*) = close;(ya, e2")
Next, we need to find e]. From the operational semantic, the application will run the first

subexpression using the heap H; until it reaches a target value or gets stuck. By appealing to our
first induction hypothesis, instantiated with W, yr, yr, y1, p, we find that:

(W, close; (yr, close; (yr, close; (y1, 1)), closea (yr, closes (yr, closez (y1, ¢17)))) € E[r; — 2.

We can instantiate this with the heaps Hy, H; to find that (Hy, close; (yr, close; (yr, close; (y1,€:7))))
either reduces to fail Conv, in which case the original expression steps to fail Conv, or to some
irreducible configuration (Hj, e}), in which case on the other side, the configuration reduces to
some irreducible configuration (H3, eTT) and there exists some W; where W C Wy, H}, H; : Wy, and
(Wl,e}“,e:) € V[r — ..

Since terms in the value relation are target values, the original application will continue re-
ducing on the second subexpression according to the operational semantics. Then, we can ap-
peal to the second induction hypothesis instantiated with Wy, yr, yr, y2, p, because W E W; and
Gl Gl G[<]. are closed under world extension by Lemma 2.3. Ergo,

(W4, close; (yr, close; (yr, close; (y2, €27))), closes (yr, closes (yr, closex (y2, €27)))) € E[r1].

We can instantiate this fact with H}, H; to find that (H7, close; (yr, close; (yr, close; (y2, e2%))))
either reduces to fail Conv, in which case the original expression steps to fail Conv, or to some
irreducible configuration (H}*, e3), in which case on the other side, the configuration reduces to

some irreducible configuration (H, e;) and there exists some W, where Wi C W,, HY*, HJ* : W,
and (Wo, e, e;) € V[n].
Then, instantiate (W7, €], ej) € V[r — ] withe;, e;, >W,. Because W; C W, and W, C > W,

it follows that Wy C >W,. Moreover, (>W,, e, ez) € V[r]. (because (W, ez,e;) € V[r]. and

W € >W,, so we can apply Lemma 2.3). Ergo, there exist e;, eg such that
e] = Aa.e,

and
e'i' = Aa.el

and, for any (£, £,) ¢ dom(>W,.¥) U dom(>W,.0),

((>Wak, > Wo ¥, > W,.0 W (£, ) > UNUSED), [a > guard(e}, &)]e;, [a > guard(el, #)]e) € E[r].
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Thus, the original configuration in H; steps as follows:

(Hy, close; (yr, close; (yr, close; (yo, e1%))) (let x = close; (yr, close; (yr, close; (yo, €2*))) in thunk(x))) 5

(H}, Aa.e; (let x = close; (yr, close; (yr, close; (yo, ¢2*))) in thunk(x))) 5

(Hi", Aa.e; (let x = ej in thunk(x))) —

(H?", Ja.€] thunk(e})) =

(HY", Aa.e; let reesh = ref 1in A_{if !rresh {fail CONV} {rfresh := USED; €3}}) —

(HY*[fi—>unusep], Aa.e; A_{if !£; {fail Conv} {¢; := UsED; e} }}) BN

(H}*[f1—>UNUsED], Aa.e; guard(¢y,e3)) —

(H}*[f1—>UNUSED], [a > guard(,e3)]ep)
for some ¢ ¢ H}*. Similarly, the original configuration in Hj steps to

(HT"[£+>UNUSED], [a > guard(f, e;)]eg)
for some £, ¢ H3*. Since H}*, H* : Wy, this implies (£, £,) ¢ dom(W,.¥) U dom(W;.0), and thus
(f1, t2) ¢ dom(>W,.¥) U dom(>W,.0).
Therefore, from the fact found above by expanding the value relation for 7; —o 7,, the two expres-
sions in the above configurations are in E[[r;]. at the world (>Wa.k,>W,. ¥, >W,.0 W (£, ) —
UNUSED), which we will label as W3. Moreover, since H}*, H}* : W5, we also have HY*, H}* : > W,.
Therefore, the heaps above satisfy W3, because the only difference between > W, and Wj is that W3
has a new affine flag (¢, £,)>UNUSED, which the above heaps indeed satisfy. Ergo, we can instantiate
the fact that the above expressions are in &[7,]. in the world Ws with the heaps H}*[#;—>UNUSED]
and H}*[f,—UNUSED] to find that either the first configuration steps to fail Conv, in which case
the original configuration with H; steps to fail Conv, or the first configuration steps to some
irreducible configuration (H;**, e}i), in which case the second configuration steps to (H}**, e}) and
there exists some W such that W3 & Wy, H™, H™ : W, and (W4, eJ";, e}) € V[=]..
This suffices to show that e} = e, so e] is indeed in the value relation at 7, along with the value
stepped to by the original configuration on the right hand side. Ergo, since W & W;, W; E W,
W, C >W,, >W, E W3, and W3 E Wy, it follows that W & W, (by Lemma 2.4), which suffices to
finish the proof. O
LEMMA 2.41 (COMPAT !).

AT FrvEvitw AT = AR lvIvilcas AT
Proor. Expanding the hypotheses, we find A; = A’ and T' = I. Moreover, A; ;15 + v :

7~ A’; T by the ! typing rule. Ergo, it suffices to show A; T 15 F v <!v: Iz,
Expanding this definition, given

YWN¥pyryryo.p € D[A] A (W,yr) € G[T]p, A (Woyr) € GIT]. A (W, yo) € G
we must show
(W, close; (yr, close; (yr, close; (yo, 1v*))), closes (1, closes (1, closez (yo, 'vF)))) € E[!7].

Notice that both of these expressions have no free variables by Lemma 2.10.
Note that |v* = v*. Then, by expanding the expression relation definition, we find that given

VHl,HZIW, e;, H;, _] < Wk
(Hy, close; (yr, closes (yr, closes (yo, v4)))) 5 (Hi.e}) »

we must show either e} = fail Conv or there exist v,, H), W’ such that:
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(Ha, close; (yr, close, (yr, closes (ya, v*)))) 5 (H/,vy)
AW E W AHLHL : WA (W, el vo) € V[T,
Now, we can instantiate the first induction hypothesis with W, yr, yr, yo, p to show that
(W, close; (yr, close; (yr, close; (yo, v*))), closes (yr, closes (1, closez (yo, v*)))) € E[7].

By instanting this fact with Hy, Hy, since we have by assumption that H;, H, : W, we find that
either the first expression steps to fail Conv or there exist Wi, vy, H, vo, H such that W C W,
Hi, H} : Wi, and

(H1, close, (yr, close; (yr, close; (yo, v*)))) — (H},v1)
and

(Hy, closes (yr, closes (yr, closez (yo, v4)))) — (Hj, v2)
and

(Wi, vi,v2) € V[7],
Thus, it follows that (W3, vq,v,) € V[!7],, which suffices to finish the proof. O
LEMMA 2.42 (CoMPAT let!).
AT O ke et ltam A o AN T L x 13 Q0 ey <6y T/ m As; I
= AT Q W klet!lx=ejiney <let!x=ejiney : 77w Ag; T3

Proor. Expanding the hypotheses, we find Ay = A, = Az and I} = I, = I5. Moreover,
AT T50; WOy k let Ix = e in ey 1 77~ As; T by the let! typing rule. Thus, it suffices to show
AT QW Qo kFlet!x=einey <let!x=ejiney : 7.

Expanding the conclusion, we must show that given

VWVp Yryryo.p € D[[Aﬂ A (W, )/r) € Q[[Fﬂp A (W, }/1") € g[[rﬂ A (W, )/Q) € g[[Ql ) Qz]]

we must show
(W, close; (yr, close; (yr, close; (yo, let Ix = e; in e, ")),
close; (yr, close, (yr, close, (yo, let Ix = e; in e,%)))) € E['].
Notice that both of these expressions have no free variables by Lemma 2.10.
We can push the compiler and substitutions through the let expression and refine this to:
(W, let x = close (yr, close; (yr, close; (yo, ¢1%))) in close; (yr, close; (yr, close; (yo, €2%))),
let x = close, (yr, closez (yr, closez (yo, €17))) in closez(yr, closes (yr, closes (yo, e21))) € E['].

Then, by Lemma 2.2, we find that y, = y; W y, where

(W, 1) € G[].
and
(W,y2) € G[Q].
and, for any i € {1, 2}
close;(yo,e1) = close;(y1, e1)
and
close;(yo, e2) = close;(y2, e2)
Thus, we must show
(W, let x = close; (yr, close; (yr, close; (y1,e:))) in close; (yr, close; (yr, close; (y2, €2%))),
let x = close, (yr, closez (yr, closez (y1,€17))) in closez (yr, closez (yr, closes (y2, €27))) € E[7'].
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Expanding the expression relation definition, we find
VHy, Ho: W, €}, HY, j < Wk
(Hy, let x = close; (yr, close; (yr, close; (y1,€17))) in close; (yr, close; (yr, close; (ya, €2¥)))) ER (Hi,e}) »

we must show either e} = fail Conv or there exist v,, Hj, W’ such that:

(Ha, let x = closes (yr, closes (yr, closes (y1, €17))) in closez (yr, closes (yr, closes (2, €21)))) 5 (H/,vy)
AW E W AHLHY: WA (W, €),va) € Val,
Next, we need to find e]. From the operational semantic, the let will run the first subexpression
using the heap H; until it reaches a target value or gets stuck. By appealing to our first induction
hypothesis, instantiated with W, yr, yr, y1, p, we find that:

(W, close; (yr, close; (yr, close; (y1, e11))), close, (yr, close, (yr, closez (y1, €1 7)))) € E[!7].

We can instantiate this with the heaps Hy, H; to find that (Hy, close; (yr, close; (yr, close; (y1, ¢:7))))
either reduces to fail Conv, in which case the original expression steps to fail Conv, or to some
irreducible configuration (Hj, e7), in which case on the other side, the configuration reduces to
some irreducible configuration (H;, e];) and there exists some W; where W C Wy, H}, H; : Wy, and
(Wh,e], e:) € V['7].. By expanding the value relation definition, we find (W, e, e?) € V]

Since terms in the value relation are target values, the original configuration with H; steps as
follows:

(Hy, let x = close; (yr, close; (yr, close; (y1,e1™))) in close; (yr, close; (yr, close; (2, €27)))) 5
(H7,let x = e7 in close; (yr, close; (yr, close; (y2, ¢27)))) —
(H7, [x + e}]close; (yr, close; (yr, close; (y2, €2%))))

and similarly, the original configuration with H; steps as follows:

(Ha, let x = closes (yr, closes (yr, closez (v, ¢ *))) in closes (yr, closes (yr, closez (v, %)) —
(Hj, let x = *er in close, (yr, closez (yr, closez (y2, €2%)))) —
(H3, [x > e}]closes (yr, close, (yr, closes (y2, €2%))))

Next, notice that (W, yr[x +— (e, er)]) € G[I'x: 7]. because (Wy,e], e;f) € V[r]. and
(W1, yr) € G[I']. (which follows from Lemma 2.3 because W C W and (W, y1) € G[I'].). Therefore,
by instantiating the second induction hypothesis with Wy, yr, yr[x = (e], e:)], Y2, p, we find that

(W1, [x — e]]close; (yr, close; (yr, close; (2, €27))), [x e?]closeg(yr, close; (y1, closex (y2, €2%)))) € E[7'].

Then, since H], H : W}, we can instantiate the above fact with H and H}. Ergo, the configuration
above with H} must either step to fail CoNv, in which case the original expression steps to fail Conv,

or it must step to some (HT, e7"), in which case the configuration on the other side with H} must

step to (HZ, err) for some heap H; and world W5 where W) C W, HI, HZ : W, and (W, e]", e?%) €

V[r'].. Thus, €] = e]", so €] is indeed in the value relation at type 7" along with er, which is
the value which the original expression on the other side stepped to. Finally, since W & W; and
Wi E W,, we have W E W,, which suffices to finish the proof. ]
LEMMA 2.43 (COMPAT &).
AT OrRe e mw Ay I AN QR ey <ep s Ag; I
= AL O (er,e) < (eg,e0) 1 & mw» As; T
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Proor. Expanding the hypotheses, we find Ay, = A, = Az and I} = I, = I5. Moreover,
AT Q F (e, en) @ 1&1, ~» As; T by the product typing rule. Ergo, it suffices to show Ay; Ty 15 Q F
(e1,e2) < (ey,ez) : 7.

Expanding the conclusion, we must show that given

YW.Npyryryo.p € DIA] A (W, yr) € G[T], A (W, yr) € GIIT]. A (W, y0) € G[O].
we must show

(W, close; (yr, close; (yr, close; (yo, (e1.¢2)))),
close; (yr, close; (yr, closes (yo, (e1, e2)*)))) € E[r &

Note that both of these expressions are closed by Lemma 2.10.
We can push the compiler and substitutions through the product expression and refine this to:

(W, (A_.close; (yr, close; (yr, close; (yo, €1%))), A_.close; (yr, close; (yr, close; (yo, €27)))),
(A_.closes (yr, closes (yr, closez (yo, €1%))), A_.closes (yr, closes (yr, closes (yo, e21))))) € E[r1&].

Expanding the expression relation definition, we find that given
VHl,Hziw, e;, Hi, j< W k.
(Hy, (A_.close; (yr, close; (yr, close; (yo, e1%))), A_.close; (yr, close; (yr, close; (Yo, €2%))))) 2 (Hi,e7) »

we must show either e} = fail Conv or there exist v,, H), W’ such that:

(Ha, (A_.closes (yr, closes (yr, close, (yo, €1%))), A_.closes (yr, closes (1, closes (yo, €,%))))) — (HJ,v2)
AWE W AHLH,: WA (W el vs) € V[n&n].

Clearly,
(Hy, (A_.close; (yr, close; (yr, close; (yo, e1%))), A_.close; (yr, close; (yr, close; (yo, e:7))))) -

because this expression is a target value. Ergo, e is the expression in the above configuration. More-

over, (Hy, (A_.close, (yr, close (yr, closes (yo, €1%))), A_.closez (yr, closes (yr, closes (yo, €27))))) is also
irreducible. Thus, it suffices to show

(W, (A_.close; (yr, close (yr, close; (yo, e1%))), A_.close; (yr, close; (yr, close; (yo, €27)))),
(A_.closex (yr, closez (yr, closez(yo, e1%))), A_.closez (yr, closes (yr, closez (yo, €27))))) € V[ &r].

First, we can instantiate the first induction hypothesis with W, yr, yr, yq, p to show that
(W, close; (yr, close; (yr, close; (yo, €17))), closez (yr, closez (yr, closez (yo, €17)))) € V[r].
and we can instantiate the second induction hypothesis with W, yr, yr, yq, p to show that
(W, close; (yr, close; (yr, close; (yo, €27))), closez (yr, close (yr, closes (yo, €2)))) € V[r].

This suffices to show that the pairs of lambdas are in the value relation at 7; &7, as was to be
proven. ]
LEMMA 2.44 (COMPAT .1).

AT;T;QFe<e:&nwA T = AT;;QFel <el:t~wA;T
Proor. Expanding the hypotheses, we find A; = A’ and I' = T’". Moreover, A;T;15Q F el :

71 > A’; T by the .1 typing rule. Ergo, it suffices to show A; ;15O F el < el : 1.
Expanding this definition, given

YWNpyryryo.p € DIA] A (W,yr) € G, A (W,yr) € GITT A (W, o) € G[O].
we must show

(W, close; (yr, close; (yr, close; (yo, e.1%))), closez (yr, closez (yr, closez (yo, e.1%)))) € E[n].
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Notice that both of these expressions have no free variables by Lemma 2.10.
We can push the compiler and substitutions through the projection to refine this to:

(W, (fst close; (yr, close; (yr, close; (yo, €¥)))) (), (fst closez (yr, closez (yr, closez (Yo, €*)))) () € E[].
Expanding the expression relation definition, we find that given
VHy, Hy:W, e/, HY, j < Wok.
(M, (fst close, (yr, closes (yr. closes (yo, €7))) (0) 2> (Hj,ef)

we must show either e} = fail Conv or there exist v,, Hj, W’ such that:

(Ha, (fst closez (yr, close, (yr, closes (ya, €¥)))) () 5 (H!,va)
AWE W AHLH, : WA (W el v2) € V[r].
To proceed, we must find out what e] is. First, by instantiating the first induction hypothesis
with W, Yo, Yo Yo, p, we find

(W, close; (yr, close; (yr, close; (yo, €¥))), close (yr, closes (yr, closes (yo, e*)))) € E[r &n].

Since Hy, Hy : W, we find that (H1, close; (yr, close; (yr, close; (yo, €)))) either steps to fail Conv,
in which case the original expression steps to fail Conv, or steps to some irreducible configuration
(H7, e"), in which case the configuration with H; also steps to some irreducible configuration

(H;, e') and there exists some world W; where W C W, H}, H; : Wi, and (Wy, e, e") e V[r,&n]..

+

« T
1» €5, e, such that

e" = (1_.el, 1 _.e)

Ergo, there exists some e], e

and

el = (A_.ej, A_.e;)
and

(Wl,e’{,e:) € &[n].
and

(W1, €5, e;f) € &[]
Thus, the original configuration with H; steps as follows:

(Hy, (fst close; (yr, close; (yr, close; (yo, €¥)))) ()) —
(H2, (fst (A_el, A_eb)) () —

(H),A_e; () —
(Hi, e}

and on the other side, the original configuration with H; steps as follows:

(Ha, (fst closes (yr, closes (yr, closez (yo, €¥)))) ()) —
(HZ, (fst (A_el, A_el)) 0) —

(H:,A_el () —

(H:,ely

Then, since H7, H; : W1, we can instantiate (W1, e], e}L) € &[r]. with HZ, H3 to show that (H7, e])
either steps to fail Conv, in which case the original expression steps to fail Conv, or (H}, e]) steps

to some irreducible Hje?, in which case (H:, e;r) steps to an irreudicble configuration (H;, e;) and
there exists some W, such that W; C W, HI, H; : Ws, and (Wg,e;‘,e;f) € V[r].. Thus, ey = er
and e is indeed in the value relation at 7, with the value which the configuration on the other
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side steps to. Finally, since W C W; and W) & W,, we have W T W,, which suffices to finish the
proof. O
LEMMA 2.45 (COMPAT .2).
AT;T;QFe<e:&nwA T = AT;QFe2<e2: AT
Proor. This proof is essentially identical to that of .1. O
LEMMA 2.46 (COMPAT ®).
Al;rl;r; Ql = €1 < €1 : 71 ’\A’)Az;rz A AZ,D,F, Q, F €2 < €y 1 T2 «A’)Aj,l},

= ATl QW Qs k(e e0) = (er,e2) 1 1 ® o wr Ay Ty
Proor. Expanding the hypotheses, we find Ay = A; = Az and I} = I, = I5. Moreover,
AT 50, WOy F o(eg,ey) @1 ® 1w As; I by the pair typing rule. Ergo, it suffices to show
AT T QW Qy k (eq,e2) < (eg,e2) : 7'
Expanding the conclusion, we must show that given
YWNpyryryo.p € DIA] A (W,yr) € G[T], A (W, yr) € GII]. A (W, y0) € G[Q1 & Q]
we must show
(W, close (yr, close; (yr, close; (yo, (e1.¢2)%))),
close; (yr, closes (yr, closex (yo, (e1,€2)™)))) € E[r ® r2].
Notice that both of these expressions have no free variables by Lemma 2.10.
We can push the compiler and substitutions through the product expression and refine this to:
(W, (close; (yr, close; (yr, close; (yo, e1%))),close; (yr, close; (yr, close; (yo, €27)))),
(close, (yr, closex (yr, closez (yo, €17))),closez (yr, closez (yr, closes (yo, €21))))) € E[r @ r].
Then, by Lemma 2.2, we find that yo = y; W y, where

(W.yn) € G[2].
and
(W.y2) € G[2].
and, for any i € {1, 2}
Closei(}’gz, €1+) = Closei(}’l, €1+)
and
close; (yo, e2*) = close;(y2, e2")
Thus, we must show
(W, (close; (yr, close; (yr, close; (y1, €1™))),close; (yr, close; (yr, close; (y2, €27)))),
(close; (yr, closes (yr, closez (y1, ¢17))).closes (yr, closex (yr, closes (y2, €27))))) € E[r1 ® ©].
Expanding the expression relation definition, we find that given
\7’H1,H2:W, e;, Hi, ] < Wk
(Hy, (close; (yr, close; (yr, close; (y1, e1%))),close; (yr, close; (yr, close; (ya, €21))))) R (Hi,e7) »

we must show either e} = fail Conv or there exist v,, H), W’ such that:

(Ha, (closey (yr, closes (yr, closes (y1,e1%))),closes (yr, closes (yr, closes (ya, €21))))) 5 (H’,vy)
AW E W AHLHL: WA (W,el,v) € V[n @ 1],
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Next, we need to find e}. From the operational semantic, the tensor will run the first subexpression
using the heap H; until it reaches a target value or gets stuck. By appealing to our first induction
hypothesis, instantiated with W, yr, yr, 1, p, we find that:

(W, close; (yr, close; (yr, close; (y1, €1 %)), closes (yr, closez (yr, closez (y1,€17)))) € E[r].

We can instantiate this with the heaps Hy, H, to find that (Hy, close; (yr, close; (yr, close; (y1, €1%))))
either reduces to fail Conv, in which case the original expression steps to fail Conv, or to some
irreducible configuration (HJ, e7), in which case on the other side, the configuration with Hj reduces

to some irreducible configuration (H, e;) and there exists some W; where W C Wy, H], H} : W,
and (W, e, e:) e V[r]..

Since terms in the value relation are target values, the original pair will continue reducing on
the second subexpression according to the operational semantics. To figure out what happens,
we can appeal to the second induction hypothesis instantiated with Wy, yr, yr, y2, p, which we
can do because G[I'] ,, G[I'].. G[]. is closed under world extension (Lemma 2.3) and choosing
heaps H7, H;. From that, we find that (H7, close; (yr, close; (yr, close; (y1,e.)))) either reduces to
fail Conv, in which case the original pair steps to fail Conv, or to some irreducible configuration
(HI, e3), in which case on the other side, the configuration with H} reduces to some irreducible
configuration (HZ, e;) and there exists some W, where W; C W, HI, HZ : Wy and (Ws, e, e;) €
(V [’[QH ..

Thus, the original pair with H; steps to (HT, (e7, e5)) which is a value because both e} and e;
are values. Moreover, the original pair with H; steps to (H;, (e;r, e;)) -».Ergo, we have (W), e], ej) €
V[r]. (because (Wi, e, e:) € V[r].and W; C W,)and (W, €5, e;) € V[r].,s0 (W, (e}, €}), (e;r, e;) €
V[r; ® 12].. Finally, since W € W; and W C W,, we have W C W,, which suffices to finish the
proof. O

LEMMA 2.47 (COMPAT let).

AT Qi ke et @ w Ay T AN Ty 15 Q0,a 1,8 i Fey < eyt Tw Ag; T3
= AT QW) Flet (a,a”) =ejiney <let(a,a’) = e iney : 7w As; I3

Proor. Expanding the hypotheses, we find Ay = A, = Az and I} = I, = I5. Moreover,
AT 50, W) k- let (a,a”) =epine, @ 7~ As; T3 by the let typing rule. Ergo, it suffices to
show A;T1;T5Q; W Qs ket (a,a”) = e iney <let(a,a’) =e;ine; : 7.

Expanding the conclusion, we must show that given

YW.Npyryryo.p € DIA] A (W, yr) € GIT]p A (W, yr) € GIIT]. A (W, yo) € G[Q1 W Q]
we must show
(W, close; (yr, close; (yr, close; (yo, let (a,a”) = e; in e,7))),
close; (yr, close, (yr, closez (yo, let (a,a) = e; in e,7)))) € E[7].
Notice that both of these expressions have no free variables by Lemma 2.10.
We can push the compiler and substitutions through the let expression and refine this to:
(w,
let Xfresh =close; (yr, close; (yr, close; (yo, e1%))) in let Xfiosh = TSt Xfresh in let xg' = snd Xresh in
leta = thunk(xfresh) inleta’ = thunk(xgr’esh) in close; (yr, close; (yr, close; (yo, €2%))),
let xgresh =closez (yr, closez (yr, closes (yo, e1%))) in let x{ .\ = fst Xgesh in let x{_ . = snd Xgresh in

let a = thunk(x{ ) in let 2’ = thunk(x{ ) in closez(yr, closez (yr, closez (yo, e27))),
e §[7].
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Then, by Lemma 2.2, we find that y,, = y; W y, where
(W, n) € G

and
(W,y2) € G[Q].
and, for any i € {1, 2}
close;(yo, e, ") = close;(y1,e1)
and
close; (yo, e2*) = close;(y2, e2")

Ergo, we can refine the above statement that we must prove to

(W,
let xgresh =close; (yr, close (yr, close; (y1, 1)) in let Xfooy = 5t Xfresh in let x¢' = snd Xresh in
let a = thunk(x{,_ ) in let 2’ = thunk(x{/ . ) in close; (yr, close; (yr, close; (yz, €27))),
let Xfresh =closes (yr, closes (yr, closes (y1, €17))) in let Xfiosn = TSt Xfresh in let x¢' = snd Xresh in
let a = thunk(x; ) inleta’ = thunk(xgesg)[[ i]r]l close, (yr, closey (yr, closes (y2, €21))))
e &[7].

Expanding the expression relation definition, we must show that given

VHl,HQZW, e;, H;, ] < Wik.
(Hy, let xgesh =close; (yr, close; (yr, close; (y1,e1%))) in let xgresh = fst Xresh in let x

"

fresh

let a = thunk(x{_ ) in let 2’ = thunk(x’ ) in close; (yr, close; (yr, close; (y2, €27)))) ER (Hi,ep) »

we must show either e} = fail Conv or there exist v,, H), W’ such that:

= snd Xgregh 1N

(Hz, let xgresh =close (yr, close (yr, closez(y1,¢1%))) in let x{ . = fst Xgesn in let x{/, ;. = snd Xgreh in
let a = thunk(x{,_ ) in let 2 = thunk(x . ) in close;(yr, closez (1, closes (yz2, €27)))) 5 (H’,vy)
AWE W/ AHLH,: WA (W el va) € V],
Next, we need to find e]. From the operational semantic, the let will run the first subexpression

using the heap H; until it reaches a target value or gets stuck. By appealing to our first induction
hypothesis, instantiated with W, yr, yr, y1, p, we find that:

(W, close; (yr, close; (y1, close; (y1, €1 %))), closes (yr, close (yr, closes (y1, €1 %)))) € E[r @ 1]

We can instantiate this with the heaps Hy, H, to find that (Hy, close; (yr, close; (yr, close; (y1,€17))))
either reduces to fail Conv, in which case the original expression steps to fail Conv, or to some
irreducible configuration (H7, e}), in which case on the other side, the configuration reduces to
some irreducible configuration (H;‘, e'i') and there exists some W; where W C Wy, H}, H3 : Wi, and
(Wy, e, el') eEV[r @ 1].

By expanding the value relation, we find that e] = (v}, v;) and e: = (v; v;) where (W, v, vj) €
V[r]. and (W4, v5, V;) € V[r.].. Thus, the original configuration with H; steps as follows:

’ "
fresh fresh

. . *
leta = thunk(x;resh) inleta’ = thunk(xgesh in close; (yr, close; (yr, close; (y2, €2%)))) —
(Hy, let Xfresh = (v, V3) in let x¢ o = fst Xgresh in let x{/, ;. = snd Xgresh in

(Hy, let xgesh =close; (yr, close; (yr, close; (y1, €1%))) in let x = fst Xgresh in let x = snd Xggesh N

let a = thunk(x{_ ) in let 2’ = thunk(x{’ ) in close; (yr, close; (yr, close; (y2, ¢27)))) 5
(Hy, let a = thunk(v}) in let a” = thunk(v}) in close; (yr, close; (yr, close; (y2, e2+)))) 5
(H][¢; — UNUSED, £; +> UNUSED],

[a > guard(v], £7),a’ = guard(vj, £;)]close; (yr, close; (yr, close; (y2, €27))))
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for some ¢;, ¢, ¢ H}. By similar reasoning, the configuraton on the other side with H; steps to

(H;[t’lT > UNUSED, t’; > UNUSED],
[a— guard(v:, t’j), a’ guard(v;, t’;)]closez(yy, close, (yr, closez(y2, €2%))))

T

for some t’f,fz ¢ H3.
Notice that, since ¢/, £, ¢ H] and t’lT, t’; ¢ H, (¢, t’lT) and (£, [T) are disjoint from dom(W;.¥) U
dom(W;.0). Therefore, we can define the world
Wy = (Wr.k, W.¥, W1.0 W (¢, ff) +— UNUSED, (£, t’;) > UNUSED)

One can see that H][¢] — UNUSED, £; + UNUSED], H; [i’;r > UNUSED, t’; > UNUSED] : W, because
Hi, Hz : Wi, and W; is nothing but W) with some new affine flags, which are satisfied by these
new heaps. Moreover, we have W; E W, because W, satisfies the same heap typing as W; and all
of the affine flags that are in W;.

Next, notice that

(Wa, y2la— (guard(v?,t’f),guard(vj,fi)), a’ — (guard(vj, {’;),guard(v;, [27‘))]) € G[Q,a:1,a" : .

because (f*,f;r), (f*,f;) € dom(W,.0), (Wy,y,) € G[Q.]. (since (W,y,) € G[Q2]. and W E W, C
Wa), (Wz,vj,vr) € V[n]. (by Wi £ W, and Lemma 2.3), and (Wz,v;,vZ) € V[=]. (again by
W; C W, and Lemma 2.3).
Therefore, we can instantiate the second induction hypothesis with
Wa, yr, y1s y2la = (guard(vy, €)), guard(vj, {’j)), a’ > (guard(vy, &), guard(v;, t’;))],p
to find that
(Wa, [a > guard(vy, £;),a" = guard(v;, £;)]close; (yr, close; (yr, close; (y2, es ™)),
[a guard(v:, [;r)’ a’ guard(v;, [;)]closeg(yr, closez (yr, closes (y2, €27)))) € E[7].
Then, consider again the following configurations:

(Hi[£ + UNUSED, £, > UNUSED],
[a = guard(v], £7),a’ = guard(vj, £;)]close; (yr, close; (yr, close; (y2, €2))))

(H;[t’f > UNUSED, t’; > UNUSED],
[a— guard(v:, [D’ a' - guard(v;, t’;)]closez(yf, close, (yr, closez(y2, €2%))))
Since these heaps satisfy W,, we have that the first configuration either steps to fail Conv, in
which case the original configuration with H; steps to fail Conv, or steps to some irreducible
configuration (H}, ef), in which case the second configuration steps to an irreducible configuration

(H;,e:) and there exists some W;s such that W, T W, HI, H;r : W3, and (Wg,e;‘,e;) e V[]..
Finally, since W & W;, Wy C W,, and W, & W3, we have W £ W3, which suffices to finish the
proof. O

LEMMA 2.48 (CoMPAT (€] ,).
A=ANAT=T"AT;QATre<e:tw;OAT~7 = ATOF Qe[)T < Qe[)T e AT
Proor. Expanding the third hypothesis, there exists some (. such that O = Q. w Q" and
QN Trre<e: 1.
We have A = A’ and T’ = T’ by the first two assumptions. Moreover, A; T;T5;Q F (e), : 7w AT

by the conversion typing rule. Thus, to prove the conclusion, it suffices to show A;I;15Q +
(e} = (e); : r. Expanding this conclusion, we must show that given

YWNpyryryo.p € DIAJ A (W.yr) € GIT]p, A (W, yr) € G[TT. A (W, y0) € G[O].
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then
(W, close; (yr, close; (yr, close; (yo, (€) . 7)), closes (yr, closes (yr, closes (yo, (e).)))) € E[7].
We can push the compiler and substitutions through the pair to refine that to:
(W, Cris. (close; (yr, close; (yr, close; (yo, €%)))), Cris . (closez (yr, closez (31, closex (yo, €¥))))) € E[7].
Then, by Lemma 2.2, we find that y, = y; W y, where
(W.y1) € G[O].
and
(W,y2) € G[Q].
and, for any i € {1,2}
close;(yo, e) = close;(y1, e)
Now, by instantiating our induction hypothesis with W, yr, yr, y1, p, we find that:
(W, close; (yr, close; (yr, close; (y1, €))), close (yr, close (yr, closez (y1,€%)))) € &[],
By Lemma 2.8, it follows that:
(W, close; (yr, close; (yr, close; (y1, €¥))), closez (yr, closez (yr, closez (y1, €1)))) € E[7].
Therefore, by Theorem 2.12, we have
(W, Crir(close; (yr, closey (yr, closes (y1, €7)))), Crsr (closes (yr, closes (yr, closes (y1,€))))) € E[7].

as was to be proven. O
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3 CASE STUDY: AFFINE WITH DYNAMIC SAFETY, EFFICIENTLY

In this case study, we consider the same two languages as the previous case study, but we consider
how to make the resulting compilers more efficient. In particular, we want to only enforce affine
types dynamically when necessary: when we statically know that they are okay, we don’t want to
introduce the overhead of thunks.

We do this by introducing a distinction in Arr1, between statically enforced affine arrows,
written 7 — 7, and dynamically enforced ones, written 7 — 7. These come with corresponding
static and dynamic affine variables.

Since, semantically, there is no difference between the two (indeed, this is only about improving
efficiency), we need not present this language on the surface to users. Instead, the placement of the
dynamic arrows could be inferred based on a simple taint algorithm: any arrow converted to or
from MiniML must be a dynamic arrow, and everything else can remain static.

3.1 MiniML Language
Type © = unit|int|cXc|rt+7t|r—> 1| VYar|a]|refr
Expressione := ()|Z|x]|(e,e)]|fste|snde]|inle]|inre|matche x{e}y{e}
|Ax:relee|Aae|e[r]|refe|le|e=¢e] (e,

Our syntax is identical to the previous section, so is most of our static semantics, which we elide.
The only typing rule which is different is the typing rule for foreign terms, which now requires
that the Arr1 term inside the conversion has no free static variables:

[O;ATre: T~ @ noe () T ~T
OO AT (e)y it CF

3.2 Arri Language

T u= unit|bool|int|7r —or|7r—w7|lr|t&T|T®T

e == ()|true|false|n|x|as|as|Aag:7e|ee] (e)]!v]let!x=eine’
(e,e’) |e.l]e.2]| (ee)|let (as,a,) =eine’

v u= ()| Adag:te|!lv|{ee)]| (v,v)

0o n= ofe

Here, our rules are nearly the same, as we don’t need to change anything aside from propagating
the dynamic/static annotation from lambdas into our affine environment, so that variables can be
compiled correctly.
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a, :TEQ A, : TEQ x:7€T
COFa, 7w (@ CTO0Fa, 7w (@ CHOFx:7m(E G0 () :unitmws ©

CQFn:intw @ E;T;Q F true : boolws © E;T;Q F false : boolm» ©
C;0la = re:mwE no, (<) CI;Qla. =n]re:nwC
G0 Fla, :mye:1 o 1w @’ CT;Q Fla,:rye:1p = 5w @

Q=0Q,vQ, CiQ ke i1 01w E) Cr 50 Fey:mmEs

GHF;S) Fepeyp: T2W6;3

Q=0Q;WQ, CulQ ke i 2w (@, CrT500 Fey: 1w Es

CiTQre ey mw @y

C:lFv:itm @
G- Flv:lzme @

Q=0Q,¥Q, Cul Qi ket CuTlx:=1];Qre : 7' w3

Ci;Qrlet!x=cine ~w E;

Ci0re i w (@, CuT;Qk ey @y ChOFe: &G/
CuT QR (e, eg) : 1 &y~ B3 ChQrel:pm@

C0re: 11&m G/
C0re2: @

Q=0Q, v, CiulQ ke iy »w(E, @2;F;Q2F62272W€3
(S1;F;Q + (61,62) B ®T2’V\'>(£3

Q=0Q,WQ, CuTire:n@nwE, CuliQla=r,a" =1r]re 7w

Ci;T;QF let (aqg,al) =eine : 7w E;

Cr;Qre:7m @’ ST ~T

CLOr(e),: T C

3.3 Compilers
Our compiler for MiniML is identical to the previous section, as what we are changing is optimiza-

tions within AFF1.

For A¥Fi, the biggest difference, of course, is in the different modalities of arrows and variables.
The dynamic ones are treated similarly to our previous case study, whereas for static ones, we can
erase all traces of affinity, since we know statically they will only be used at most once.
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thunk(e) £ let resh = ref 1in A_{if !resh {fail CONV} {rfesh := 0;e}}

0] ~ ()

true w0

false ~wo ]

X ~ X

2o ~al()

e ~ A,

Aa, : T.e ~ o dad{et}

Aa, : T.€ o Aae{et}

(e1:71 0 1) €y ~ et (let x = ;% in thunk(x))
(e1:71 = 1) ey ~ooegte,t

v ~oovt

let'x =eine’ ~w letx=etine™

(e,e’) o (A_{ethA_{e )

e.l ~ o (fstet) ()

e.2 ~>  (sndet) ()

(e, e’) (et e’

let (a,,al) =eine’ et Xgesh = €7 in let a, = fst Xgeqn in let al = snd Xgreqn in €’*
(e:1). ~w Criso(€7)

3.4 Convertibility

Convertibility is similar to the previous case study, except that we translate MiniML functions to
our dynamic arrows (the only one shown here — the rest are the same as before), as the semantics
of enforcing affine types onto MiniML code requires we do it dynamically.

CT]|—>T‘|3CT‘||—>TI FT o~ CTzi—)r_vsCQ»—ﬂ'z I~ T

CTI4)U'—>(Unit - 1) — rg’c(unit — 1) > Tyr—or, P10 (unit - ) -

The wrapper boundaries are the same as before. Note, of course, that we cannot convert to a
static arrow, as that would be unsound.

3.5 Logical Relation

For the logical relation, we define an augmented phantom operational semantics. This involves
three things:
First, we add one phantom term to our LCVM language:

Expressionse := ...protect(e, f)

Second, we augment all of the rules of the operational semantics to include the phantom flag set
® in the machine configurations, threading them through.
Third, we add one rule for our new term, that uses the phantom flag set:

(@ W {f}, H, protect(e, f)) --> (@, H,e)

Fourth, we modify two rules so that, whenever a binding annotated with e is substituted with a
value, the value is protected by a flag.
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f fresh
(®,H,let ao =vine) --> (®W{f}, H, [as — protect(v, f)]e)

f fresh
(D, H, Aa,.e v) --> (P W {f}, H, [a. > protect(v, f)]e)

Note that we write --> for steps in our augmented phantom operational semantics, and will show
later that if a term reduces in this phantom semantics, it reduces to the same thing in the normal
semantics. As you can see, our phantom operational semantics exactly mirrors what we do in the
true operational semantics for the dynamic case - but this is very different, as what in the dynamic
case is perfectly acceptable dynamic failure corresponds to terms that are not in the relation at
all (as they would get stuck when trying to run using the phantom semantics). In this way, our
phantom flags are a purely logical construct to capture the same invariants that the dynamics

enforce at runtime.

World,, = {(k,¥,0) | k <nAY C HeapTy, A dom(¥)#dom(®)
A (Y, 6) = (91, Dy), (£, 4,) — (D7, D;) € O.
(h,6) # (£,4,) = &1 NP =D, NI, =0)}}

World = U World,

HeapTy, = {(t1, &) — Typ,....}
Below, we write USED for 0 and UNUSED for 1.

0 = {(f1, &2) = USED} U {(£1, &) > (D1, P2)}

@ ={f}
For any i € {1, 2},

flags(W, i) = U @
(01,2) > (@1,D2) EW.O
O, @, : W £ Vi € {1,2}.®;#flags(W, i)
Atomy, = {(W, (D1, e1), (P2, €3)) | W € World, A &1, P, : W}
AtomVal, = {(W,(®1, v1), (P2, v2)) € Atom,,}

Atom = U Atom,,
n

AtomVal = UAtomValn
n

Typn = {R € 24t°mValn | (W, (®1,v1), (Ba,v2)) € R.YW'. W Eg 0, W = (W', (®,v1), (Py,v,)) € R}
Typ = {R € 247°mVal | vk | Ry € Typy}

Uanyp = {R <€ Typ | V( w, (q)l,V]), (q)z,Vz)) €ER &, =9, = 0}
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(k,¥,0) Cooo, . V,0) = (j,¥,0') € World
Nj<k
A V(f], fg) € dom(‘P)L‘I’({’l, fg)Jj = \P/((l, [2)
AV (f, t;) € dom(®).(4;, £2) € dom(O’)A
(@(fl,fz) = USED = ©’(f}, ;) = USED)A
(O(f1,8) = (21,0;) = ©'(f1,£) = USED V O'(£1, &) = (@1, P2))
A DO, : (KW, 0)
A ‘I’l, (I’g : (], \P/, 6/)

Wy E(Dl,d)z W, = Wlk > Wzk A Wy Ecpl’q)z W,
H={ft— 0}

HyHy: W2
(V(t,6) — Re WY, (>W,H (), Hz(£)) € R)
A (V(, ) — USED € W.0.Vi € {1,2}. H;(¢;) = USED)
A (Y(t, b)) — (P, D5) € W.O.Vi € {1,2}. H;(£;) = UNUSED)

Elr], = {(W, (®1, 1), (P2, €;)) | freevars(e;) = freevars(e;) = 0 A
V(Drl,q)rz, H1> HzZW, e;, H;, ] < Wik.
(I)rl#q)l A ':Drz#q)g A (I)rl (V] q)l»q)rZ V] (I)z : WA

(By1 © flags(W, 1) & @y, Hy, ) - (B, Hl,el)
= e} = fail Conv V (30f) Oyy Ppy Dy voH, W',
<(I>r2 (V] ﬂags(W, 2) V] q)z, Hz, €2> == <(Dr2 V] ﬂags(W', 2) V] q)fg V] q)gZ; Hé,V2> -
A @ =0, Wilags(W/, 1) W Qp & Dyy A
A W E(I)rl,q:'rz W/ A Hi’ Hé : W/
A (W,> (q)fl’ efl)’ (®f2; VZ)) € (V[[T]]P)}

guard(e, ) = A_.{if !¢ {fail Conv} {¢ := USED;e}}
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V([unit], = {(W,(0,0),(0.0))}
V[int], = {(W,(0,n),(0,n)) | neZ}
Vo xwlp, = {(W,(0,(vVia, v2a)), (0, (Vib, v2p)))
[ (W, (0,v1a), (0,vip)) € V1], A (W, (0,v22), (0,v21)) € V[r2] o}
Vo +n], = {(W,(0,inlvq),(0,inlvy)) | (W,(0,v4),(0,v2)) € V[ri],}
U {(W, (0,inr vq), (0,inr v)) | (W, (0,v1),(0,v2)) € V[z:],}
Vo =], = {(W,(0,Ax{e1}), (0, Ax{e2})) | Vviva W.W Coo W’
AW, (01, (0v) € VI, = (W (0, [xoviler), (0, [xvaler)) € E[n],}
V[ref 7], = {(W,(0,6),(0,6)) | WY(t,6) = V[l wi}
V[Va.1], = {(W,(0,1_.e1),(0,1_.e;)) | YR € UnrTyp, W' .W Cgp W’
= (W', (0,e1),(0,e2)) € E[7]lp[asry}
Vl]al, = p(a)
V[unit]. = {(W,(0,0),(0,0))}
V([bool], = {(W,(0,0),(0,0)} U{(W,(0,nq),(0,ny)) | ny #0 Any # 0}
V([int]. = {(W,(0,n),(0,n)) | neZ}
Vo <] = {(W,(0,Ax{e1}), (0,4 x{e2})) |

YO vi @y va W.W Cog WA (W, (@1, V1), (P2, v2)) € V[r].

= (W.kEW.X,W.0U () (0,D,)),
(0, [x+>guard(vy, £1)]eq), (0, [x>guard(va, £2)]e;)) € E[72].}

Vo -] = {(W, (@, ac{er}), (P24 a0{e2})) | VO, @) fi orviva W. W Lo 0, W

A (W (@1, v1), (P, v2) € V[ A® ND =D, N D, =0
Afi g @1 WP Wilags(W/, 1) A fo ¢ P, W D) W flags(W’, 2)

= (W, (91 W] W {fi}, [a.—>protect(vy, f1)]eq),
(©; W @) W {fa}, [asroprotect(va, fo)]e2)) € E[n].}

V[ = {(W,(0,v1), (0,v2)) | (W, (0,v1), (0,v2)) € V[r].}
V[ ® . = {(W,(®; WD, (Via, V2a)), (@2 & D7, (Vip, Vap)))

| (W, (@1, v1a), (P2, vib)) € V[r1]. A (W, (@], v2a), (®), va2p)) € V[r].}
V[r&n]. = {(W, (@1, (A_{era}, A_{e2})), (P2, (A_{ew}, A_{en})))

| (W, (@1, e10), (P2, e1p)) € E[11]. A (W, (D1, €20), (P2, €2)) € E[12].}

D[]
DIA, o]

{-}
{pla = R] | R € UnrTyp A p € D[A]}



G,
GIr.x 1,
GIrx: 1,
gle.a : 7,

Gl a. : 7],
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{(W’Q)’(b! )}
{(W,0,0,y;x(vi,v2)) | (W, (0,v1), (0,v2)) € V], A (W,0,0,y) € G[T],}
{(W,0,0,y;x(vi,v2)) | (W, (0,v1), (0,v2)) € V[, A (W,0,0,y) € G[I],}

{( Ws cI)ls q)zs Ys aoH(guard(vT> [1)’ guard(VZ: [2))) |
(W.0 =0 (f1,6) > USED) V (30 & B, W.0 = @' & (81, £) > (), B))
A ((Wk, W, 0'), (&, v1), (@) v2)) € V][], A (W, ®1,D201) € G[0])}

{(W, 0, 0 @] W {fi}, 0, W D, W {fa},y; aer>(protect(vy, f1), protect(vy, f2))) |
(W, (@1, v1), (®5,v2)) € V][],
A (W’ q)l’q)Z’ }/) € g[[Q:HP
/\<I>10<D1 =0/\<I)20<I>;=(7)}
ANAEDPLYWDI AL gDy WD}

TN + e ey 7= VWV/) Yryryo
p e DIA] A (W,0,0,y1) € G[T], A (W,0,0,y) € G[T]. A (W, ®y1, Do, 70) € G[O]-
= (W, (0, close; (yr, close; (yr, close; (yo, e1%)))),

(0, close, (yr, close, (yr, closes (yo, e2%))))) € &[],

LA T Rey ey :t=VYWNpyryryo
pE Z)[[A]] A (W’ 05 (D: Yl) € g[[r]]p A (W, (D: 0’ Yl) € g[[rﬂ A (W,(Dl,q)z, YQ) € g[[Q]]
= (W, (P4, close; (yr, close; (yr, close; (yo, e17)))),

(@, close, (yr, closes (yr, closez (yo, €27))))) € E[r],

Finally, for any environment Q, let O, be the set of dynamic variables in Q. This notation will be
used in the supporting lemmas and some proofs of compatibility lemmas below.

3.6 Logical Relation Soundness

LEMMA 3.1 (EXPRESSION RELATION CONTAINS VALUE RELATION).

VIzl, ¢ &Elrlp

Proor. All terms in the value relation are irreducible, and thus are trivially in the expression

relation.

]

LEmMA 3.2 (VALUES WITH No FLAGS ARE IN EXPRESSION RELATION). Forall 7, p, W, @1, vy, $2, vy,
if (W, (0,v4),(0,v5)) € V[r]p, then (W, (D1, v1), (P, v2)) € E[1]p.

Proor. Expanding the definition of the expression relation, given:

Vq)rl;(prZs Hq, Hy: W, e;, H;, _] < Wk.
D1 #D; A Dot ®y A Opy WDy, By WDy - WA

(Prq W flags(W, 1) W &y, Hy, vy) 2 (@, Hi.e}) »
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we must show that either e is fail CoNv or there exist ®fy, @41, g2, Py, v, Hy, W’ such that:

(Brs W flags(W, 2) © @y, Ha, vp) -5 (g ¥ flags(W’,2) & Dy W Dy, HY, v5) =
N (I); = (Drl V] ﬂags(W', 1) (V] (I)fl (V] (I)gl/\
AWEs, a0, WA H;, Hé : W’
N (W (@p1,€)), (Pr2,v3)) € V]1]p)
Since v, v, are in the value relation, they are target values, so the configurations
<(Dr1 V] ﬂags(W, 1) V] @1, H], V1>
and
<(I)r2 (V] ﬂags(W, 2) (V] (Dg, H2, V2>
are irreducible. Thus, ®] is simply equal to the set of static flags in the initial configuration, so
¢ = &,y W flags(W, 1) ¥ ®;. Then, we can take & = 0, Oy; = Oy, Py = 0, Oyp = O3, V5 = vy,
Hé = H2, and W = W.
Since ®,1, ®,, : W by assumption, we have W Cg,, ¢,, W. Everything else in the expression
relation is trivial by assumption, so this suffices to finish the proof. O

LEmMMA 3.3 (ExPRESSIONS WITH No FLAGS ARE IN EXPRESSION RELATION). Forallz, p, W, @1, e1, ®,, €5,
lf‘(Wa (03 e])> (@, eZ)) € Sﬂrﬂp: then (W> (®ls eT); (CDZ’ eZ)) € 8[[7]],0-

Proor. Expanding the definition of the expression relation, given:

V(I)rl,(brg, Hl,HZZW, e;, Hi, ] < Wk
(I)rl#q)l A qug#q)g A <1>r1 (V] q)l,q)rZ (V] Cbz : WA

(By1 © flags(W, 1) & @y, Hy, ) - (B, Hl,el) =

we must show that either e] is fail Conv or there exist @1, @y, o, Dya, v, Hj, W’ such that:

(B3 W flags(W, 2) © @y, Ha,e5) > (Dyy 0 flags(W’,2) & @y W Bgo, HY, vp) -
A @) =0, Wilags(W/, 1) W Dp & Oyy A
ANWECs,8, WA HLH,: W
N (W, (Df1,€)), (D2, v2)) € V1))
Now, by expanding the expression relation in the assumption, we have that, if
V@, @), Hy, Ho: W, €, HY, j < Wok.

ry> “r2
D, #0 A Dy H0 A Dy 60,00, 80 - WA
(@, © flags(W, 1) & Oy, Hy, ) - (B, H/,el) -

then either e] is fail Conv or there exist CIJ;I, @;1, CIJ;Z, @;2, Vo, H), W’ such that:

(97, Wilags(W,2) W @y, Hy, ;) NN (07, wilags(W',2) W CIJ;‘,Z W CIJ;Z, H),va) +»
A O] =7, Wilags(W', 1) ¥ CID;;I ) <I>;1/\
AW Cor, 07, W' A H Hy - W’
AW, (@5 ), (7, v2)) € V[e],)
Then, we can instantiate this fact with @}, = &, & @1, @7, = ®,, W &,. We then find that:

(®ry W Dy W flags(W, 2) W Dy, Hy, €5) > (B3 & Dy W flags(W, 2) & 7, 05y, HY,vo)
A =Dy W 0y @ flags(W/, 1) W ) & O) A

AW Loz 07, W' A H, Hy = W’

A (W, (@, €0), (D), v2) € V]r]p)
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Then, we can take ®¢; = @}1, Q) = CD;I WO, Opy = CIJ;Z, Oy = CD;Z & @,. Then, everything in the
expression relation we have to prove trivially follows from the above, so the proof is finished. O

LEMMA 3.4 (A¥¥1 VALUES COMPILE TO TARGET VALUES).

Proor. By induction over the syntax: () compiles to (), a, : 7.e compiles to a target function,
(e,e’) compiles to a pair of target functions, !v compiles to v* (which is a target value by the
induction hypothesis), and (v, v/) compiles to (v*,v'*) (where both v* and v'* are target values by
the induction hypothesis). O

LEMMA 3.5 (SPLIT SUBSTITUTIONS). For any world W, flagsets ®1, ®,, and substitution y such that
(W, q)la @2, y) S Q[[£21 V] Qz]]p
there exist flagsets @1, D1, oy, Do such that &1 = Oy W Oy, Oy = Oy W Oy, and substitutions yi, yo
such thaty = y1 Wy, and
(Wa (I)ll’ q)Zb )’1) € g[[gzl]]p
and
(W, CI:'lrs q)er YZ) € g[[Qsz
Moreover, for any i, j € {1,2}, foranyI'; Qs A;T Fe s T 1750,
close;(y, e*) = close;(y;, ")
and for any I'; Qi; AT ket AT,
close;(y, ") = close; (yj, ")
Proor. First, we need to show that there exist substitutions y; and y,. This follows from the
inductive structure of G[©)] ,, where we can separate the parts that came from G[©;], and G[©2.] .

The second follows from the fact that the statics means that the rest of the substitution must not occur
in the term, and thus close; (y, e*) = close;(y1, close;(y2, e*)) = close;(y1, e*) (for example). O

LEMMA 3.6 (No StATIC VARIABLES IN MiniML TERMS). For any world W, flagsets @1, ®;, and
substitution y such that

(W, ®y,®5,7) € G[2],
then there exists a substitution y’ such that

(Ws 0’ 0> }/) € g[[gzu]]p
and, for allT; O; \;T F e 7170 and for all i € {1,2},

close;(y, ") = close;(y’, e")

Proor. Let Q, be the set of all static variables in Q2. Since Q2 only contains dynamic or static
variables, O = Q,WQ,, so by Lemma 3.5, there exist flagsets fi;, fir, f21, for and substitutions yy, y» such
that fi = fir ® firs fo = fur © firs ¥ = 11 9 vz (W, fir fors 1) € GO ], and (W, fir, firs 12) € G221,
Since (2, only contains dynamic variables, fi; = fo; = 0. Thus, we can take y’ = y;.

Now, we must prove, for any I; Q; A;T + e : 7w [7; Q7 and for any i € {1,2}, it holds that
close;(y, e*) = close;(y1, e*). Since y = y1 W y,, we have

close;(y, e*) = close;(y1, close;(y2, e*))

Notice that y; only contains variables annotated with e. However, e* contains no free variables
annotated with e because, if it did, then there would need to be a free static variable would under a
(") boundary, as only static variables in A¥r1 get compiled to variables annotated with e in the
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target. However, the typing rule for () does not allow for free static variables, so this is impossible
and thus e* contains no free variables annotated with e. Ergo, closing e* with y, has no impact, so

close;(y, e") = close;(yi, close; (12, €*)) = close;(y1,e")
as was to be proven. O

LEMMA 3.7 (STRENGTHENING LOGICAL RELATION FOR MiniML). ForallT; O;A;T +e <e: 1, if
there exists some (W, ®q, @y, ) € G[]., it holds that:

YW.N¥pyryrvo
peDA]A(W,0,0,yr) € G[T]p A (W,0,0,yr) € G[I]. A(W,0,0,y0.) € G[Q].
= (W, (0, close; (yr, close; (yr, close; (yo,,e%)))),
(0, close;(yr, close; (yr, close; (yo,.e*))))) € E[r],

Proor. Since () only contains dynamic or static variables, Q0 = O, W Q),, so by Lemma 3.5, there
exist flagsets fi5, fir, fo1, for and substitutions yy, y2 such that fi = fii W fir, o = W for, y = y1 W2,
(W, fir. foar- v1) € G[Q0]p and (W, fir, for, v2) € G[Q.] -

Now, consider the given hypothesis. Given
YW.Npyryryo.p € DIAJA(W,0,0,yr) € G[T], A(W,0,0,yr) € GII]. A(W,0,0,y0.) € G[Q.].

we must show:

(W, (0, close; (yr, close; (yr, close; (yo, €7)))),
(0, close, (yr, close, (yr, closes (yo, €*))))) € &[],

Since (W, fir, for.v2) € G[Q:]p, (W,0,0,y0.) € G[Q.]., and © = Q. W O, it holds that

(W, firs fors Y2 Wya,) € G[Q].. Thus, by applying I; ; A;T e < e : 7, we find

(W, (0, close; (yr, close; (yr, close; (y2 W yo., €7)))),
(0, close (yr, close, (yr, closex (y2 W yo ,e%))))) € &[],
As explained in the proof for Lemma 3.6, e* has no free variables annotated with e, so closing e*
over with y, has no impact. Ergo,

(W, (0, close; (yr, close; (yr, close; (ya., €1)))),
(0, close, (yr, closez (yr, closez (yo., €%))))) € &[],
which suffices to finish the proof. O

LEMMA 3.8 (WORLD EXTENSION).
(1) If (Wy, (@1, v1), (P2, v2)) € V1], and W Co, 0, Wa, then (Wa, (91, v1), (P2, v2)) € V1],
(2) If (W1, @1, @4, y) € G[T], and W1 Co, 0, Wa, then (Wy, @1, @5, y) € G[T],

Proor. We note that world extension allows three things: the step index to decrease, the heap
typing to add bindings (holding all existing bindings at same relation, module decreasing step
index), and add flag references (ensuring existing flag references can go from pairs of sets of static
flags to USED, but not the other way). In all cases, this is straightforward based on the definition
(relying on Lemma 2.4 in some cases). O

LEMMA 3.9 (WORLD EXTENSION TRANSITIVE). IfW; Eg, 0, W2 and W, Co,0, W3 then Wi Co,ne,0,0a,
Ws.

Proor. This holds trivially for step indices, the heap typing, and the monotonicity of marking
affine flags as usep. What remains is the side condition that the world satisfies ®;, ®,. Since that is
defined as being disjoint from the set of flags in W and W’, the set of flags that is disjoint from
both W; and Wj is the intersection. ]
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LEmMA 3.10 (HEAPs IN LATER WORLD). For any W € World and Hy,H, : W, it holds that
Hy,Hy : > W.

Proor. For Hy, Hy : >W, we need three things.

The first is that for any mapping (¢, £2)—R in >W. ¥, (>>W,H;(#),H2(%)) € R. Since R is
drawn from Typ, we know it is closed under world extension and thus the fact that (> W, H; (£1), Ha(£)) €
R means this holds.

The other two conditions, which relate to W.0©, are unaffected by the shift of step index, and so
hold trivially in >W. O

LEmMA 3.11 (HEAPs IN LATER WORLD). For any W € World and Hy,H, : W, it holds that
Hy, Hy : > W.

Proor. Since heap typings map to relations that are by definition closed under world extension,
and world extension cannot remove locations, only restrict them to future step indices, this holds
by definition. O

LEmMA 3.12 (LoGICAL RELATIONS FOR MiniML IN UnrTyp). Forany A, p € D[A], and z, if A+ 7,
then V[r], € UnrTyp.

Proor. First, we show V[r], € Typ. By the definition of Typ, it suffices to show, for all natural
numbers n, |V[7] pln € Typy, for which we must show two facts: first, that it is in pAtomValy an4
second that it is closed under world extension. The latter holds by Lemma 3.8. For the former, we
note that we are required to show that the worlds are in World,,, which holds by definition, and
that for any (W, (&1, v1), (P2, v2)) in the relation, ®;, @, : W. For the latter, note that ®; = ¢, = 0
as shown earlier, and 0 is trivially disjoint from flags(W, 1) and flags(W, 2).

Second, we show that for any (W, (@1, vq), (93, v2)) € V[1],, P1 = @, = 0. This is trivial by the
definition of V[7],, aside from the case for «, where it holds because the relation is drawn from
UnrTyp. O

LEMMA 3.13 (COMPOSITIONALITY).
(W’ ((Dls V1)’ ((DZ’ VZ)) € (V[[T]]p[OCH(VIIT/]]p] — (W’ (q)ly\”)s ((I)z, VZ)) € (V[[T[T’/a”]p

Proor. The proof for compositionality in this case study is essentially verbatim the proof for
compositionality in the last case study. O

LEMMA 3.14 (ExPRESSION RELATION FOR CLOSED TYPES). For anyMiniML type v where - + 7 and
any p,

&[], = &[]
ProoF. Since §[r], is defined in terms of V' [r] ,, this proof is analogous to Lemma 3.13, though
since what we are substituting is not used, the interpretation can be arbitrary. O

LEmMA 3.15 (CLosING MiniML TERMS). ForanyMiniML terme wherel; Q; A;T F e : s 17;Q), for
any W, yr, yr, yo, p wherep € D[A], (W, 0,0,yr) € G[I],, (W,0,0,yr) € G[I']., and (W, 1, D2, y0) €
G[9]., it holds that

close; (yr, close; (yr, close; (yo, e*)))
and

closey (yr, close; (yr, closez (Yo, €¥)))
are closed terms.

Proor. Since free variables are compiled to free variables, and no other free variables are
introduced via compilation, this follows trivially from the structure of G[I'] . O
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LEMMA 3.16 (CLOSING AFFI TERMS). Forany Arri terme where A;T;15Q + e : 1~ AT, for any
W, yr, yr. Yo, p where p € D[A], (W,0,0,yr) € G[T'],, (W,0,0,yr) € G[I]., and (W, 1, D5, y0) €
G[9]., it holds that

close; (yr, close; (yr, close; (yo, e*)))
and

close; (yr, close; (yr, closes(yo, €¥)))
are closed terms.

Proor. Since free variables are compiled to free variables, and no other free variables are
introduced via compilation, this follows trivially from the structure of G[I'],. O

LEMMA 3.17 (MiniML VALUES CONTAIN No FLAGS). IfA + 7,p € D[A], and (W, (®1, v1), (®a,v3)) €
Vr]p, then ®; = @, = 0.

Proor. If 7 is not a type variable, then the theorem is trivially true because all non-type variable
interpretations of MiniML types are defined to only contain tuples where the sets of static flags are
0.

If 7 is some type variable «, then, since A + 7, @ € A. Thus, since p € D[A], it must be that
p(a) € UnrTyp. Then, for any (W, (@1, v4), (P2, v2)) € V[r], = p(), it must be that ®; = &, = 0
by the definition of UnrTyp. O

THEOREM 3.18 (CONVERTIBILITY SOUNDNESS). If74 ~ 7p then
v (W’ (q)la 61), ((I)Z: 62)) € 8[[TA]]- S (W’ ((Dls CTA*—)TB (61)), ((I)z, CTAP—)TB(EZ))) € 8[[TB]]'
AY (W, (q)], e1), ((Dz, 62)) € 8[[’['3]]. — (W, ((Dl’CTB*—)TA(e1))’ ((I)Z, CTB'—’TA (62))) € 8[[TA]]..

Proor. We prove this by simultaneous induction on the structure of the convertibility relation.

There are two directions to this proof:

A4 (W, ((I)], 61), (q)z, ez)) (S 8[[un1tﬂ - (W, (q)], Cunit!—nmi\(e1))’ ((I)z, CUnit!—nmil (82))) (S Sﬂlllli[ﬂ.
and:
V (W, (@1,e1), (D, 02)) € E[unit]. = (W, (@1,C,oumit (€0) (@2 Coroumis (€2))) € E[unit].

Both directions are trivially similar to each other, so we will only prove the first direction.
Expanding the definition of the convertibility boundaries, we refine this to:

N4 (W, (q)l, E]), ((DQ, e2)) € 8[[un1tﬂ - (W, ((I)l, 61), (@2, 82)) € 8[[Lll’lit]].
From the expression relation, we first need to show ey, e; are closed. This follows directly from
the fact the assumption that (W, (®1,e1), (®2,€;)) € EJunit]., and all terms in the expression
relation are closed. Next, we need to show that given:

VCI)rl,CIJrz,Hl,HZ:W, e;, H;, ] < Wk
@1, Dpp : WA

(@18 flags(W, 1) @1, Hy,eq) -5 (@], H, e} =
Then it holds that:
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e} = fail Conv V (3Dp; gy Oy Byp voH, W,
(B3 W flags(W, 2) & @y, Ha, €5) -5 (Dyg & flags(W’,2) & @y W Dy, HY, vp) =
A O =D, Welags(W', 1) W Qpy W By A
AW Co,,,0,, W’ A H;, Hé W
A (W', (Df1,e)), (Dra,v2)) € V7] )}
By instantiating the assumption (W, (91, e1), (91, e3)) € Efunit]. with ®,1, @2, Hy, H, etc, we
find that

e} = fail Conv V (3®p; Oyy Oy Py voH, W,
(Br5 W flags(W, 2) & @y, Ha, e5) > (Dyy 0 flags(W’,2) & @y W Bgo, HY, vo) -
A O =0, Wflags(W/, 1) W Dp & Dy A
AWECs,,8, WA HLH,: W
AN (W (Dr1,€)), (Pp2,v2)) € V[r])}
Ergo, it suffices to show that if (W’, (®fy, €}), (®r2, v2)) € V[unit]., then (W', (ry, €}), (Pp,v2)) €
V[unit].. However, this is trivial because V[unit]. = V[unit]. = {(W, (0, ()), (0, )))}.

There are two directions to this proof:

YV (W, (@1,e1), (B, €2)) € E[int]. = (W, (®1,Ciprprspnny (€1): (@2, Ci o (€2))) € Ebo0l].

and:

v (W’ (q)l’ 61), (<I>2,e2)) € Suinlﬂ' == (W’ (q)l’cboolHil’]t(eO)’ ((I)Z’ Choul»—)int(eZ))) € Sﬂlntﬂ

First, consider the first direction.
Expanding the definition of the convertibility boundaries, we refine this to:

Y (W, (@1, e1), (Py,€;)) € E[int]. = (W, (P, e1), (P2, €3)) € Ebool].
From the expression relation, we first need to show ey, e; are closed. This follows directly from
the fact the assumption that (W, (91, e1), (P2, €2)) € E[int]., and all terms in the expression
relation are closed. Next, we need to show that given:

Y@y, ®yp, Hy, Ho: W, €], HY, j < Wok.
D, Dpp : WA
(@1 ® flags(W, 1) W @y, Hy, e1) -5 (&), H,e]) =+
Then it holds that:

e; = fail Conv V (H(Dfl q)gl q)fz CDgZ VZH;WI.
(B3 W flags(W, 2) © @y, Ha, €5) -5 (Dyp @ flags(W’,2) & Oy W gy, HY, vp) =
A O =D, Welags(W', 1) W Qpy W Oy A
A W E(I)rbq)rZ WI A H;’ H; : WI
AN (W' (D1, €)), (Ppz, v2)) € V]bool])}
By instantiating the assumption (W, (@1, e1), (®1,e3)) € E[int]. with @,1, @2, Hy, Hy, ete, we
find that
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e; = fail Conv Vv (chfl (I)gl q)fg Cpgz VzH;WI.

(B3 W flags(W, 2) & @y, Hy, €5) -5 (Dyp @ flags(W’,2) & @y W Dy, HY, vp) =
A (I); = q)rl U} ﬂags(W', 1) U} q)fl U} q)gl/\
AWEs, o, WA H;, Hé W
A (W' (@f1,€)), (P2, v2)) € V[int].)}

Ergo, it suffices to show thatif (W’, (®fy, €}), (®r2, v2)) € V[int]., then (W', (®ry, €}), (Pp2,v2)) €

V[bool].. However, this is trivial because V[int]. € V[bool]..
Next, consider the first direction.
Expanding the definition of the convertibility boundaries, we refine this to:

Y (W, (CI)I, e1), ((Dz, 82)) € SHbOO]H — (W, ((I)l, if e 0 1), ((Dz, if e 0 1)) € 8[[1nt]]
Expanding the expression relation, we must show that given

Vq)rl,q)rg, Hl,HZZW, e;, H;, ] < Wk.
d)rl#q)l A qug#q)g A q)rl (V] q)l,q)rg (V] <I>2 : WA
(®y1 © flags(W, 1) & @y, Hy, if e 0 1) -5 (B, HI,el)

it holds that:
e; = fail Conv Vv (Eq)fl q)gl q)fg q)gz VzHéW’. i

<q)r2 V] ﬂags(W, 2) (V] (I)z, H2, if e 0 ]) - <(Dr2 V] ﬂags(W', 2) V] (I)fz V] (I)gz, Hé,V2> -

A @1 = CD,«] (V] ﬂags(W’, 1) (V] @fl (V] q)g]/\

ANWCe, o, W’ A Hi, Hg W

AN (W' (D1, ), (Pr2,v2)) € V[int],)

By applying (W, (@1, 1), (D2, €5)) € E[int]., we find that (®,; ¥ flags(W, 1) W &1, Hy, eq) either
steps to fail Conv, in which case the original configuration with if e; 0 1 takes another step to
fail Conv, or steps to an irreducible configuration

(01 Wilags(W', 1) & Opy W dyy, HY, €7)
in which case (®,, W flags(W, 2) & ®,, Hy, e,) steps to an irreducible configuration
(D2 W flags(W',2) & Op, W Dy, Hj, €3)
and there exists some world W’ such that W Cg,, ¢,, W', H],H : W', and (W', (CDfl, e}), (CI>f2, e)) €
V[bool],. By expanding the value relation, we find ®7; = @7, = 0 and there are two cases:
(1) e} = e5 = 0. In this scenario, we have

(@1 W flags(W, 1) W &y, Hy, if e7 0 1) ->
(&1 Wilags(W’',1) ¥ Opy W Dyy, HI,if 00 1) -->
<CD,«1 (V] ﬂags(W’, 1) (V] (I)fl (V] fpgl, HY, 0>

and

(@2 W flags(W, 2) W &y, Hy, if €5 0 1) ->

<CD,«2 (V] ﬂags(W’, 2) (V] fpfz (V] fpgz, H;, if00 ]) -->

(@ W flags(W’,2) W @y W Dy, H, 0)
Then, we have from before that W Cg,, o,, W’ and H}, H} : W’, and one can easily see that
(W, (0,0),(0,0)) € V[int]., which suffices to finish the proof.
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(2) e} =n;and e; = n, with ny, n, # 0. In this scenario, we have

(@1 W flags(W, 1) W &, Hy, if e7 0 1) >

(®r1 W lags(W’,1) ¥ @y W Dyy, HY,if 0y 0 1) >

(©, Wilags(W’, 1) W Qpy & Dy, HY, 1)
and .

<<I>r2 V] ﬂags(W, 2) & @2, H2, if e 0 1) -->

<(I>r2 (V] ﬂags(W’, 2) (V] q)fz (V] q)gZ; H;, if n,; 0 1) -->

<q)r2 (V] ﬂags(W’, 2) (V] chZ (V] cDgZ; H;, 1>
Then, we have from before that W Cg,, ¢,, W’ and H}, H; : W’, and one can easily see that
(W, (0,1),(0,1)) € V[int]., which suffices to finish the proof.

‘ TI®Ty ~T1 XTp ‘There are two directions to this proof:

v (W’ ((Dl’ 61), (CDZ» e2)) € 8[[7—1 ® TZ]]' == (W’ ((Dlrcn QT X T2 (61)), ((DZ; Cn@@r;b—)ﬁ X 1) (62))) € 8[‘[1 XT

and:

YV (W, (P, e1), (P2,e2)) € 8[[1'1 X Tz]]- = (W, (2, CT1 X o1, 01, (e1)), (2, Cn X To1 x@(eZ))) € 8[[T1 X7

Both directions are trivially similar to each other, so we will only prove the first direction.
Expanding the definition of the convertibility boundaries, we refine this to:
A4 (W, (q)l) 61), ((I)l, ez)) € 8[[‘['1 ® Tz]]. -

(w,

(@4, let x = ey in (Cy, sy (fst x), Crr, (snd X)),

(Dy, let x = ey in (Cr, iy (fst x), Cr s, (snd x)))) € [ X 1]
From the expression relation, we first need to show the two expressions in the conclusion are

closed. This follows from the fact that e;, e; are closed, by the assumption that (W, (®y, e1), (2, €;)) €

E[r @ 1,])., and that the new expressions do not introduce any new free variables. Next, we need
to show that given:

vq)rlaq)rZs Hla HZZW, e;, H;, ] < W.k.
D1, Dz : WA

(O Wilags(W, 1) W &y, Hy, let x = eq in (C sy (fst x), Cr,nr, (snd x))) BN (P, H,el) »
Then it holds that:

e; = fail Conv Vv (H(I)fl (I)gl quz (DgZ VzHé w’.
(D, Wflags(W,2) W By, Hy, let x = e, in (C,sry (fst x), Cr,imr, (snd x)))
55 (@ W flags(W,2) & @pp W Dy, H, v,)
A (I); = (I)rl U} ﬂags(W’, 1) U} (I)fl U} (I)gl/\
AW Co,,.0,, W’ A H;, H; W’
AN (W' (@fy,€)), (P2, v2)) € V][ x 12])}

First, since the let expression in the first configuration terminates to an irreducible configuration,
by inspection on the operational semantic, it must be the case that (®,; © flags(W, 1) W &1, Hy, eq)
terminates to some irreducible configuration (@T, Hi, e*;). Then, by assumption, it follows that either
e} = fail CoNv, in which case the whole let expression steps to fail Conv, or that e] is a value, in
which case (9, W flags(W, 2) W ®,, Hy, e5) also steps to some irreducible configuration (@}, H}, e)
and there exists some world W; where ®; = ®,; Wflags(Wy,i) W @:.r, W Co,,.0,, W1, H], H; : Wi, and
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(W, (@, ey, (@, e;)) € V[ @ 1.].. By expanding the value relation definition, we find that e} =
(vi,vi) and e} = (vi,v]) where (Wi, (914, V3), (®24,v])) € V[11]. and (Wi, (D1, V), (B2, V1)) €
V[r]., where CDI = d;, WPy, and CIDZ = d,, W Dy,

Thus, the first configuration steps as follows:

(®r Wilags(W, 1) W &y, Hy, let x = ey in (Cr,nry (fst x), Cr,mr, (snd x))) 5
(@1 @ flags(Wh, 1) W O, HE let x = (v, v3) in (Cpisry (fst X), Crosr, (snd %)) —
(®,1 W flags(Wy, 1) W o, H}, (Crmry (fst (Vi,V3)), Cromr, (snd (V3 V5)))) —
(@, ¥ flags(Wi, 1) WO H, (Crisry (VE), Crpnr, (VE)))
By a similar argument, the configuration on the other side with H; steps to

(@5 @ flags(Wy, 2) & @), H, (C.sry (vV), Crar, (VD))

Since (Wi, (®1a,V}), (P20,v)) € V[r]. € E[n]. and (Wi, (13, v3), (P25, v))) € V[r]. €
&[]., by the induction hypothesis, we have that

(W1, (q)las Cm—»ﬁ (V}L)), ((I)Za, CT]'—>T‘] (V;))) € 8[[T1]]'
and
(Wi, (@1, ooy (), (@, Crory (1)) € E[z2].
By the first fact, either (®,; W ®1;, W flags( W1, 1) W ®14, H], C. 17 (V7)) steps to fail Conv (note
our choice of “rest” of flags includes those owned by the other half of the pair), in which case the
original configuration with Hj steps to fail Conv, or it steps to an irreducible configuration

(@1 & Dy flags(Wy, 1) &

T k%
1 Hi Vi)

in which case (@, W &5 W flags( Wy, 2) W Oy, H3, Co iy (VT)) also steps to an irreducible con-
figuration

(Byy & Oy W flags(Wh, 2) w & HI VT
and there exists some world W, where W Co,,wp,;,.0,,50,, Was HI, H;f : Wy, and (W, ((D{a’ Vi), (ijz‘a’ V']H)) c

% [TW H -
Once the first component of the pair in the configurations above have stepped to values vi*
and v,', the pair will continue reducing on the second component. Then, by Lemma 3.8, since

Wi Co,,ud,;,0,,u0, W2 (Which includes ®;; and ®,p),
(Wa, (@13, C. s, (V3)), (@2, Croinr, (V1)) € E 2]

Thus, either (®,; ¥ q)(a W flags(Wo, 1) W ®qp, H'I, C.,-1, (V3)) steps to fail Conv, in which case
the original configuration also takes a step to fail Conv, or it steps to an irreducible configuration

(P W <I>lfa @ flags(Ws, 1) & CD{b, H{, v5")

in which case (®,, ¥ <I>2fa W flags(Wa, 1) & Oyp, H;, Crory (v;)) also steps to an irreducible con-
figuration (®,, W CIDJ; , Wilags(Ws, 1) w (ng’ H{ , vﬁ) and there exists some world W5 where

Wo Sy ol anyoaf, Wor HLHL 2 Wa and (W3, (@],v1), (@),v1) € V][]

Thus, the original configuration with H; and ®; w®, steps to (P, W flags(W3,1) W @{a (©] @{b, H{, (Vi V3" )
and the original configuration with H; steps to (&, W flags(W3,2) CI>§a C Cng, HJ;, (V;H, V;T». We

fuf. :
have Hy, H; : Wj and, since W Cq,,0,, Wi, Wi Ed)rlwq)Ib’q)rqu)Zb W,, and W, Eénwﬁa@rzw%fa Ws,
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it follows from Lemma 3.9 that W Cg,, ¢,, Ws. Moreover, since W, C Op00! 0yp0a), W5 and

(W, (<I>f Vi), (<I>f V:T)) € V[r]., we have (Ws, (@{a, vi’), (<I>§a, VTH)) € V[r].. Finally, we also

la’ 2a’

have (W, (®/,,v3"), (@], ,v)) € V[z,].. Exgo,
(Ws, (@1, 8 @], (vi",v3), (0, & ©]

1’ 20’
which suffices to finish the proof.

‘T] wfg~(unit—>f1)—>rz‘

There are two directions, we first prove the former implication, that is, that:

VIV € VIn x o).

v (Ws (q)l’ e])’ ((I)2> ez)) € 8[[2—1 - TZ]]- -
(W; ((I)ly CT]—OT_M—)(Unit — T.I) -0 (E])), (qDZ’CTIA)Q,_)(unit — 7_-.') - (ez))) € 8[[(Un1t - T1) - 1—2]]-

Expanding the definition of the convertibility boundaries, we refine our goal to:

(Wa ((I)b let x = ey in Axipnk.let Xconv = C’L'm—)r] (Xthnk ())
in let Xaccess = thunk(xconv) in CZ’_M—)TZ (X Xaccess)):
((DZa let x = e; in Axthnk-let Xcony = CT10—>T] (Xthnk ())
in let Xaccess = t1'1'~11'1l((xconv) in Cm—ﬁz (X Xaccess)))
€ &[(unit — 1) - 12].
From the expression relation, we must show first that the terms are closed, which follows from
out hypothesis given we did not introduce any new free variables. Then, we need to show that

given:

V®,1, @y, Hy, Ho: W, €], HY, j < Wek.
D1, Dpp : WA
<q)"1 W ﬂagS(W, 1) W dq, Hy, let x = eq in Axehnk.let Xeony = CT1b—>r1 (Xthnk ()) in ) -{-) <<I),, H;, ei) -+
let Xaccess = thunk(Xconv) in Cr 7, (X Xaccess)

Then it holds that:

¢/ = fail CoNV V (3Df; Oy By Oz voH, W'
(Dyp Wilags(W,2) W &y, Hy, let x = €3 in Ax¢hnk-let Xconv = Crymr, (Xthnk () in )
let Xaccess = thunk(Xconv) in CQHTZ (X Xaccess)
5 (@yy W flags(W',2) © @y W Dy, HY, vp)
A @) =D, ¥ flags(W', 1) W Dy & Oyy A
AW, &, WA HLH,: W
AN (W' (@fy,€)), (Pra,v2)) € V[(unit — 1) — 1])}

To figure out what e] is, we know from the operational semantics that first we will evaluate e,
until it is a value and then will substitute. From our hypothesis, which we can instantiate with
®,1, D,9, Hi, Hy, etc, we know that either e; will run forever, in which case the entire term will and
we are done (trivially). Otherwise, we have that:

(@1 © flags(W,1) W @y, Hy,eq) -5 (@, Hi,ef) »

And that:
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el = fail Conv V (3s; Oy Ppy Dy voH, W'
(D, W tlags(W, 2) & &y, Hy, €7)
> (B @ flags(WT,2) W D] W D, H €]y
Ay = @y @ flags(WH, 1) W@ & gy A
AW Eo,a, WA HLHD: Wi
AW (@], €)), (D55) € V[ — n])}
Where if e;" is fail Conv then the operational semantics will lift that to the entire term and we
will be done. Note also that from the definition of V[r; — 7,]., we know <I>j =0.

Now;, returning to our original reduction, we will take another step and substitute e;" for x,
which results in the following term:

Axthnk~|et Xconv = C7.'10—>T] (Xthnk ()) in let Xaccess = thunk(xconv) in Crzb—»l'z (e: Xaccess)
This is clearly irreducible (it is a value), so we now need to show that the other side similarly
reduces to a value, which follows in the same way from our hypothesis, and thus what remains to
show is that these two values are related at W' in V[(unit — 7;) — 7,]. (we choose W because
no changes to heap or flags happened in the substitution).
The definition of V[ (unit — 7;) — 7,]. says that we need to take any world W’, where W' ¢ ¢
W’ (W', (0,V)),(0,v})) € V[unit — 7;]). and show that

(W,’ (®s [Xthnk'_)V;]]et Xconv = CT1|—>T1 (Xthnk ()) in let Xaccess = thunk(xconv) in CQHTZ (e: Xaccess)),
((D, [Xthnk'_)vé] let Xcony = Cﬁ»—m (Xthnk ()) in let Xaccess = thunk(xconv) in CQ»—)TZ (eé Xaccess))) € 8[[T2]]~

Where if we substitute, we get:

(W', (0, let Xcony = Cﬁ»—m (V; () in let Xaccess = thunk(xcony) in CT_)D—?TZ (e1I Xaccess))»
(05 let Xcony = CT]»—)N (V; ()) in let Xaccess = thunk(xconv) in CQ'—)TZ (e; Xaccess))) € SHTZH-

Now we can expand the definition of thunk(-), to get:

(W', (®, let Xcony = CT1>—>71 (V; ()) in let Xaccess = .
(let Ifresh = ref 1in A_-{if IFfresh {fail CONV} {rfresh = O;Xconv}}) in CQ»—)TZ (e; Xaccess)),
(0, let xcony = Cribn (Vé () in let Xaccess =
(let Ifresh = ref 1in /1_{]1’: IFfresh {fall CONV} {rfresh = OQXconv}}) in CT;HTZ (e-z'L Xaccess)))
€ 8[[2’2]].
From our induction hypothesis, instantiated with > W’ we know (>W’, (0, Cr, -, (v} ())), (0, Cr;sr, (05, (),
willbein E[7]). if (> W, (0,V] ()), (0,v}, ())) isin [z ]. But, since (W, (0,V)), (0,v) € V[unit — r].,
by definition the latter holds, since the only values in V[unit]. are ().
This means we can unfold the definition of E[r;]. and know that for any ®@,;,®,, : >W’,
Hy, Hy : >W’:

’ Joo =
(®r1 Wilags(>W', 1) W0, Hy, Crysr (Vi ) =5 (@1, Het, V) =+
Assuming v, is not fail Conv:
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3q)cl (I)gl CDL‘Z cDgZ VCZHCZ w”.
<q)r2 W ngS(DW’, 2) W ®> HZ, CTV—)Tl (Ué ()))> ': <¢)r2 W ﬂagS(WC’ 2) W (DCZ W q)yZ, ch’ Vc2> -+
A Dy =Dy Welags(W”,1) W Oy W Oy A
AW’ Eo, 0, W' A He, Heg - W7
A (W, (@c1, Ver), (Pe2, Ver)) € V[ — ]}

If we return to our original obligation, we need to show that for some ®’,, ®’

ri’ £ro H{, Hé : W’ that
if:

let Xconv = CT]Hn (V; () in let Xaccess =
(@, Wilags(W’, 1) W 0,Hy, (let rfesh = ref 1in A_{if rfresh {fail CONV} {rfresh := 05 Xconv}1}) in )
il
_ CQ»—>T2 (e] Xaccess)
5 (@ HY . ef) »

Then:

3@1’ Dy (I);' Dy e;Hé’ w’.
let Xcony = CT]b—m (Vé () in
let Xaccess = (let riesh = ref 1in
A_~{if IFfresh {fail CONV} {rfresh = O;Xconv}})
in Cr_v»—ﬂ'g (VZ Xaccess)
-1 <(Dr2 W ﬂags(WC, 2) V) CI)CZ U] (I)gz, ch, Vc2> -+
A @y = ®pq W flags(W”, 1) U ey & Byr A
A>W' B, 0, W A Het,Hez : W
A (W, (®e1,Ver)s (Pezs Vea)) € V][ — n])}

If we choose @/, to be that chosen above, we know Cr, ., (v} ()) reduces to v, with ®.;, and
thus the entire term takes a step to:

(D), W flags(W’,2) W 0, Hy, )

let Xconv = Ve1 in let Xaecess =
(@)1 © flags(W”, 1) & @1, Her, (let ries = ref 1in A_{if Iriesh {fail CONV} {Fresh = 0 Xcony}}) in )
C-Qp_)’['z (er Xaccess)

Which then takes two more steps to:

CT‘:"—)Tz (er

O] 1)WY
(@1 W flags(W", 1) & @y, Her, (let reresh = ref 1in A_{if rfesh {fail CONV} {rfresh := 0;ver1}})) )

To figure out where that steps next, we need to appeal to our induction hypothesis. In particular,
we instantiate it with W/, which then tells us that:

(WU, ((Dcl» CQHTZ (?11 (let Ifresh = ref 1in /1_~{if !rfresh {fa” CONV} {rfresh = OQVc1}})))’
(Pc2, Cr,imr, (€ (let riesh = ref 1in A_{if !rgesh {fail CONV} {rfesh := 0;ve2}})))) € E[r2].

If we can show:

(W, (e, (e;r (let riesh = ref 1in A_{if !rfesh {fail CONV} {rfresh := 0;vc1}}))),
(Pa, (e;f (let reesh = ref 1in A_{if !rfresh {fail CONV} {rfresh := 0;ve2}})))) € E[r].
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To show the latter, recall that (WT, (0, e:), (0, eg)) € V[ — 71].. We know that wt Eoo W/,
W' Cop >W’, and >W’ Cg,, 4, W”, so via Lemma 3.9, W' Ty W” and thus via Lemma 3.8,
(w”, (0, e:), (0, e;r)) € V[r; — r;].. In particular, we know that each have the form Ax.e;".

That means, if we can show, for some ®.1, @2 and some world W' where W'’ Cg ¢ W', that

(W (@1, 0c1), (Pe2, 0c2)) € V[r2]. (which we have from before) then

(WA, (0, [xguard(oer, &) 1€, (0, [xguard(ves, £)]€))) € E[71].
Where WA = (W k, W ¥, W .0 (&, ) (D1, De2)).
In particular, we let W' = W”.
To connect these two together, we first unfold the former: the definition means that for any
O, @) - W and HY, H : W”, we need to show:
(@) Wilags(W”, 1) W &g, HY, (Ax.e]) (let riesh = ref Tin A_{if !resh {fail CONV} {rfresh := 05vci}}))

J 177 1 12244
= (O, HY el

The latter will give us the reduction, for ®4,®% : W4 and H{, H4 : w4:
(CID‘;“1 W flags(W4,1) w 0, HY, [x+>guard(vcy, £1)]e]) B (cI)fl“ H?, e?) -+
In particular, since W is identical to W’ aside from gaining ®,;, ®., we can use o as @fl and
flags(W"') & @, = flags(W4) w 0.
Thus, the former takes one step to the latter, and the rest of what we need follows.
We now return to our original goal, that is, showing how this reduces:

C, (eT
@1 W flags(W”, 1) W @pq, Hey, 20720
(®r1 @ flags(W" 1) et et (007 L b 1 in A{if trpean {Fail CONV} {rireah 1= 0:ver}}))
Since we now know:

(W, (1, Cr»r—f[’z (‘ET (let rfesh = ref 1in A_.{if !resh {fail CONV} {rfresh := 0;Vc1}}))),
(‘I’cz, CQ»—>T2 (eé (Iet Ffresh = ref 1in A_-{if Ffresh {fa” CONV} {rfresh = 0; VCZ}})))) € 8[[T2]]'

We can unfold the definition and get exactly what we need, as what we were originally showing
was that the term in question was in §[]..
Thus, we are done with the first direction.

Now we have to prove the other direction, that is, that:

Y (W, ((1)1,61), (@2,62)) € 8[[(unit — T1) — Tzﬂ. -
(W’ ((I)I’C(Unit — 71) — TZHT]‘OTf(e])), ((D29 C(unlt — T'I) — Ty —o1, (ez))) € 8[[2—1 - TZH-

Expanding the definition of the convertibility boundaries, we refine our goal to:

(W, (CDI: let x = ey in AXthnk-let Xaccess = thunk(CnHﬁ (Xthnk ())) in CTzHQ (X Xaccess)):

((I)Z, let x = e3 in Axthnk.let Xaccess = thunk(CmHﬁ (Xthnk ())) in Csz—m(X Xaccess)))
€ & — ).
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From the expression relation, we must show first that the terms are closed, which follows from
out hypothesis given we did not introduce any new free variables. Then, we need to show that
given:

Vq)I‘l’q)rZaHlaHZ:W, e;, Hi, _] < Wk
Dy, Oy : WA
let x = ey in AXihnk.let Xaccess = thunk(C,, 7 (Xhnk ())) in

@, W flags(W, 1) W &y, Hy,
< rl g ( ) L CTQHT:(X XacceSS)

)
J ;o
- ((I)’, H1> e1> i

Then it holds that:

e} = fail Conv V (3®p; Oyy Oy Oyp voH, W,
let x = ey in Axthnk-let Xaccess = thunk(cm—Vﬁ (Xthnk ())) in
‘ CTzHT‘ (X Xaccess)
> (Dyy W flags(W', 2) W By W Byp, Hp, vo)
A (I); =0, ¥ ﬂags(W’, 1) V] (I)fl V] (I)gl/\
AWEs, o, WA Hi, H; W’
A (W' (@py,€)), (Df2,v2)) € V[r1 — 1)}

To figure out what e/ is, we know from the operational semantics that first we will evaluate e,
until it is a value and then will substitute. From our hypothesis, which we can instantiate with
®,1, D9, Hy, Hy, etc, we know that e; will run with either fail Conv (in which case this will lift into
the entire term running to fail Conv) or will run to a value v; related in V[(unit — 1) — 72]. at
a future world W where W Co,,.0,, WT to another value v, that e, will run to, where the heaps
have evolved to HI, H; : W', and empty flag stores.

Now, our original term will take another step and substitute v, for x (note that the operational
semantics lifts steps on the subterm to steps on the whole term), which results in the following
term:

(q)rZ V] ﬂags(W, 2) V] (I)z, Hz, >

AXthnk-let Xaccess = thunk(CnHﬁ (Xthnk ())) in C‘l'z»—w_) (Vl Xaccess)
This is clearly irreducible (it is a value), so we now need to show that the other side similarly
reduces to a value v,, which follows in the same way from our hypothesis, and thus what remains
to show is that:

(WT, (0, Athnk-let Xaccess = thunk(cnr—)’ﬁ (Xthnk ())) in CTzHT‘(V1 Xaccess))»
(0, AxXthnk.let Xaccess = thunk(crln—)ﬁ (Xthnk ())) in CT2I—)T;(V2 Xaccess)))
(S] (V[[Tl —o ‘['2]].
The definition of V[r, —o 7,]]. says that we need to take any W' = W7, vy, vy, &1, £ where
W (@, V), (D), V) are in V[r,]. and (£, &) are not in either W’.¥ or W’.0© and show that
1 2

(W .k, W', W0 W (1, £)—>(D), D)),
(0, [Xthnk—>guard(vy, £1)]let Xaccess = thunk(C 7 (Xehnk ())) in Cryisr, (V1 Xaccess))s
((D: [Xthnnguard(Vé, ZZ)]let Xaccess = thunk(CnHﬁ (Xthnk ())) in CTQ»—)T; (VZ Xaccess)))
€ 8[[7'2]].

Where if we substitute (letting W* = (W".k, W. ¥, W.O W (£, £)— (D], D;))), we get:
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(W*’ (03 let Xaccess = thunk(CnH‘ﬁ (guafd(vi, [1) ())) in CTZ'—W:(\” Xaccess)),
(0, let Xaccess = thunk(CnHﬁ (guard(Vé, £) ())) in Cl'zl—why (V2 Xaccess)))
€ 8[[1'2]].
First, let’s expand the definition of thunk(:):

(W*, (0, let Xaccess = let reesh = ref UNUSED in ,
A_{if !rresh {fail CONV} {rfresh := USED; Cm—>T1 (guard(% ) ()} in CTz»—)r_r (V1 Xaccess))
(0, let Xaccess = let rfesh = ref UNUSED in )
A_{[f IFfresh {fal] CONV} {rfresh ‘= USED; Cm—fﬁ (guard(vé, [2) ()))} in CTzn—)r‘r(VZ Xaccess))
(S] 8[[1'2]] .
To understand what happens, consider the operational reductions: allocating a new reference
- ), substituting it for reesh, and then substituting all of X;ccess, an us sutlices to show that:
£/), substituting it f d th bstituting all of d th ffi h, hat

(W', (0, Cryinr, (vi (A_{if 1] {fail Conv} {#] := USED; C, sy (guard(v), £1) ())}))),
(0, Cryinr, (vo (A_{if 1£5 {fail Conv} {£] := USED; C, 11y (guard(vy, £) ())})))
S 8[[7'2]].

Where W' has a new pair of references in W'.© (set to (0, 0)) but otherwise is identical to W*.
For this, we can appeal to our induction hypothesis, which requires us to show that:

(W7, (0,vq (A_{if 1/ {fail Conv} {£] == USED; C,, 7, (guard(v/, 1) ))})),
(0, vo (A_{if 1¢; {fail Conv} {£; := USED; C,, 1, (guard(vy, &) ())})))
e& [[Tz]] .
Recalling that v; and v, came from V[(unit — 77) — 12]., we can proceed by appealing to the
definition of that relation, which tells us that for any arguments in V[unit — 7;]., the result of
substituting will be in &[] .. It thus remains to show that:

(W™, (0, A_{if '¢] {fail Conv} {¢] := USED; C,, 7, (guard(v}, 1) ())}),
(0, A_{if !&; {fail Conv} {£; := USED; C,, -7, (guard(v), &) ())}))
€ V]unit — n].

Where W* is some future world of W'. From the definition of V [unit — 71]., we have to show
that substituting () for the unused argument results in terms in &[r;]., at some arbitrary future
world W**.

We proceed first by case analysis on whether the affine flags (£], £,) have been set to USED, which
they can be in a future world. If they have been, we can expand the definition of the expression
relation, choose ®,; and heaps H}*, H3* : W**, and show that

(®r1 Wilags(W™, 1), Hy, if 4] {fail Conv} {¢] := USED; C,, 1, (guard(v}, 1) ())) 2
(@, W flags(W**, 1), Hy, fail Conv)

At which point we are done.

Thus, we now consider if (£], £,) are still set to a pair of flag sets (®,, ®,). If that’s the case, we
instead take three steps to move into the else branches and update the affine flags to usep. That
means we reduce our task to showing that in a world W***, which now has those locations marked
used in ©, we need to show:

(W™, (0, Co 1y (guard(vy, £1) ())), (0, Co, iz (guard(vy, £) ()))) € E[r].
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We now again appeal to our induction hypothesis, expanding the definition of guard(-) at the
same time to yield the following obligation:

(W=, (0, (A_{if 14y {fail Conv} {£ := usED; V{}}) (),
(0, (A_{if !&, {fail Conv} {#, := UsED;Vv;}}) () € E[r1].
We can then take one step, eliminating the pointless beta-reduction (for simplicity, we use the
same name for the world, even though it is a future world):

(W, (0,if 16 {fail Conv} {£; := USED; V;}}), (0, if !4, {fail Conv} {f, := UsED; Vv, })) € E[r1].

Now we again do case analysis on whether (£, £;) is USED in W***.0. If it is, then, as before, we
trivially reduce the left side to failure and are done. If it is not, then we update those affine flags
and reduce both sides to the values v/ and v}, at a future world W/"4!. Now we knew, originally,
that those values were in V[r,]. at world W, but since, through many applications of Lemma 3.9
and Lemma 3.8, that also means that they are related at wfinal e are done.

]

LEMMA 3.19 (PHANTOM STEPS TRANSLATE TO ACTUAL STEPS). For any expression e in the phantom
LCVM language, let Z(e) be an expression in the original LCVM language where every subexpression
of the form protect(e’, f) is replaced with e’.

For any heap H in the phantom LCVM language, let Zg(H) = {¢ — Z(v) | £ — v € H}.

For any sets of flags ®, ®’, heaps H, H’, and expressions e, ', if

(D, H, ) - (D', H',e’)
then .
(Zu(H), Z(e)) = (Zu(H"), Z(e’))

where n is the number of steps in the first reduction sequence which are not invoked by the following
reduction rule

(P W {f}, H, protect(e, f)) --> (D, H,e) (24)

Proor. There exists some natural number j such that (®, H, e) EA (®’,H’, e’). We will prove the
theorem by induction on j.

If j =0,then® = ®, H = H’, and e = €’. It is then trivial to show that (Zy(H), Z(e)) 2
(Zy(H), Z(e)), which finishes the proof for this case.
If j > 0, then there exist ®;, H;, e; such that
-1
<®’ H’ e> ]") <q)j’ H]’ eJ>

and
<¢)j, H]; eJ> k4 <®/’ H,, e/>
By the induction hypothesis, we have

"
(Zu(H). Z(e)) = (Zu(H)). Z(e))
where n; is the number of steps in the sequence (@, H, e) o (®;, Hj, ej) not invoked by (24).
Thus, by transitivity of i>, it suffices to show

k ’ ’
(Zu(H;), Z(e)) = (Zu(H"), Z(€'))
where k = 0if (@, Hj, ej) --» (@, H’, e’) is invoked by (24), and k = 1 otherwise.
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We will prove the above by induction over the derivation of (®;,H;, e;) --» (®’,H’,e’). Most
cases of this proof by induction are trivial because most reduction rules in --> come from the original
—. Thus, we prove the three non-trivial cases where the reduction rule is not derived from — and
then show three of the trivial cases which comes from —.

(1) Consider the reduction rule
(W {f}, H, protect(e, f)) --> (&, H,e)
Then, we must show
0
(Zu(H), Z(protect(e, f))) = (Zu(H), Z(e))
However, notice that Z(protect(e, f)) = Z(e). Then, we trivially have
0
(Zu(H),Z(e)) — (Zu(H), Z(e))

which finishes the proof for this case.
(2) Consider the reduction rule

f fresh
(D,H,let a, =vine) --> (dW{f}, H, [as = protect(v, )]e)

Then, we must show

(Zy(H),Z(let a, = vine)) 4 (Zy(H), Z([as > protect(v, f)]e))

Factor the Z function through the expressions:

(Zu(H), let as = Z(v) in Z(e)) = (Zu(H), [a. — Z(v)]Z(e))

Since Z(v) is still a target value, the above reduction follows from the normal reduction
rule on let.
(3) Consider the reduction rule

f fresh
(®,H, Aa,.e v) --> (D W {f}, H, [as > protect(v, f)]e)
Then, we must show
(Zy(H), Z(Aae.e v)) 4 (Zg(H), Z([ae > protect(v, )]e))

Factor the Z function through the expressions:

(Zn(H), hae.Z(e) Z(v)) = (Zu(H), [as = Z(V)]Z(e)

Since Z(v) is still a target value, the above reduction follows from the normal reduction
rule on A.
(4) Consider the reduction rule

fresh ¢
(@, H, ref v) --> (@, H[ V], )

Thus, we must show

(Zi(H), Z(ref v)) = (Zi(H[€ — v]), Z(0))
Factor through Zy and Z:

(Zu(H), ref Z(v)) = (Zu(H)[£ = Z(V)], £)
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Since Z(v) is a target value, the above reduction follows directly from the normal ref
reduction rule.
(5) Consider the reduction rule

H[¢f] =v
(@, H,10) — (®, H,v)

Thus, we must show

(Zu(H), Z(10)) = (Zu (H), Z(v))
Factor through Z on the left side:

(Zu(H), 16y = (Zu(H), Z(v))

By the definition of Zy, if H[¢] = v, then Zy(H) [¢] = Z(v). Thus, the above follows directly
from the normal ! reduction rule.
(6) Consider the reduction rule

(®,H, e) --> (O, H’, e")
<(I), H’ K[e]> i <(D’ H” K[e/]>

By the induction hypothesis, we have (Zy(H), Z(e)) LA (Zy(H’),Z(e’)), where k = 0 if
(®,H, e) --> (&, H’, e’) was invoked by (24) and k = 1 otherwise. Then, we must show

(Zi(H). Z(K[e])) 5 (Ze(H), Z(K[e']))
Factor Z through K:

(Zi(H), Z(O[Z(e)]) 5 (Zu(H), Z(K) [Z(e)])

If k = 0, then by (Zy(H), Z(e)) LA (Zy(H"),Z(e")), we must have Zg(H) = Zg(H’) and
Z(e) = Z(e’), in which case the above is trivial. Otherwise, if k = 1, the above follows
directly from the evaluation context reduction rule in the target.

O
LEMMA 3.20 (PHANTOM STEPS BOUNDED). If
(He") = (H.e') »

then for any set of static flags ®.1, there exists some set of static flags ®1, m < 2n, and expression e;

such that
(®,1,H,e*) 5 (D], Hl,e]) »

where, if e} is a value, then H" = Z(H}) and e’ = Z(e)

where, as defined in the previous Lemma, let Z(e) be an expression in the original LCVM language
where every subexpression of the form protect(e’, f) is replaced with e’

and, for any heap H, let Zy(H) = {¢ — Z(v) | £ — v € H}.

Note that we write €* to indicate that we are proving this with respect to compiled terms. The
only constraint we actually need is that H and e* is a valid heap and expression, respectively, in the
original LCVM language and thus does not include any subexpressions of the form protect(-), as it is

not intended to be written by programmers (or compilers), but rather arise through reduction in the
phantom operational semantics.
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Proor. Suppose that (®,q, H, e*) S (@1, H], e]) for some m. Then, by Lemma 3.19,

(Zu(H), Z(e")) = (H,e") 5 (Zu(H)), Z(e))

where n’ is the number of steps in the original reduction sequence not invoked by protect(-). Since
(H, e*) terminates in n steps by assumption, n’ < n.

Consider that, since protect(-) does not occur in H or e, protect(+) instructions are only intro-
duced by let and A, and they are substituted for variable occurrences. Further, note that, for the
reduction to have succeeded in the phantom semantics, out of each set of variable uses (that share
a flag), only one protect(-) term could have been evaluated. This means that each reduction of
protect(-) corresponds to a reduction of the let or A that introduced it, so the number of reductions
of protect(-) is at most the number of reductions not of protect(-), which means m — n’ < n’. Ergo,
m < 2n’ < 2n.

This suffices to show that (®,1, H, e™) can not take more than 2n steps, so there is some m < 2n
such that (@,,, H,e*) 5 (@, H/, e]) =.

To finish the proof, suppose that e is a value. Then, as shown above, (H, e*) 5 (Zu(H}), Z(e})).

If €] is a value, then Z(e}) is also a value, so (Zy(H/), Z(e})) is irreducible. Ergo, since (H, e*) N

(H’,e") -+ and (H, e*) can only possibly step to one irreducible configuration, H" = Zg(H]) and

e’ =Z(e7). O
THEOREM 3.21 (FUNDAMENTAL PROPERTY). If[; O A;T Fe:raws 1750 thenl; Q; AT e <e:7ws 70

and if ;T;TQ ke tva AT then AT, QFe < e tas AT

Proor. By induction on typing derivation, relying on the following compatibility lemmas, which
have to exist for every typing rule in both source languages. O
THEOREM 3.22 (TYPE SAFETY FOR MiniML). For anyMiniML term e where-;-;-;- e : T~ ;- and

for any heap H, if (H, e*) 5 (H’,e’), then either ¢’ = fail Conv, e’ is a value, or there exist H”', e”’

such that (H', e’y — (H”,e").

ProoF. Suppose (H,e*) N (H’, e’) for some natural number n. Either (H’,e’) — (H”,e”’), in
which case we are done, or (H’, e’} is irreducible.

Consider a trivial world W that has an arbitrary k > 2n, an empty heap typing and an empty affine
store. Then, since the term is closed, by the Fundamental Property, (W, (0,e%), (0,e")) € &E[7]..

Now by Lemma 3.20, we know that for any ®,1, @5, (9,1 W flags(W, 1), Hy, e1™) EN (@1, H,ef) »
where j < 2n and if e is a value, then Z(e]) = ¢’.
Then, by applying (W, (0,e*), (0,e*)) € &[r]., we find that either e| = fail Conv or there

exist @, H7', v, such that (®; W flags(W, 2), H), e’) 5 (®”,HY,v,) and e] and v, are in the value
relation with some world and sets of static flags. Ergo, since expressions in the value relation are
values, e] is a value. Finally, since e] being a value implies e’ = Z(e]), we find that e’ is a value. O

THEOREM 3.23 (TYPE SAFETY FOR AFFI). For any AFFrI term e where -;-;+;- F e : T~ ;- and for
any heap H, if (H, e*) 5 (H’,€’), then either ¢’ = fail Conv, e’ is a value, or there exist H"',e”" such
that (H’, e’y — (H”,e”).

Proor. This proof is identical to that of MiniML. O

Note that we omit many of the MiniML compatibility lemmas because the differences between
the proofs from the MiniML compatibility lemmas from the last case study and the corresponding

compatibility lemmas in this case study are relatively straightforward, as demonstrated by the
compatibility lemmas proven below.
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LEMMA 3.24 (COMPAT —).
O AT[x:n]re<e:nwIl;Q = IGATFAX: e K Ax:ime:my = w0/
Proor. Expanding the hypotheses, we find that I' = I and there exists Q. such that O = Q. w Q'
where I, Q; A;T[x : 7] F e < e : 7o. Moreover, [ O AT - Ax i 7y.e : 17 — 1w [V, Q7 by the A
typing rule. It thus suffices to show that I Qo ; AT FAx i e < Ax ey — 1.
Expanding the conclusion, given
VWVp Yryryo.p € D[AH A ( W, 0,0, )/1") € Q[[Fﬂp A ( W, 0,0, }/[) (S g[[lﬂ A ( W, ®, P,, YQ) € g[[Q]] .
we must show
(W, (0, close; (yr, close; (yr, close; (yo, Ax = 71.€7)))),
(0, closes (yr, closez (yr, closes (Yo, Ax : 11.€%))))) € E[r1 — .
Notice that both of the expressions have no free variables by Lemma 3.15.
We can push the compiler and substitutions through the lambda to refine that to:
(W, (0, Ax.close; (yr, close; (yr, close; (yo, €*)))),
(0, Ax.close; (yr, closez (yr, closez (yo, e%))))) € E[n — 2],
Then, by Lemma 3.6, there exists a y’ such that (W, 0,0,y’) € G[2.]. and closing over e* with
Y’ is the same as closing with y,. Thus, we refine the above to:
(W, (0, Ax.close; (yr, close; (yr, close; (¥, €*)))),
(0, Ax.close; (yr, close; (yr, closey (v, €))))) € E[r1 — 2],
Since V[r; — 1], € E[r1 — 1], by Lemma 3.1, it suffices to show that:
(W, (0, Ax.close; (yr, close; (yr, close; (', €7)))),
(0, Ax.closez (yr, closez (yr, closez (y’, €%))))) € V[r — ],
Expanding the value relation, given
VV1 \'%%] w'. W EQ)!@ W’ A (W’, (0, V1), (0, Vz)) € (V[[ﬁ]]p
we must prove:
(W', (0, [x>v4]close; (yr, close; (yr, close; (v, €¥)))),
(0, [x—vz]close; (yr, closey (yr, closez (', e%))))) € E[r2],
By W Cpp W’ and Lemma 3.8, we have
(W,0,0,yr) € G[I'],
(W,0,0,yr) € G[I'],
(W,0,0,y') € G[O:],
Notice that
(W,s 0, 09 yr [X - (VTs VZ)]) € g[[F[X B ]]]p
because (W’,0,0,yr) € G[I'], and (W, (0,v4), (0,v,)) € V[r1],. Then, we can instantiate Lemma
3.7 with the first induction hypothesis and W', yr[x — (v1,v2)], yr, v, p- Therefore,
(W’, (0, close; (yr[x — (v1,v2)], close; (yr, close; (', €¥)))),
(0, closey (yr[x = (v1,v2)], closez (yr, closez (y', €%))))) € E[r2],

We can simplify the above statement by bringing x — v; out of the close; on the left side and
bringing x — v, out of the close, on the right side. This suffices to finish the proof. O
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LeEMMA 3.25 (COMPAT app).
I';QuATrer ey > 0w O AT Qs AT ey ey iy w0 =
l‘l;Ql;A;F Fejey e ery:n '\'\')I‘;;;_Qg

Proor. Expanding the hypotheses, we find that I'; = I', = I'; and there exist O, Q. such that
O =Q.wQ, where I'; Q; AT ey e i1y — pand Q) = QL wWQOs where I'y; QL AT Fep < ey
71. Therefore, Q; = (Q. W Q) W Q5. Moreover, I'i; Q13 A;T + e e; < ey e; @ 1w ['5;Q5 by the
application typing rule. It thus suffices to show that I';; Q. W Q/; A;T Fej ey <ejep: 1o

Expanding the conclusion, given
YW.Npyryryo.p € DIAJA(W,0,0,yr) € GIT T, A(W,0,0,yr) € G[I].A(W, 01, P2, y0) € G[].

we must show
(W, (0, close; (yr, close; (yr, close; (Yo, e1 €2)))), (0, closez (yr, closez (yr, closes (Yo, e1 €27))))) € E[r].

Notice that both of the expressions have no free variables by Lemma 3.15.

We can push the compiler and substitutions through the application to refine that to:

(W, (0, close; (yr, close; (yr, close; (yo, e17))) close; (yr, close; (yr, close; (yo, €27)))),
(0, close; (yr, close, (yr, closes (yo, €1%))) closez (yr, closes (yr, closez (yo, €,7))))) € E[n],
Next, by Lemma 3.5, we have that yo = y1 Wy, ®1 = &1 & &y, and &y = Oy W Oy where
(W’ (I)ll’ ¢)Zl> }/1) € g[[gzl]]
and
(W’ (I)lrs "DZr’ YZ) € g[QzH
and forall i € {1,2},
close;(yo, e1™) = close;(y1,e1%)
and
close;(yo, €2+) = close;(y1, ez+)

Thus, we refine the statement we need to prove to:

(W, (0, close; (yr, close; (yr, close; (y1, e1%))) close; (yr, close; (yr, close; (y2, €27)))),
(0, close, (yr, closez (yr, closez (y1, €1%))) closez (yr, closes (yr, closey (y2, €2%))))) € E[r2],

Let eq and e; be the first and second expressions, respectively, in the above tuple. Expanding the
definition of the expression relation, given:
VY®,1, o, Hy, Hy: W, €], H, j < Wok.
D HQ AN D #HDA D WO, Py WO : WA

(@1 flags(W, 1) & 0, Hy, e1) - (@), H, e])

we must show that either e is fail CoNv or there exist ®f1, @41, Pra, Py, V2, Hy, W’ such that:

(®,5 W flags(W,2) & 0, Hy, e5) > (B & flags(W’,2) W gy & By, HY, vo)
A D] =D, Wilags(W', 1) W @py W Byy A
AW Co,.,0,, W’ A H;, H; W
AN (W (D1, €0), (P2, v2)) € Vr]p)
Next, we need to know what e/ is. From the operational semantic, the application will run the
first subexpression using the heap H; until it reaches a target value or gets stuck. By appealing to
our first induction hypothesis, instantiated with W, yr, yr, y1, p, we get that:

(W, (0, close; (yr, close; (yr, closes (y1, e ), (0, close, (yr, close, (yr, closes (y1, e1)))) € 8[[T1]]p
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Therefore, the configuration
(®,1 Wilags(W, 1), Hy, close; (yr, close; (yr, close; (y1, e1%))))
either steps to fail Conv, in which case the whole application expression steps to fail Conv, or
steps to some irreducible configuration (®,; ¥ flags(Wy,1) & @y & @y, HY, €7), in which case the
configuration
(@2 ¥ flags(W, 2), Hy, closes (yr, closes (yr, closez (y1,€17))))
steps to some irreducible configuration (®,; W flags(Wi, 2) W @y W Oyyy, HY, e‘;) and there exists
some world W; such that W Co,, ,, W1, H], H; : Wi, and (W, (<I>f11, e7), (®ra1s e;r)). By Lemma
317, @py = @py = 0.
Since terms in the value relation are target values, the original application will continue reducing
on the second subexpression according to the operational semantics. Then, we can appeal to

the second induction hypothesis instantiated with Wi, yr, yr, y2, p, because W Co,, 5,, Wi and
G, GII'].. G[]. are closed under world extension by Lemma 3.8. Thus,

(W1, (0, close (yr, close; (yr, close (y2, €27)))), (0, closez (yr, close, (yr, closez (y2, €27))))) € E[r2],
Therefore, the configuration:
(®r1 ¥ Dgy; W flags( Wy, 1), H, close; (yr, close; (yr, close; (y2,€27))))
either reduces to fail Conv, in which case the whole expression steps to fail Conv, or to some

irreducible configuration (®,; W ®yy; W flags(Ws, 1) W @y, W Oy, HY*, €3), in which case on the
other side, the configuration

(@2 & Oyy; W flags (Wi, 2), Hj, close, (yr, closez (yr, closez (y2, e"))))

reduces to some irreducible configuration (®,, ¥ &gy W flags(W,2) & @y, & Dy, HIY, el), and
there exists some Wj such that Wi Co,,ua,,,.0,,00., Wa. H}" Hy" : Wa,and (Wa, (@1 €3), (Do, e;)) c
V[n]p. By Lemma 3.17, @y, = @pp = 0.

Then, instantiate (Wj, (0, e7), (0, eT)) € V[ — 1], with ez,ez, >W,. Because W Cg 9 W and
W, Co,0 > W,, it follows that Wy T g >W,. Moreover, (>W,, (0,€5), (0, e;)) € q/[[ﬁ]]p (because

(W2, (0,¢3), (0, eT)) € V[r:], and W Cg,9 >W2), so we find that there exist e}, e, such that

e; = Ax.e,

g2l

and .
el = Ax.e;
and
(> Wa, (0, [x > e3]ep), (0, [x — elle])) € &[],
Now, by the operational semantic, the original configuration with heap H; steps to
(Dr1 & @y W Dy, W flags(Wa, 1), HYY, Ax.ef €3) --»
<(I>r1 V] q)gll V] q)glr V] ﬂags(WZ, 1) HW, [X i—) 62] b>
and, on the other side, the original configuration with H; steps to
(B2 ® Dy W Dz,  flags( W, 2), Hy*, Ax.ef T>
<(I)r2 (V] q)gZI (V] (Dng (V] ﬂags(WZ, 2), H;*, [X = e ] b>
Then, since H}*, H;" : W5, by Lemma 3.11, it follows that H}*, H3" : >W,. We also have flags(W;, 1) =

flags(>W,, 1) and flags( Ws, 2) = flags(> W5, 2), since > does not change the dynamic flags in the
world. Thus, we can instantiate the above fact to deduce that either the first configuration steps
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to fail Conv, in which case the original configuration with H; steps to fail Conv, or the first
configuration steps to some irreducible configuration

(Bry & Bgyy @ Dy, & flags( Wi, 1) & Dy Byy p, HY e
in which case the second configuration steps to some irreducible configuration

(Brz & Byy W By, W flags(Ws, 2) W B pop & Byap, HY el

and there exists some W3 such that >W; Co,, 60,600,060, W3, H{ , H{ : Wi, and

(W3> (q>f1f’ eF)> (q>f2f’ e:)) € (V[[Tzﬂp
Then, since W Cg,, ¢,, Wi, W1 Co,,.0,, Wa, W2 Co,,,0,, >Wa, W2 Co,, 0, W3, wehave W Co, o,
W3, which suffices to finish the proof. m]
LEMMA 3.26 (ComPAT V).

A asTre<e:tw;Q0 = ITOANTEAxe < Aae :Yar~»17;07
Proor. Expanding the hypotheses, we find that I' = I and there exists (. such that Q = O, w Q'
where I, Qo A, ;T + e < e : 7. Moreover, I; Q; A; T F Aar.e : Y.t ~» 175 Q7 by the type abstraction

typing rule. It thus suffices to show that I'; Oc; A;T F Aace < Aace : Va.t.
Expanding the conclusion, given

YWNpyryryo.p € DIAJA(W,0,0,yr) € G[T],A(W,0,0,yr) € G[I]. A(W, Py, @2, y0) € G[].
we must show
(W, (0, close; (yr, close; (yr, close; (yo, Aa.e¥)))), (0, closez (yr, closez (yr, closez (yo, Aa.e¥))))) € E[Va.1].

Notice that both of the expressions have no free variables by Lemma 3.15.
We can push the compiler and substitutions through the pair to refine that to:

(W, (0, A_.close; (yr, close; (yr, close; (yo, €%)))), (0, A_.close, (yr, closes (yr, closey (yo, €%))))) € E[Va.7],
Then, by Lemma 3.6, there exists a y” such that (W, 0,0,y’) € G[Q.]. and closing over e* with
Y’ is the same as closing with yq. Thus, we refine the above to:
(W, (0, A_.close; (yr, close (yr, close; (¥, €%)))),
(0, A_.close, (yr, closey (yr, closez (y',e%))))) € E[Va.7],
Then, since ‘V[Va.7], C E[Va.7],, it suffices to prove:
(W, (0, A_.close; (yr, close; (yr, close; (y', €%)))), (0, A_.close; (yr, close, (yr, closez (y', €))))) € V[Va.7],
Consider some arbitrary R € UnrTyp and W’ such that W ¢y W’. We must prove that

(W', (0, close; (yr, close; (yr, close; (v, €™)))), (0, close; (yr, close; (yr, closez (v, €7))))) € E[7] plamsry

Since R € UnrTyp and p € D[A], it follows that p[a +— R]| € D[A, «]. Thus, we can instantiate

Lemma 3.7 with the first induction hypothesis and W, yr, yr, v’, p[a +— R], because W C¢ 9 W’

and thus by Lemma 3.8, the substitutions are still in the interpretation of G[I'],,, G[I']., G[].,

respectively, with the world W’. This suffices to prove the above fact. O
LEMMA 3.27 (COMPAT [7/a]).

ArT AT; QT re <e:VarwIl;Q = TO0A T reld] Leld] it/ /a] w17
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Proor. Expanding the hypotheses, we find that I' = I and there exists Q. such that O = Q. w Q'
where [; Q.; A;T F e < e: 7. Moreover, [; O; A; T+ e[ 7] : 7]t/ /o] »» 7; Q) by the type application
typing rule. It thus suffices to show that I; Q.; AsT F e[7'] < e[7'] : z[7"/a].

Expanding the conclusion, given
VWVp Yryryo.p € D[AH A ( W, 0,0, )/1") € g[[l"ﬂp A ( W, 0,0, }/[) € g[[lﬂ A ( W, ®,, Dy, YQ) € g[[Q]] .

we must show

(W, (0, close; (yr, close; (yr, close; (Yo, e[7/]%)))), (0, closes (yr, closey (yr, closes (yo, e[7/]7))))) € Erl /a]].

Notice that both of the expressions have no free variables by Lemma 3.15.
We can push the compiler and substitutions through the type application to refine this to:

(W, (0, close; (yr, close; (yr, closes (yo, e"))) ), (0, close; (yr, closes (yr, closez (yo, e ) e 8[[7[1"/05”];)

Let ey and e; be the first and second expressions, respectively, in the above tuple. Expanding the
definition of the expression relation, given:

Y®,1, o, Hy, Hy: W, €, H, j < Wok.
D HO A D #HO A D WO, Py WO : WA
(@1 & flags(W, 1) & 0, Hy, er) -5 (@), H! &)
we must show that either e] is fail Conv or there exist @1, @y, o, Do, Vo, Hj, W’ such that:
(®y5 W flags(W, 2) & 0, Hy, e5) —> (Do flags(W’,2) W py & By, HY, vo)
A O =0, Wilags(W/, 1) W dp & Dy A
AWEs, 0, WAHLH, : W
A (W, (®r1,€)), (Pr2,v2)) € V1],p)
To proceed, we must find what e is. From the operational semantic, we know the application

will run its subexpression using H; until it reaches a target value or gets stuck. From the induction
hypothesis instantiated with W, yr, yr, yo, p, we find that:

(W, (0, close; (yr, close; (yr, close; (yo, €7)))), (0, close; (yr, closez (yr, close; (yo, €%))))) € E[Va.7],
Thus, the configuration
(®,1 W flags(W, 1), Hy, close; (yr, close; (yr, close; (yo, €¥))))

either reduces to fail Conv, in which case the entire term reduced to fail Conv, or it will reduce to
some (®,; W flags(Wi,1) W @y W Dgyy, HY, e1*), in which case the configuration

(@2 W flags(W, 2), Hy, close; (yr, closes (yr, closes (yo, €7))))

will reduce to some (@, ¥ flags(Wy,2) & @py; & Dyyy, H, e;") and there exists some world W;
where W Co,, 5,, W1, H},H; : Wi, and

(Wi (@1, e1%), (@pareq")) € V[Va.r],
By expanding the value relation, we find @7y = @y = 0.

Then, we can instantiate the above fact with V[7’],, and >W;. (Note that V[r'], € UnrTyp by
Lemma 3.12.) Since W T >W; (as W Co,,0,, W1 and W; Cq,, 0,, > Wi since W, and >W; have
the same dynamic flags), we find that there exist e’g, ez such that

e;=A_e;

t_ g of
e, =A_e,



110 Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed

and .
(D Wl’ (Oa e*b)> (Qa e';)) € SHT]]p[a_)(VIIT/]]p]
Notice that flags(Wy,1) = flags(>Wi, 1) and flags(Wy, 2) = flags(>W;, 2) because > does not
change the dynamic flags in the world.
Ergo, by the operational semantic, the original configuration with heap H; steps to
(®r1 W Ogyy W flags(>Wy, 1), HY, A_.e*b () --»
<¢)r1 V] q)gll V] ﬂags(l> Wi, 1), HT, e;)
and, on the other side, the configuration with H, steps to
(©ry 1 Dy W flags(> Wi, 2), Hi A_e! () -
(®y3 W Dy @ flags(> Wi, 2), Hi, e )
Next, since H}, H} : Wi, by Lemma 3.11, it follows that H}, H : > W), so we can instantiate the above
fact with H}, HJ to deduce that either the first configuration steps to fail Conv, in which case the orig-
inal configuration with H; steps to fail Conv, or the first configuration steps to some irreducible con-
figuration (@, W @y W flags( Wy, 1) W Opyp W Oy r, HTY, €f), in which case the second configuration
also steps to some irreducible configuration (®,, W @y & flags(W;, 2) & Opyr W Dyyre, HYY, eZ), and
there exists some W, where > W, C0,00,,,0,,60,, Wo, HT HY : Wa, anc} (Wa, (@f11, €7), (Praps e:)) €
(V[[T]]p[aa(\/[[r’]],,]' Therefore, by Lemma 3.13, (Wa, (®f17, €7), (Ppay, e;)) € V[r[r"/a]],. Finally,
since W Co,, 0, Wi, Wi Eo, 0, >Wi, and >W; Cg, 0,, W2, we have W Cg, 0,, W2, which
suffices to finish the proof. O
LemMa 3.28 (ComPpAT () ;).
Q=Q. WYV AT=T"ANTTQ re<e:TvwA T ARGWG(Q)A_iT~1
= LGATE () 2 (e)r:tA_tr~1w 7507
Proor. We have O = Q. w Q" and I' = I/ by the first two assumptions. Moreover, I'; Q; A; T +
(e): : = by the conversion typing rule. Ergo, to prove the conclusion, it suffices to show I'; Q; A; T+
(e): = (e, : 7. Thus, we must show that given
YW.Npyryryo.p € DIAIANW,0,0,yr) € G, AW, 0,0,yr) € GII].A(W, 1, Py, 70) € G[O].

we must show

(W, (0, close; (yr, close; (yr, close; (yo, (). )))), (0, close (yr, closes (yr, closes (yo, (). ))))) € &[],
We can push the compiler and substitutions through the pair to refine that to:
(W, (0, C.r(close; (yr, close; (yr, closer (Yo, €+))))),
(0, C.sr(closey (yr, closes (yr, closez (yo, €7)))))) € E[7],
Now, by instantiating our induction hypothesis with W, yr, yr, yo, p, we find that:

(W, (@4, close; (yr, close; (y1, close; (yo, €¥)))), (P2, close, (yr, close, (yr, closez (yo, €7))))) € E[7].

However, since no, (), there are no static affine variables in Q., because Q. C Q. Ergo, since
(W, @1, D5, y0) € G[Q]., it must be the case that &; = &, = 0.
Therefore, by Theorem 3.18, we have

(W, (0, C.r(close; (yr, close; (yr, closer (Yo, €+))))),
(0, Crsr (closes (yr, closes (yr, closez (yo, €1)))))) € E[7].
Finally, by Lemma 3.14, we have

(W, (0, C.r(close; (yr, close; (yr, closer (Yo, €*))))),
(0, C.sr(closex (yr, close (yr, closez (yo, €%)))))) € &[],
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as was to be proven. O
LEMMA 3.29 (COMPAT unit).

NTTQF () 2 () runitms AT
Proor. Clearly, A = A and I' = T'. Moreover, A; T; 15 Q F () : unit m» A; T' by the unit typing rule.

Ergo, it suffices to show that A; T;T;Q F () < () @ unit.
Expanding the conclusion, given

YWNpyryryo.p € DIAJA(W,0,0,yr) € G[T1,A(W,0,0,yr) € G[I].A(W, 1, P2, v0) € G[].
we must show

(W, (@4, close; (yr, close; (yr, close; (Yo, ()%)))), (@2, closes (yr, closez (yr, closez (yo, )1))))) € E[unit].
()* = () is a closed term, so the closings have no effect. Ergo, we must show:

(W, (@1, 0), (22, 0) € &[7].

This trivially follows from (W, (0, ()), (0, ()) € V[unit], and Lemma 3.2. O
LEMMA 3.30 (COMPAT true).

A;T5T5Q F true < true : bool m» A; T

Proor. Clearly, A = A and I' = I'. Moreover, A; ;1 Q + true : bool~s A; T by the true typing
rule. Ergo, it suffices to show that A;T';T'; O + true < true : bool.
Expanding the conclusion, given

YWNpyryryo.p € DIAJA(W,0,0,yr) € Q[H‘ﬂp/\(w, 0,0,y1) € G[I]. AW, 1, @y, o) € G[O].
we must show
(W, (@4, close; (yr, close; (yr, close; (yo, true*)))), (@2, closes (yr, closes (y1, closez (yo, true*))))) € E[bool].
true™ = 0 is a closed term, so the closings have no effect. Ergo, we must show:
(W, (@1,0), (92,0)) € E[bool].

This trivially follows from (W, (0,0), (0,0) € V[bool], and Lemma 3.2. O
LEMMA 3.31 (ComPAT false).

A;T;T5Q F false < false : bool m» A;T
Proor. This case is trivially similar to true, since false* = 1and (W, (0, 1), (0,1) € "V[[bool]]p.
m]

LEMMA 3.32 (COMPAT int).
AT QFnNn <ncintw AT

Proor. Clearly, A = A and I' = T. Moreover, A;T;T;Q + n : int~» A; T by the int typing rule.
Ergo, it suffices to show that A;T;T;Q F n < n :int.
Expanding the conclusion, given

YWNpyryryo.p € DIAJA(W,0,0,yr) € G[T1,A(W,0,0,yr) € G[I].A(W, 1, ®a,v0) € G[].
we must show
(W, (@4, close; (yr, close; (yr, close; (yo, n7)))), (@y, close, (yr, closes (yr, closez (yo, n*))))) € Efint].
n* = n is a closed term, so the closings have no effect. Ergo, we must show:
(W, (®1,n), (P2,n)) € E[7].
This trivially follows from (W, (0, n), (0, n) € V[int], and Lemma 3.2. O
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LEMMA 3.33 (COMPAT x).
x:17€l = AN ORx <x:i7ww AT
Proor. Clearly, A = A and T =T. Moreover, A;T;T;Q F x : 7~ A; T by the variable typing rule.

Ergo, it suffices to show that A;T;T;Q F x < x: 7.
Expanding the conclusion, given

YW.Npyryryo.p € DIAJA(W,0,0,yr) € G[TI,A(W,0,0,yr) € G[I].A(W, @1, P2, v0) € G[].
we must show
(W, (@1, close; (yr, close; (yr, close; (Yo, x1)))), (@2, closez (yr, closex (yr, closez (yo, x))))) € E[7].
Notice that x* = x. Then, since x : 7 € I'and (W, 0, 0, yr)), we have
yr(x) = (v1,v2)

where (W, (0, v1), (0,v2)) € V[7]..
Thus,
close; (yr, close; (yr, close; (yo, x7))) = vy
and
close, (yr, closes (yr, closez (yo, x*))) = v,
Ergo, we must show
(W, (®1,v1), (P2, v2)) € E[7].
This trivially follows from (W, (0, v1), (0, v,)) € V[r]. and Lemma 3.2. O

LeEMMA 3.34 (COMPAT a,).
a7 €Q = A QFa, fag it AT

Proor. One can easily see that A = A and I' = T'. Moreover, A;T;15Q F a, : 7w A; T by the
dynamic variable typing rule. Ergo, it suffices to show A;I;15Q Fa, < a, : 7.
Expanding the conclusion, given

YWNpyryryo.p € DIAJA(W,0,0,yr) € G[T1,A(W,0,0,yr) € G[I].A(W, D1, ®a,v0) € G[].
we must show:
(W, (@4, close; (yr, close; (yr, close; (yo, a.)))), (@2, closes (yr, closes (yr, closez (yo, 2.))))) € E[7].
We can push the compiler and the substitutions through this expression to refine this to:
(W, (@4, close; (yr, close; (yr, close; (yo, a))) ()), (P2, closez (yr, closex (yr, closez (yo, a))) ())) € &[]
Since (W, @1, @5, y0) € G[]., there must exist (£, ;) € W.0 and values vy, v, such that:
Yo(a) = (guard(vy, £;), guard(vy, £2))
where either W.O (4, £;) = USED or W.© = " W (£, £;) > (@], D;) and
(Wk, WYE,0), (D], v1), (D), v2)) € V[7].
Ergo, we must show:
(W, (@1, guard(vy, &1) ()), (92, guard(v, &) ())) € E[7].
which we can expand to:
(W, (@1, (A_.if 16y {fail Conv} {# := USED; v1}) (), (D2, (A_.if 16, {fail Conv} {£, := USED; v, }) ())) € E[7].

Notice that both expressions have no free variables because v, and v, are closed, as they are in
the value relation.
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Let ey and e; be the first and second expressions, respectively, in the above tuple. Expanding the
definition of the expression relation, given:

V‘I)rl,(brg, H1,H2:W, e;, H;, ] < Wk.
(I)rl#q)l A quZ#q)Z A q)rl (V] ¢’1,q)r2 (V] (Dz : WA

(By1 © flags(W, 1) & Oy, Hy, 1) - (B, Hl,el)

we must show that either e is fail Conv or there exist ®fy, @41, gz, P2, v2, Hj, W’ such that:

(B3 W flags(W, 2) © @y, Ha, €5) > (Dyy 0 flags(W’,2) & @y W Do, HY, vp)
A @ =0, Wilags(W', 1) W Dpy & Dy A
AW ECo,, 0, W A H;, H; W
N (W', (Df1,€)), (D2, v2)) € V1)
Then, by application, we have

<q)r1 V] ﬂags(W, 1) (V] q)l, Hl, (/1_I]C 'f] {fall CONV} {f] := USED; V1}) ()> -->
(@, Wilags(W, 1) W &y, Hy, if 1 {fail Conv} {£; := USED;v1})
and

(@2 W flags(W, 2) W &y, Hy, (A_.if 16, {fail Conv} {f, := USED; Vv, }) ()) --»
(@2 W flags(W, 2) W &y, Hy, if 16, {fail Conv} {£; := USED; v, })

Then, as mentioned before, we have two cases: either W.©(£;, ;) = USED or W.Q({,£,) =
(97, D3).

If W.O(¢, £,) = USED, then since Hy, H, : W, it follows that H;(#;) = H5(#;) = USED. In this case,
the configuration steps to fail Conv, so we are done.

If W.0(4, 6) = (97, D;), then since Hy, Hy : W, it follows that Hy(#) = H(#2) = UNUSED.

(D)1 Wilags(W, 1) W &g, Hy, if 1 {fail Conv} {1 := USED; v1})
- (D, Wilags(W, 1) W &1, Hy, £1 := USED; vq)
-> (D, Wilags(W,1) W &1, H{[£ — USED], vq)

and

(D2 W flags(W, 2) W Oy, Hy, if 16, {fail Conv} {£; := USED; v, })
= (D, Wilags(W,2) W &y, Hy, £, := USED; V)
- (D Wilags(W, 2) W &y, Ha[£, — USED], vy)

Now, consider
W' = (Wk, WY, W.O[(f, ) — USED])

Notice that for all i € {1, 2}, flags(W, i) = flags(W’, i) & ®}. This is because the dynamic flags
in W’ are the exact same as W, except (#;, ;) has been switched to USED, meaning ®] has been
removed from the left side and ®; has been removed from the right side. Ergo, since ®,1,®,, € W
and flags(W’, i) C flags(W, i) for all i € {1, 2}, it follows that ®,;, D, : W’. Since W and W’ also
have the same heap typing, we can then conclude that W Co,, 5,, W’.

Next, notice that H;[#; — USED], Hy[f, — USED] : W’ because Hy, H, : W and the only change
from W to W’ is that W’.©(#;, £,) = USED, which is satisfied by both of these new heaps.

Moreover, let W), = (W.k, W.¥, ©). The only difference between W, and W’ is that the dynamic
flag store in W} does not contain the locations (£, £,) whereas W’.© contains (#;, £,) +— USED.
Furthermore, since for all i € {1, 2}, flags(W, i) = flags(W’, i) & @}, we find that flags(W’, i)#®]
and thus @7, ®; : W’. Ergo, W, Co:,0; w’.

Finally, foralli € {1,2},let ®f; = ®; and let ®;; = ®;. We have by assumption that (Wj, (@7, v1), (93, v2)) €
V[r]., so since W, Cora; W', by Lemma 3.8, we have (W', (@], v1), (9, V2)) € V[r]., which suf-
fices to finish the proof. O
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LEMMA 3.35 (COMPAT a,).

a, T €Q = A1 QFa, <a, 7w AT

ProorF. One can easily see that A = A and I' = T'. Moreover, A; ;15O F a, : 7w A; T by the
static affine variable typing rule. Ergo, it suffices to show A; ;15 Q F a, < a, : 7.
Expanding the conclusion, given

YW.Npyryryo.p € DIAJA(W,0,0,yr) € G[TI,A(W,0,0,yr) € G[I].A(W, @1, P2, v0) € G[].

we must show
(W, (@4, close; (yr, close; (yr, close; (yo, a.7)))), (@2, close, (yr, closes (yr, closez (yo, 2.7))))) € E[7].

Notice thata,” = a,. Then, since a, : 7 € Qand (W, yo) € G[]., then there exist ®], ), v+, vo, fi, f2
such that

Yo(ae) = (protect(vy, f1), protect(vy, f2))

where (W, (®],v1), (9}, v2)) € V[r]., ;U {fi} € ®1, P, U{fa} C P, f1 ¢ ], and f, ¢ ©). Thus,

we must show
(W, (@4, protect(vy, f1)), (P2, protect(vy, f2))) € E[7].
Let e; = protect(vy, f1) and e, = protect(vs, f2). Expanding the definition of the expression

relation, given:
Vq)rl,q>r2, Hq, Hy: W, e;, H;, ] < Wk.
D1 #D; A Dpo#t®y A Opy WDy, By WDy - WA

(@1 @ flags(W, 1) & &y, Hy,eq) -5 (@), HY,e)
we must show that either e] is fail Conv or there exist @1, @y, @y, gz, v, Hj, W’ such that:

(Bry W flags(W, 2) © @y, Ha,e5) > (Dyy 0 flags(W’,2) & @y W o, HY, vo)
A CI); = q)rl V] ﬂags(W', 1) V] q)fl (V] q)gl/\
AW Co,,,0,, W’ A Hi, H; W
A (W,’ (qula efl)s (d)f25 VZ)) € (V[[T]]p)
Since f; € ¢,
(D1 Wilags(W, 1) & &y, Hy, protect(vy, f1)) --> (Dp W flags(W, 1) W d; \ {fi}, Hi, v1)
and since f, € @y,
(D)2 W flags(W, 2) W @y, Hy, protect(va, f2)) --> (Do W flags(W, 2) W @y \ {f2}, Ha, vo)
Then, since ] C ®; and f; ¢ 7, we have ®] C ®; \ {f;}. Similarly, ®; C @, \ {f2}. Ergo, for all
i €{1,2},let &p; = @] and let &y; = ®; \ {f;} \ ®. Then, we can reexpress the above configurations
as
<(I)r1 (V] ﬂags(W, 1) (V] @1 \ {ﬁ}, Hl, V1> = (q)rl V] ﬂags(W, 1) V] (I)fl (V] (I)gls Hl, V1>
and
<(I)r2 (V] ﬂags(W, 2) V] CDQ \ {fé}, Hz, V2> = <¢)r2 U] ﬂags(W, 2) V] ‘I)fz V] ‘I)gz, Hz, V2>
Finally, we have (W, (®f1,v1), (®f2,v2)) € V[r]. because ®; = @ for all i € {1,2}, which
suffices to finish the proof. O
LEMMA 3.36 (COMPAT —©).
AT5TQa, i ke < ety AT A noe(€)
= A;TQ Flagime < dagi1e:1p —o pm AT
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Proor. Expanding the hypothesis, we find A = A’ and I = I'". Moreover, A; T;15Q F da, : 7q.e
11 —o 7, » A’; T’ by the 4 typing rule. Ergo, it suffices to show A; 515 Q & Aa, @ 7.6 < Aag @ 7y.e:
71 —O Ty.
Expanding the conclusion, given
VWVp Yryryo.p € DHAH A ( w,0,0, )/1") € g[[l"ﬂp A ( W, 0,0, }/[) € Q[[Iﬂ A ( W, ®q, Dy, YQ) € g[[Q]] .
we must show
(W, (@1, close; (yr, close; (yr, close; (yo, Aa. : 71.¢7)))),
(@, closey (yr, closey (yr, closes (yo, Aa. : 71.€%))))) € E[7].
Notice that both of these expressions have no free variables by Lemma 3.16. Moreover, notice
that since no,(€2), ®; = ®, = 0.
We can push the compiler and the substitutions to refine the above to:
(W, (0, Aa.close; (yr, close; (yr, close; (yo, €1)))),
(0, Aa.closey (yr, closez (yr, closez (yo, €7))))) € E[r — ).

Since V[r, — ). € &1 — ], it suffices to show:
(W, (0, Aa.close; (yr, close; (yr, close; (yo, €)))),

(0, Aa.closez (yr, closez (yr, closez (yo, €%))))) € V[r — .

Expanding the value relation, given:
V@; Vi (Dé vy W W Co.0 W' A (W, (D], v1), (D), v,)) € (V[[Tl]].
we must show that:
(W, WX, W.0W(f, ) — (D),D)),
(0, [ar>guard(vy, £1)]close; (yr, close; (yr, close; (yo, €7)))),
(0, [a>guard(vy, £) }]close; (yr, closez (yr, closez (yo, €¥))))) € E[n].

Notice that W” = (W’.k, W'.¥, W .© ¥ ({1, £,) — (P}, D;)) is a world extension of W’ because
it has the same heap typing as W’ and has all the affine flags as W’ plus one new affine flag which
is disjoint from any affine flag in W’. Ergo, since W Cp9 W’ and W’ Cg 9 W', we have W C W"'.
Next, notice that:

(W”,0,0,y0[a — (guard(vy, &), guard(va, £))]) € G[Qa: 7].
because (£, &) € dom(W”.0),(W", (0,v1),(0,v,)) € V[r]. (by Lemma 3.8 and (W, (0, v1), (0, v,)) €
V[r].), and (W”,0,0,y,) € G[2]. (by Lemma 3.8 and (W, 0,0, y,) € G[].). Therefore, we can
instantiate the first induction hypothesis with
W”, yr, yr. yola = (guard(vy, 1), guard(vy, £2))], p

to find
(W”, (0, close; (yr, close; (yr, close; (yo [a +— guard(vy, £)], e%)))),
(0, close, (yr, close, (yr, closez (yo [a — guard(vy, £))],¢%)))) € E[x].
which is equivalent to what was to be proven. O
LEMMA 3.37 (COMPAT —).

AT;T;Qa, ke <e:nwA T = ALLQ Fla, e <la, e —o AT
Proor. Expanding the hypothesis, we find that A = A’ and T = T’. Moreover, A;T;15Q +
Aaq : 11.€ : 7 —o 17 »» A’; T by the Aa, typing rule. Ergo, it suffices to show A; T; 15 Q + da, : 77.e < da, = 17.e:

71 —* 7).
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Expanding the conclusion, given
YW.Npyryryo.p € DIAJA(W,0,0,yr) € G[T], A(W,0,0,yr) € G[I].A(W, 0y, D2, y0) € G[].
we must show

(W, (@4, close; (yr, close; (yr, close; (yo, Aa. = 71)))),
(@3, closex (yr, closez (yr, closes (yo, 1a. : 717))))) € E[r1 —» r2].

By pushing the compiler and substitutions through the lambda expression, we can refine this to:
(W, (@1, Aa,.close; (yr, close; (yr, close; (yo, €¥)))),
(D,, Aa,.closey (yr, closez (yr, closez (yo, €7))))) € E[r — 2].
Since V[r; — 1,]. € E[r; —= »]. by Lemma 3.1, it suffices to show:
(W, (@1, Aa..close; (yr, close; (yr, close; (yo, %)),
(D2, Aa,.closes (yr, closez (yr, closes (Yo, €7))))) € V[ — r2].
Expanding the value relation definition, we find that we need to show that given:
V‘b; (Déﬁ ﬁ ViV w'.w Eq)l’q)z w’
A (W (D], v1), (P5,v2) € V[t AP ND] =D, N D, =0
Afi ¢ O WO Wilags(W', 1) A fo ¢ Oy W O) W flags(W', 2)

it holds that:
(W7, (@19 @] W {fi}, [asr>protect(vy, fi)]e1),
(P, W @) W {f2}, [asroprotect(va, fo)]e7)) € E[1].

By Lemma 3.8, since W LCg, 9, W', we have (W', ®1,®,,70) € G[Q].. Moreover, we have
(W, (D, v1), (P, v2)) € V][], &1 N D] =D, NP, =0, f; ¢ Py WD}, and f, ¢ P, W D). Therefore,
(W, @, 901 W {fi}, @, W D5 W {f2}, yo[ae — (protect(vy, fi), protect(va, f2))]) € G2 a. : 11].

Then, we can instantiate the first induction hypothesis with

W', yr, v, yolas = (protect(vs, f1), protect(va, f2))1, p
to find that:
(W', (1 W @7 W {fi}, close; (yr, close; (yr, close; (yo[ae = protect(vy, f1)],e%)))),
(P, W @) W {f}, closes (yr, close (yr, closey (yo [as > protect(vy, 2)],¢%))))) € E[n].

We can simplify this by bringing the [a, > protect(vy, f1)] and [as > protect(vy, f2)] outside of
the closings, which suffices to finish the proof. O

LEMMA 3.38 (COMPAT app :—o).

AI;FI;F;Ql Feir e :171 —® TZWAz;Fz A AZ;FZ;F;S22 Fey<e:T1 WAj,Fj
= AL Q WA e ey <epey:mwAg; s

Proor. Expanding the hypotheses, we find Ay, = A, = Az and I} = I, = I5. Moreover,
AT 150, WOy Foeg ey @ 7w As; I3 by the application typing rule. Ergo, it suffices to show
AT T;QrFer ey <eqes: 1.

Expanding the conclusion, given
YW.Npyryryo.p € DIAIANW,0,0,yr) € GIT],A(W,0,0,yr) € GII]. AW, @1, D, y0) € G[Q1 W Q]

we must show
(W, (®4, close; (yr, close; (yr, close; (yo, e1 €2%)))), (2, closez (yr, closez (yr, closes (yo, €1 €:7))))) € E[r].

Notice that both of these expressions have no free variables by Lemma 3.16.



117

We can push the compiler and substitutions through the application to refine this to:

(W, (@4, close; (yr, close; (yr, close; (yo, e1))) (let x = close; (yr, close; (yr, close; (Yo, €2%))) in thunk(x))),
(®,, closey (yr, closes (yr, closez (yo, €1%))) (let x = closes (yr, closes (yr, closes (Yo, €2%))) in thunk(x))))
€ 8[[7,'2]] .
Next, by Lemma 3.5, we have that y, = y; Wy, @1 = &1 W &y, and &, = Oy W Oy, where

(W, @41, @o1,11) € G[O1].
and
(W, @4, @2r, v2) € G[Q02].
and for all i € {1, 2},
close;(yo, e, ") = close;(y1,e1)
and
close;(yo, e2") = close;(y, e2")
Thus, we refine the statement we need to prove to:
(w,
(@1 @ @y,
close; (yr, close; (yr, close; (y1, e1%))) (let x = close; (yr, close; (yr, close; (y2, €27))) in thunk(x))),
(@21 & Dy,
close; (yr, closes (yr, closes (y1, €1*))) (let x = closes (yr, closez (yr, closez (y2, €,%))) in thunk(x))))
€ &[n].
Let ey and e; be the first and second expressions, respectively, in the above tuple. Expanding the
definition of the expression relation, given:
V1, By, Hy, Hy: W, €], HY, j < Wek.
B, 150, & By, A Bpptdy W Dy A Dy W Dyy 1 By, By W Dy W Dy : WA
(g W flags(W, 1) © By & By, Hy,eq) > (D), HY, ef)

we must show that either e] is fail Conv or there exist @1, @y, o, Dya, v, Hj, W’ such that:

(@5 W flags(W, 2) & Oy & @y, Hy, ) > (@yp W flags(W', 2) & By & Do, H), Vo) -
A Q) =D, Yiflags (W', 1) W D & Oyy A
ANW Lo, o, W’ A H;, Hé W’
A (W', (@51, €)), (Pf2,v2)) € V[z],p)
Next, we need to find e]. From the operational semantic, the application will run the first
subexpression using the heap H; until it reaches a target value or gets stuck. By appealing to our
first induction hypothesis, instantiated with W, yr, yr, y1, p, we find that:

(w,
(@1, closey (yr, closes (yr, close; (y1, €1%)))),
(Dyy, closey (yr, closey (yr, closez (y1,e17))))) € E[r — ].

Therefore,
(D1 Wilags(W, 1) W @y, W &y, Hy, close; (yr, close; (yr, close; (y1,e17))))

either reduces to fail Conv, in which case the original expression steps to fail Conv, or to some
irreducible configuration (®,1 ¥ flags(W1, 1) & @1, & @y W Oy, HY, €7), in which case on the other
side, the configuration

(D5 W ilags(W, 2) W @y, W &y, Hy, close, (yr, closes (yr, closes (1, e17))))
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reduces to some irreducible configuration (®,; ¥ flags( W1, 2) & @y, & Do W Oyyy, H, e:) and there
exists some W; where W o wa, 0,00, Wi, HLHE @ Wi, and (Wi, (Qpy,e), (Opae])) €
V[r: — 7.].. By expanding the value relation, we find that ®7y; = ®fy; = 0.

Since terms in the value relation are target values, the original application will continue reducing
on the second subexpression according to the operational semantics. Then, we can appeal to the
second induction hypothesis instantiated with Wi, yr, yr, y2, p, by Lemma 3.8 because W Co,, o, Wi.
Ergo,

(W1, (@1, close; (yr, close; (yr, close (y2, €21)))),
(®yy, closez (yr, closez (yr, closes (y2, €21))))) € E[n1].
Therefore,

(@1 W flags(W, 1) W ®gy; W By, H, close; (yr, close (yr, closes (y2, €2))))
either reduces to fail Conv, in which case the original expression steps to fail Conv, or to some
irreducible configuration (®,; ¥ flags(Ws, 1) & &gy W ®ry, & Oy, HY™, €3), in which case on the
other side, the configuration

(D W flags( Wy, 2) W Byp; W @y, HY, close; (yr, close; (yr, closez (y2, ¢27))))

reduces to some irreducible configuration (®,; ¥ flags(W3,2) & @gpp W @y, & Dy, HYY, e;r) and
there exists some W, where W; C0,,60,,,0,,60,, Wo, H HY + Wa, and (W, (®r1, €3), (Prars e;)) €
V][]

Then, instantiate (W7, €], e?) € V[r — r]. with ®py,, €3, Oy, e;, >W,. Because Wj Cg g W)
and W, Cg,9 >W,, it follows that Wy Tg,p >Wa. Moreover, (>Wa, (®ryr, €3), (Prar, e;)) € V[n].,
because @y, Ory : Wy by Lemma 3.8, which implies @1y, @, : Wy and thus W, Copy,, 0 > Wa.
Ergo, there exist e;;, el such that

e] = da.e,
and
e? = Aa.el
and, for any (¢, £z) ¢ dom(>W,.¥) U dom(>W,.0),
(CWak, WL ¥, >W5.0 W (6,6) = (D1, (,szr))’
(0, [a + guard(e3, £)]e;), (0, [a — guard(e;, t’l)]ez)) € &[]
Let W3 = (b Wo .k, bW ¥, W2.0 W (£, 6) = (Pr1r, Prar)).
Thus, the original configuration in H; steps as follows:
(@ W flags(W, 1) W &y W &y, Hy,
close; (yr, close; (yr, close; (yo, 1)) (let x = close; (yr, close; (yr, close; (yo, €21))) in thunk(x))) BN
(®r1 W flags(Wy, 1) W &g, W Oy, H,
Aa.ej (let x = close; (yr, close; (yr, close; (yo, €27))) in thunk(x))) BN
(®r1 Wilags(W, 1) & &gy W Qpy & Dy, H’{*,Aa.ez (let x = € in thunk(x))) --»
(@19 flags(Wy, 1) W Bgyy © Bpy, 1 By, HY, Aae] thunk(el)) -
(B @ flags(Wp, 1) & Byyy & By W By, HY,
Aa.ep let reresh = ref 1in A_{if !rfesh {fail CONV} {rfresh := USED; €3 }} -->

(®r1 W ilags(Ws, 1) W gy W Dpyp W Dy, T [61 — UNUSED], Aacep A_{if 14y {fail Conv} {f; := UsED; €]} }) -
(@1 W flags(Ws, 1) W gy W Dpyp © Dy, I [£1 — UNUSED], Aa.e guard(f, €3)) --»

(@1 W flags(Wa, 1) W Ogy W @pyp W Dy, HY* [ — UNUSED], [a > guard (£, €3)]ep)
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for some ¢ ¢ H}*. Similarly, the original configuration in Hj steps to
(B & D(Wo, 1) W Dgpy & @y ¥ By, Hy [ — 1], [a > guard(£, e])]e;)
for some £, ¢ H3*. Since H}*, H* : Wy, this implies (£, £,) ¢ dom(W,.¥) U dom(W,.0), and thus

(f1, t2) ¢ dom(>W,.¥) U dom(>W,.0).

Therefore, by expanding the value relation for 7; —o 7,, we find:

(Wi, (0, [a > guard(;, 3)]e}), (0, [a > guard(f, e})]e))) € E[r].

Moreover, since H}*, H;* : W, we also have H}*, H}* : >W,. Therefore, H{*[#; = UNUSED], H}* [, —
UNUSED] : W3, because the only difference between > W, and W3 is that W3 has a new affine flag
(t1,6) — (<I>f11, <I>f1r), and both of the above heaps indeed have #; and ¢, respectively, set to
UNUSED.

Finally, notice that, for all i € {1, 2}, flags( W3, i) = flags(Wa, i) ¥ @i, because W3 has the exact
same dynamic flags as W, except for (£, &) = (@1, Pr2r), which has the affect of adding ¢4,
on the left side and @, on ther right side. Thus, we can rewrite the above configurations as

(Pr1 W Dgyy W Dyy, W flags(Ws, 1), HI*[£; — UNUSED], [a +> guard(#;, e;)]e;)

(D2 W Doy W Do, W flags( W5, 1), Hy* [, — UNUSED], [a +> guard(#,, ez)]eg)

Ergo, we can instantiate the fact that the above expressions are in &[[r;]. in the world W to find
that either the first configuration steps to fail Conv, in which case the original configuration with
H; steps to fail Conv, or the first configuration steps to some irreducible configuration

<(I>r1 (V] q)gll U] q)glr (V] ﬂags(W4, 1) (V] (Dfln (V] q)glns HI**, e?)
in which case the second configuration steps to

(@2 W Byyy W By flags (Wi, 2) W @y W By, H3™ )
and there exists some W, such that W; C0,1 601 601, By 60y 5Dy, Wy, H™, H™ :© W,, and
(Wi, (@p1n,€), (Pamr€])) € V][]

This suffices to show that e] = e™*, so e] is indeed in the value relation at 7, along with the
value stepped to by the original configuration on the right hand side. Ergo, since W Co,, 5., W1,
Wi Co,,.0,, W2, W2 Eo,,.0,, >Wa, >W; Co,, 0,, W3, and W3 Co,, 0,, Wa (note that these are weaker
statements of what we learned above, but hold - and in particular, via transitivity, will be what
hold), it follows that W Co,, ,, Wa, which suffices to finish the proof. O

LEMMA 3.39 (COMPAT app :—).

AT O Fey Sepirp =0 o Ags I AN T Q0 Fey ey i1y As; I
= Al Q WAy Feren <epey:mwAs; s

Proor. Expanding the hypotheses, it is clear that Ay = Ay = Asand I} =1, = I5. Let A = A4
and ' =T7.

Moreover, Aj; ;15 Q F ey e, : 75w As; T3 by the application typing rule. Ergo, it suffices to show
ANT;T;QFer ey <eqey: .

Expanding the conclusion, given
VWVp Yryryo.p € D[AH/\(W, 0,0, )/1") € Q[[l“]}p/\(W, 0,0, )/r) € g[[r]]/\(W, O, Dy, }/Q) € Q[[£21 & Qz]]

we must show

(W, (@4, close; (yr, close; (yr, close; (yo, €1 €2%)))), (2, closez (yr, closez (yr, closes (yo, e1e21))))) € E[r].
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By pushing the compiler and substitutions through the application, we can refine this to:
(W, (@4, close; (yr, close; (yr, close; (yo, €1))) close; (yr, close; (yr, closer (Yo, €21)))),
(D, closes (yr, closey (yr, closes (yo, €17))) closes (yr, closez (yr, closez (yo, €21))))) € E[r].
Next, by Lemma 3.5, we have that yo = y; W y,, &1 = &3 W &y, and &y = Oy W Oy, where

(W, @11, 21, 11) € G[O].
and
(W, @1, @or, 12) € G[O].
and for all i € {1, 2},
close;(yo, e ") = close;(y1,e1")
and
close; (yo, e2*) = close;(y1, e2")
Thus, we can refine the statement we need to prove as:

(W, (®1;® @y, close; (yr, close (yr, close; (y1, €17))) closes (yr, closes (yr, closer (y2, €27)))),
(g W Dy, closes (yr, closes (yr, closez (y1, €1%))) closez (yr, closez (yr, closez (y2, €21))))) € E[r].
Let ey and e; be the first and second expressions, respectively, in the tuple above. Expanding the
definition of the expression relation, given:
Vq)rls (Drzs Hla HZZW; e;, H;, _] < W.k.
O 1 #D1) & Oy A Dpp#tDy & Do A Dy U Dy W By, Oy & Oy W By - WA

(Bp1 © flags(W, 1) & Oy & By, Hy, 1) 5> (@, HY el) =
we must show that either e] is fail Conv or there exist @1, @y, @y, Do, v, Hj, W’ such that:
(@2 W flags(W, 2) & gy & @y, Hy, ) > (@2 W flags( W, 2) & Oy & Do, H), )
A (1); = ‘brl (V] ﬂags(W’, 1) (V] (Dfl (V] (Dgl/\
AWEs, 5, WA H;, H; W
A (W,’ ((I)fla e;)a ((sz, VZ)) € (V[[T]]p)
By instantiating the first induction hypothesis with W, yr, yr, y1, p, we find that:
(W, (@, close; (yr, close; (yr, close; (y1, €1%)))), (@1, closex (yr, closex (y1, closez (y1, €1 7))))) € E[r —» 12].
Thus,
(®,1 ¥ @y, W flags(W, 1) W &y, Hy, close; (yr, close; (yr, close; (y1,e17))))
either steps to fail Conv, in which case the whole expression steps to fail Conv, or steps to an
irreducible configuration (®,; W @, W flags(Wy,1) W @ry; © &gy, HY, €]), in which case
(D1 ¥ Dy W flags( W, 2) W Dy, Hy, close (yr, close (yr, closez (y1,e1%))))
also steps to an irreducible configuration (@, & ®,, W flags( W1, 2) & @y W Ogyp, H3, €3) and there
exists some world W; where W Cg, wa,,.0,,00,, Wi, H], H; : Wi, and (W1, (Qfys,€)), (Pra, €3)) €
V[r; — 7.].. By expanding the value relation, there exist expressions e"t;], e’gz such that e} = /la..e;;]
and e} = las.e[,.
Then, by the operational semantic, the original application expression continues reducing on the

second subexpression. By instantiating the second induction hypothesis with Wi, yr, yr, ya2, p, we

find that:
(W4, (@3, close; (yr, close; (yr, close; (y2, €2)))), (P, closez (yr, close; (yr, closes (y2, €21))))) € E[x1].
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Thus,
(B W Dpyy W Dy W flags(Wy, 1) W dy,, HY, closey (yr, closes (yr, closes (y2, €27))))

either steps to fail Conv, in which case the whole expression steps to fail Conv, or steps to an
irreducible configuration (®,1 ¥ ®¢y; & Ogy; W flags(Wo, 1) W Opyp & By, HI, e:), in which case

(rp W Doy W Dy W flags( Wy, 2) W Dy, H, closes (yr, closes (yr, closez (y2, €27))))
also steps to an irreducible configuration (®,, ¥ @y W Ogg; W flags( W, 2) & D gy & Dy, H;, el)

and there exists some world W, where Wi Co, 00 1,/60,:,0,,60 21,0, Wos HI, H; : Wh, and

g2l
(Wa, (@11, 1), (Ppzr.3)) € V][],
Thus, the original configuration with H; steps to
(@1 W Opyy W Dyyy W flags(Wa, 1) & @y,  Dyap, HE, Aageef, el
which steps to
(O W Qpyy W Dyyy W flags(Wo, 1) W Dpy, W Dy, W {f1], Hj, [ae — protect(e:,ﬁ)]e;)

for some fi € O, W Qpyy W Dgyy W flags(Wo, 1) W Qpy & Dy
Similarly, the original configuration with H; steps to

(Do W Dy W Dy W flags(W,, 2) W DQpar W Doy ¥ {fa}, H;, [ae — protect(e;,fz)]e’gz)

for some fo € @rp & Py & Dyyy W flags(Wo, 2) U Py & Dy
We can instantiate the fact that (Wi, (®ry;, Aae.€;,), (Prar, Aaa-e;,)) € V[r, —o 1] with Opy,,
Dror, fis fos er, e;, W, to find that:

(Wa, (@f1; & Opy, W {fi), [a.Hprgtect(e'L‘, e,
(Qpar W Ppar W {f2}, [ae > protect(e,, fH)le},)) € E[r].
Given HI, H; : W, it follows that
(Or1 W Dgyy W Dy, W flags(Wo, 1) © Dy W Dpy, W {f1}, Hj, [ae — protect(er,ﬁ)]e;)

either steps to fail Conv, in which case the original configuration with H; steps to fail Conv, or
steps to an irreducible configuration

(Pr1 W Dyyy W gy, W flags(Wa, 1) W Dpyp & Oyy p, HYY, €77)
in which case the configuration
(Drp W Dggy W Doy W flags( W, 2) & Dy W Py W {f3}, H;, [ae — protect(e;,fz)]ezz)
also steps to an irreducible configuration
(Brz W Dyop W Dy, W flags(Wa, 2) W Ppyp & Oy e, HY, €57)

and there exists a world W3 such that W, E0, 1611 9Py, By Dy 9bgs, Ws, H*, H3* : W3, and

(W3, (Drif,e7%), (Prap, €5)) € V[r2].. Finally, since W Co,, 0,, W1, W1 Co,,0,, Wz,and W Co,, a,,

Ws, it follows that W Cg,, 9,, W3, which suffices to finish the proof. ]
LEMMA 3.40 (COMPAT !).

AT kvitaw AT = A0 F v lras AL T
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Proor. Expanding the hypotheses, we find A; = A’ and T' = I'. Moreover, A; ;15 + v :
7~ A’;T7 by the ! typing rule. Ergo, it suffices to show A; T 15 F v <!v: Iz,
Expanding the conclusion, given

YWNpyryryo.p € DIAJA(W,0,0,yr) € G[T], A (W,0,0,yr) € G[I]. AW, D1, D2, 70) € G[].
we must show

(W, (@4, close; (yr, close; (yr, close; (yo, 'vF)))), (2, closes (yr, closes (yr, closex (yo, 'v1))))) € E[!7].
Notice that both of these expressions have no free variables by Lemma 3.16. Moreover, since

(W, ®1,Ds,y0) € G[']., we have &; = &, = 0 and y,, = -. Furthermore, |v* = v*. Thus, we can
refine the above to:

(W, (0, close; (yr, close; (yr, v1))), (0, close, (yr, closes (yr, v*)))) € E['7].

Let ey and e; be the first and second expressions, respectively, in the above tuple. Expanding the
definition of the expression relation, given:

V®,1, @pp, Hi, Ha: W, ], HY, j < Wek.
(I)rl#@ A (I)rz#@ A q>r1 (V] Q), (I)rZ (V] 0 : WA

(@1 flags(W, 1) & 0, Hy, e7) > (@1, H, e!) =

we must show that either e] is fail Conv or there exist @1, @y, o, Do, Vo, Hj, W’ such that:

(®y5 W flags(W, 2) & 0, Hy, e5) —> (Do flags(W’,2) W py & By, HY, vo)
A (D{ = q)rl (V] ﬂags(W’, 1) (V] (Dfl (V] cI)gl/\

AWEs, o, WA Hi, Hé W

AN (W (Dpy,€)), (2, v2)) € V['7]p)

Next, consider W; = (W.k, W.¥,0’), where dom(®’) = dom(W.®) and for all (£;,£) €
dom(W.®), ©’ (¢, ;) = USED. Thus, since all dynamic flags in W; have been used flags(Wy, 1) =
flags(W1, 2) = 0, so we trivially have ®,q, ®,; : Wj. It then follows that W Cg,, ¢,, Wi because W
and Wj have the exact same heap typing and all of the locations in W have been switched to UsEDp
in Wl‘

Thus, by Lemma 3.8, we have (Wy,0,0,yr) € G[I'], and (W3, 0,0,yr) € G[I'].. We also trivially
have (W1,0,0,-) € G[].. Thus, by instantiating the first induction hypothesis with Wy, yr, yr, -, p,
we find:

(W4, (0, close; (yr, close; (yr, v*))), (0, close, (yr, closez (yr, v¥)))) € E[7].
Thus, since flags( Wi, 1) = flags(W;, 2) = 0, the configuration
(D, Wilags(W, 1) W 0 & 0, Hy, close; (yr, close; (yr, vF))))
must either step to fail Conv, in which case the proof is done, or steps to some irreducible configu-
ration (®,; W flags(W, 1) w 0 & Qry WOy, HY, e}), in which case the configuration
(@2 W flags(W,2) W 0 & 0, H,, (0, closes (yr, closes (yr, v))))

steps to an irreducible configuration (®,; ¥ flags(W,2) W 0 W &, W &gy, H}, €3), and there exists
f‘c;?[n;]:]world W, such that Wi Co, uflags(W,1),0,00flags(w,2) Wa, H], H; : Wo,and (W, (®r1, €7), (Pra,€3)) €

Ho;l;lever, from Lemma 3.4, we know both the original configurations above are indeed irreducible

and do not step. This means the set of static flags in the original configurations equal that in the
final configurations. Thus,

@, Wilags(W, 1) W0 W0 =Dy Wilags(W,1) W0 & Opy WDy
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and
(Drz (V] ﬂags(W, 2) WOwO= (I)rz V] ﬂags(W, 2) CN(AS q)fz V] q)gZ

This implies @¢; = &y = @ and Ppy = Oy = 0. Ergo, (Wa, (0,€7), (0, ¢3)) € V[7]., from which
it follows that (W5, (0, €7), (0,e;)) € V[!7]..

Finally, since W Cg_, ¢,, W1 and W) Co,,0,, W2, we have W Co,, 0, W2, which suffices to
finish the proof. o

LEMMA 3.41 (COMPAT let!).

AI;Fl;F;Ql Fe <e;: !TWAz;Fz A Az;rz;r,X : T;_Qz Fey <ey: Z'”V\')A3;r3
- Al,Fl,T, Ql U} g)z Flet!x = €1 in ey, < let 'x = €1 in €g ! T/’\/\’)Ag;rg

Proor. Expanding the hypotheses, we find Ay = A, = Az and I} = I, = I5. Moreover,
AT T50; WOy k let Ix = e in ey 1 77~ As; T by the let! typing rule. Thus, it suffices to show
AT QW Qo kFlet!x=ejiney <let!x=e;iney: 7.

Expanding the conclusion, given
VWVp Yryryo.p € DHAHA(W, 0,0, )/r) € g[[rﬂpA(W, 0,0, )/1) [S gﬂf]]/\(W, O, Dy, }/Q) € g[[_Ql U] QZ]]

we must show

(W, (@4, close; (yr, close; (yr, close; (yo, let 'x = e; in e,*)))),
(@, close, (yr, closes (yr, close, (yo, let Ix = e; in e,%))))) € E['].
Notice that both of these expressions have no free variables by Lemma 3.16.
We can push the compiler and substitutions through the let expression and refine this to:
(W, (@4, let x = close; (yr, close; (yr, close; (yo, €17))) in close; (yr, close; (yr, close; (yo, e21)))),
(Dy, let x = closey (yr, closex (yr, closes (yo, €17))) in closex (yr, closes (yr, closez (yo, e2%))))) € E['].
Next, by Lemma 3.5, we have that yo = y1 Wy, @1 = &1 & Oy, and &y = Oy W Oy where

(W, @11, D1, 11) € G[].
and
(W, Dy, Oz, v2) € G[Q02].
and forall i € {1,2},
close; (yo, e:*) = close;(y1,e1")
and
close;(yo, e2*) = close;(y1, e2")
Thus, we must show
(W, (@1, W @1y, let x = close; (yr, close; (yr, closes (y1, ¢1))) in closes (yr, close; (yr, closes (y2, €27)))),
(g W Dy, let x = closey (yr, closez (yr, closex (y1, €17))) in closez (yr, closes (yr, closez (y2, €2%))))) € E[7'].
Let ey and e; be the first and second expressions, respectively, in the above tuple. Expanding the
definition of the expression relation, given:
V(I)rl,(brz, H1,H2:W, e;, H;, ] < W.k.
O #D1) & Oy A Dpp#tDy & Do A Dpy U Dy W By, Oy & Oy W By - WA
(@1 flags(W, 1) W By & By, Hi,e) -5 (@, HY ef) »

we must show that either e] is fail Conv or there exist @1, @y, o, Dya, v, Hj, W’ such that:

(@2 W flags(W, 2) & Dy & @y, Hyy ) > (@2 W flags( W, 2) & Oy & Do, H), V)
A @] =, Wilags(W', 1) W Qpy W Dy A

AW ECo, 0, W A HLH,: W

AN (W' (®ry,€)), (Pp2, v2)) € V]1],)
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Next, we need to find e]. From the operational semantic, the application will run the first
subexpression using the heap H; until it reaches a target value or gets stuck. By appealing to our
first induction hypothesis, instantiated with W, yr, yr, y1, p, we find that:

(W, (@1, close; (yr, close; (yr, close; (y1, €17)))), (®1r, closez (yr, closes (yr, closez(y1, €17))))) € E[!7].
Therefore, the configuration

(O, ¥ @y, W flags(W, 1) W &y, Hy, close; (yr, close; (yr, close; (y1,e17))))
either reduces to fail Conv, in which case the original expression steps to fail Conv, or to some
irreducible configuration (@, & @y, W flags( Wy, 1) W @py; W Oy, HY, €7), in which case the config-
uration

(Dry ¥ Oy W flags(W, 2) W Oy, Ha, close, (yr, closes (yr, closes (y1,¢17))))
also reduces to some irreducible configuration (®,; & ®,, ¥ flags( W1, 2) & Opy W Oyyy, H, ef) and
there exists some W; where W Co,,u0,,.0,,00,, W1, H], H; : Wi, and (W1, (@fy, €)), (Pr1r, e];)) €
V[!7].. By expanding the value relation definition, we find ®y; = @7y, = @ and (W4, (0, €7), (0, e;r)) €

Since terms in the value relation are target values, the original configuration with H; steps as

follows:
let x = close; (yr, close; (yr, close; (y1,e:%))) in ) *

close; (yr, close; (yr, close; (y2, €2™)))
(P WDy, W flags(Wy, 1) W @y, HY, let x = e in close; (yr, close; (yr, close; (y2, €27)))) —
(P WDy, W flags(Wi, 1) W @yyy, HY, [x > e]]close; (yr, close; (yr, close; (y2, €27))))

<q)r1 (V] ﬂags(W, 1) (V] (I)U (V] (Dlr’ Hla

and similarly, the original configuration with H; steps to:

(D2 W Oy W flags(W1,2) W Dya1, H3, [x — er]closez(yp, close, (yr, closes (y2, €27))))

Next, notice that (W1, 0,0, yr[x +— (e’{,e;r)]) € G[I'. x : 7]). because (W, (0,¢7), (0, e;r)) e V[].
and (W1,0,0,yr) € G[I']. (which follows from Lemma 3.8 because W Cgp 9 W; and (W,0,0,yr) €
G[I'].). Therefore, by instantiating the second induction hypothesis with W1, yr, yr[x  (e], ej)], Y2 P
we find that

(W1, (@1, [x = e}]close; (yr, close; (yr, close; (2, €27)))),
(@, [x e:]closez(yp, close, (yr, closez (y2, €2%))))) € E[7'].
Then, since H}, H; : W;, we can instantiate the above fact with H} and H. Ergo, the configuration
(Pr1 & Dyyy W flags(Wi, 1) © @y, HY, [x > ef]close; (yr, close; (yr, close (y2, €,7))))
must either step to fail Conv, in which case the original expression steps to fail Conv, or it must
step to some (@, W ®yy; W flags(Wa, 1) & Opyp W Oy, HI, e}"), in which case the configuration on
the other side
(Prp W Dggy W flags( Wy, 2) © @y, Hy, [x e:]closez(yr, closey (yr, closes (y2, €27))))

must step to (P, W Oyyy W flags(Wa, 2) & Dppp W By, H;, er) for some heap HZ and world W,
where Wi Cg,,00,,,.0,,00,, We, HI, H; : Wy, and (Wa, (Qpar, €57), (Ppar, eﬁ)) € V['].. Finally,
since W Cg,,0,, W1 and Wi Cg,, 0,, W2, we have W Cg,, 0,, Wa, which suffices to finish the
proof. O
LEMMA 3.42 (COMPAT &).
Al;rl;T;Q e <e;: Tl’VV)Az;rz A Az;rz;r;Q Fey<ey: TZWA3;F3
= ApT;LQF (e, e) < (e, e) 1 &y w As; T
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Proor. Expanding the hypotheses, we find Ay, = A, = Az and I} = I, = I5. Moreover,
AT Q F (e, en) @ 1&1, ~» As; T by the product typing rule. Ergo, it suffices to show Ay; Ty 15 Q F
<C],C2> =< <C],Cz> 17,

Expanding the conclusion, given

VWVp Yryryo.p € DHAH/\(W, 0,0, )/1") € QHFHPA(W’ 0,0, }/[) € Q[[I]}A(W, O, Dy, YQ) € g[[Q]]

we must show
(W, (@4, close; (yr, close; (yr, close; (yo, (e1, €2)™)))),
(@, closey (yr, closez (yr, closes (Yo, (e1, e2)™))))) € E[r &

Note that both of these expressions are closed by Lemma 3.16.
We can push the compiler and substitutions through the product expression and refine this to:

(W, (@1, (A_.close; (yr, close; (yr, close; (yo, €1%))), A_.close; (yr, close; (yr, close; (yo, €27))))),
(D2, (A_.closey (yr, closes (yr, closea (Yo, €17))), A_.closes (yr, closex (yr, closes (yo, €27)))))) € E[ri&r].

Since V[r &n]. € E[r1&1]. by Lemma 3.1, it suffices to show
(W, (@4, (A_.close; (yr, close; (yr, close; (yo, €1%))), A_.close; (yr, close; (yr, close; (yo, €27))))),
(D2, (A_.closey (yr, closez (yr, closez(yo, e1%))), A_.closez (yr, closes (yr, closez (yo, €27)))))) € V[ &].
First, we can instantiate the first induction hypothesis with W, yr, yr, ya, p to show that
(W, (@4, close; (yr, close; (yr, close; (yo, €17)))), (@2, close, (yr, close, (yr, closez (yo, e11))))) € V[ ].
and we can instantiate the second induction hypothesis with W, yr, yr, yo, p to show that
(W, (@1, close; (yr, close; (yr, closes (yo, €57)))), (@2, closes (yr, closez (yr, closes (yo, ¢:7))))) € V[r].

This suffices to show that the pairs of lambdas are in the value relation at 7; &7, as was to be

proven. O
LEMMA 3.43 (COMPAT .1).

AT;T;QFe<e:&nwA T = AT;;QFel <el:t~A;T
Proor. Expanding the hypotheses, we find A; = A’ and I' = T’. Moreover, A;T;15;Q F el :

71w A’; T by the .1 typing rule. Ergo, it suffices to show A; ;15O kel < el : 1.
Expanding the conclusion, given

VWVp Yryryo.p € DHAH A ( W, 0,0, )/1) € Q[[Fﬂp A ( W, 0,0, }/1) € Q[[Tﬂ A ( W, ®, Dy, YQ) € g[[_Q]] .
we must show
(W, (@4, close; (yr, close; (yr, close; (yo, e.1%)))), (P, closes (yr, closes (yr, closes (yo, €.17))))) € E[r].
Notice that both of these expressions have no free variables by Lemma 3.16.
We can push the compiler and substitutions through the projection to refine this to:
(W, (@1, (fst close; (yr, close; (yr, close; (yo, ¢*)))) (),
(@, (fst closez (yr, closes (yr, closez (yo, €*)))) ())) € E[n].
Expanding the definition of the expression relation, given:

V1, Brp, Hy, Hy: W, €, HY j < Wk
Q1 #D; A Dot ®y A Opy WD, By WDy - WA

(®y1 © flags(W, 1) & Oy, Hy, ) 5> (B, Hl,el) -



126 Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed

we must show that either e is fail CoNv or there exist ®f1, @41, g2, P2, v2, Hy, W’ such that:

(B3 W flags(W, 2) © @y, Ha, €5) -5 (Dyy @ flags(W’,2) & @y W Dy, HY, vp) =

A CI); = (I)rl U} ﬂags(W', 1) U} q)fl V) q)gl/\

AWEs, o, WA H;, Hé W

A (W (Dp1,€)), (Pp2,v2)) € V[1],)

To proceed, we must find out what e] is. First, by instantiating the first induction hypothesis
with W, yr, yr, yo, p, we find
(W, (@4, close; (yr, close; (yr, close; (yo, €7)))), (@2, closes (yr, closes (yr, closez (yo, €))))) € E[r &r].
Therefore, the configuration
(®,1 W flags(W, 1) & @y, Hy, close; (yr, close; (yr, close; (yo, €7))))

either steps to fail Conv, in which case the original expression steps to fail Conv, or steps to some
irreducible configuration (®,; W flags( Wi, 1) W @ & @1, H}, 7), in which case the configuration

(D2 W flags(W, 2) & ®,, Hy, close, (yr, closez (yr, closez (yo, €™))))

also steps to some irreducible configuration (®,; ¥ flags( W1, 2) & ®py & Oy, H3, e') and there exists

some world W; where W Cg,, 0,, W1, H], H; : Wy, and (W, (@fy,€%), (Pp2, e") e V[r&n]..

¥

« T
1» €5, e, such that

e = (A_el,A_.€3)

Ergo, there exists some e}*, e

and
el = ()L_.e?, A_.e;)
and
(Wi, (®f1,€)), (Dpase))) € E[n].
and

(Wi, (@f1,€3), (Brael)) € E[r].

Thus, the original configuration with H; steps as follows:

(@, W flags(W, 1) & &y, Hy, (fst close; (yr, close; (yr, close; (yo, €7)))) () 5
(®p1 Wilags(W, 1) W &py & Byp, HY, (fst (A_.e], A_.e3)) ()) —
<(I)r1 (V] ﬂags(Wl, 1) U} (I)fl U} (I)gls Hik,)._.e? ()> e
<CD,«1 (V] ﬂags(Wl, 1) V] q)fl (V] q)gl» H)lk, CT>
and on the other side, the original configuration with H; steps to:

(®y2 W flags(Wi,2) & Dpy & @y, H €]

Then, since (W1, (@51, €}), (Ppa, e:)) € &[r1]., we find that the first configuration either steps to
fail Conv, in which case the original expression steps to fail Conv, or steps to some irreducible

(@1 W @y W flags(Ws, 1) & Dy @ @, Hi er™)

in which case the second configuration also steps to an irreducible

<¢'r2 (V] (DgZ (V] ﬂags(Wz, 2) U] q)}z U} (I);z, HZ’ e-l-%)

and there exists some world W, where Wi Co,,40,,,9,,00,, W2, H'I, H; : Wy, and (W, (@, €7), (Do, e?")) c
V[r1].. Fianlly, since W Cq,, 0., Wi and Wi Cg,, 0., Wa, it follows that Wi Cg,, 9, W2, which
suffices to finish the proof. O
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LEMMA 3.44 (COMPAT .2).
AT;T;Qre <e:&nwwA T = AT;0Fe2<e2: 5w AT
Proor. This proof is essentially identical to that of .1. O
LEMMA 3.45 (COMPAT ®).
Al;rl;F;Ql Feir e :n "’\')Az;rg A Ag;rz;r;Qz Fe <ep: Z'z'V\')A3;F3
— Al;rl;F;Ql W Qg F (61,6‘2) < (el,ez) st ® (%) WA3;F3

Proor. Expanding the hypotheses, we find Ay, = A, = Az and I} = I, = I5. Moreover,
AT 0, WOy F o(eg,e;) @ 1 ® 1w As; T by the pair typing rule. Ergo, it suffices to show
AT QW Qs (e, e2) < (eg,ep) : 71 @ T

Expanding the conclusion, given
VWVp Yryryo.p € DHAHA(W, 0,0, )/r) € g[[l"ﬂp/\(W, 0,0, )/r) (S g[[r]]A(W, O, Dy, }/Q) S Q[[_(21 & Qz]]

we must show

(W, (@4, close; (yr, close; (yr, close; (yo, (¢4, ¢2)7)))),
(@, closey (yr, closez (yr, closes (yo, (€1, ¢2)))))) € E[n ® ).
Notice that both of these expressions have no free variables by Lemma 3.16.
We can push the compiler and substitutions through the product expression and refine this to:
(W, (@4, (close; (yr, close; (yr, close; (yo, e1%))),close; (yr, close; (yr, close; (yo, €:7))))),
(®,, (closes (yr, closes (yr, closes (yo, e1%))),closes (yr, closez (yr, closes (yo, €27)))))) € E[r @ ).
Next, by Lemma 3.5, we have that yo = y; Wy, @1 = &1 & &y, and &y = Oy W Oy where

(W, @y, @51, 11) € G[].
and
(W, @y, Oz, v2) € G[Q02].
and forall i € {1,2},
close;(yo, e, ") = close;(y1,e1")
and
close; (yo, ef) = close; (y1, e")
Thus, we must show
(W, (@11 W @y, (close; (yr, close; (yr, close; (y1, €17))), close; (yr, close; (yr, close; (y2, €2%))))),
(@1 W Dy, (closes (yr, closes (yr, closey (y1, €1%))), closez (yr, closes (yr, closez (y2, €2%)))))) € E[r1 @ ©].
Let ey and e; be the first and second expressions, respectively, in the above tuple. Expanding the
definition of the expression relation, given:
Y@y, Opp, Hy, Hot W, €, HY, j < Wok.
B, 14D, & By, A Bpptidyy W Dyp A Dy W Dy 1 By, By W Dy W Dy : WA

(O Wilags(W, 1) W &y W Oy, Hy,eq) 5 (O}, Hj,e7) »
we must show that either e is fail Conv or there exist ®fy, @41, gz, P2, v2, Hj, W’ such that:
(@5 W flags(W, 2) & Oy & Oy, Hy, ) > (@ W flags(W', 2) & By & @yo, H), Vo) —
A CD; = (I)rl (V] ﬂags(W’, 1) (V] chl (V] CDgl/\
AWECq, 0, WA Hi, H; W’
AN (W' (Rp1, ), (Pra,v2)) € V] @ 15]p)
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Next, we need to find e}. From the operational semantic, the tensor will run the first subexpression
using the heap H; until it reaches a target value or gets stuck. By appealing to our first induction
hypothesis, instantiated with W, yr, yr, 1, p, we find that:

(W, (@4, close; (yr, close; (yr, closes (y1, 1)), (@21, closez (yr, closez (yr, closez (y1, ¢17))))) € E[n].
Thus, the configuration
(@1 W @y, W flags(W, 1) & @y, Hy, close; (yr, close (yr, close (y1,€,7))))
either reduces to fail Conv, in which case the original expression steps to fail Conv, or to some

irreducible configuration (®,; W @, ¥ flags(Wy, 1) & ®ry; & ®yy, HY, €7), in which case on the other
side, the configuration

(D2 ¥ Dy, W flags( W, 2) W Dy, Hy, close (yr, closes (yr, closez (y1,e17))))

reduces to some irreducible configuration (®,, W @5, ¥ flags(Wy,2) & @y & Dyyy, H, e:) and there
exists some W) where W Co,,08,,.0,,00,, W1, H}, H; : Wi, and (W1, (Pryy, €7), (Pra, e;f)) € V[r].

Since terms in the value relation are target values, the original pair will continue reducing on
the second subexpression according to the operational semantics. Next, we can instantiate the
second induction hypothesis with Wy, yr, yr, 2, p, which we can do because G[I'],,, G[I']., G[©].

are closed under world extension (Lemma 3.8). Thus:
(W, (®y, close; (yr, close; (yr, close; (yz, €2%)))), (Par, close, (yr, close, (yr, closez (y2, €21))))) € E[r].
Ergo, the configuration
(Pr1 W Dpyy W Dy W flags(Wy, 1) W By, HY, closes (yr, closey (yr, closey (y1,¢,7))))
either reduces to fail Conv, in which case the original pair steps to fail Conv, or to some irreducible
configuration (@, W @y W Oyy; W flags(Wa, 1) W Opy, W Dy, HI, e;), in which case on the other
side, the configuration
(@ & Dpyp & Dyyy W flags( W), 2) W Oy, H, el

reduces to some irreducible configuration (®,; & @y W Oyy; & flags( Wy, 2) & Opyp W Oy, H;, e;)

. gt
and there exists some W, where W; E 0,160 118D 11, D 0D 00 Wo, Hy, Hy  Wa and

(Wa, (®f1,,€3), (Rrar, €h)) € V][],

Thus, the original pair with Hy steps to (@, & flags(Wa, 1) & @y W @ py & Dgyy & By, HI, (el €3))
which is a value and thus an irreducible configuration because both e and e} are values. Similarly,
the original pair with H; steps to (@, & flags(Wp, 2) & Oy W Oy & Doy W Dy, H; (el', e;)) -,
Ergo, since (Wa, (Pr1, €7), (Pry1r, er)) € V[r]. (because (W1, (®r1y, €7), (o, e:)) € V[r]. and
Wi Eopy,0p, W2) and (Wa, (Pr1r,€3), (P, e;r)) € V[n]., so (W, (Pp11 W @pyy, (7, €3)), (Pror W
Do, (el', e;')) € V[r; @ r].. Finally, since W o, 0,, W1 and W Co,, 0,, W2, we have W Cq,, o,,
W,, which suffices to finish the proof. O

LEMMA 3.46 (COMPAT let).

ATET;Qr ke et @ w Ag; To AN T T5Q0,8, i 71,8, 0T F ey < ey T As; T
= AT Q1 WQ, ket (ag,a)) =epiney < let (as,a,) = e iney : 7w Ag; I

Proor. Expanding the hypotheses, it is clear that A = Ay = Asand [} =1, = I5. Let A = A4
and I =T7.

Moreover, Ay; T35 150 W Qy F let (aq,a,) = eg in ey : 7w As; I3 by the let typing rule. Ergo, it
suffices to show A;T;T;Q; W Q, k let (a,,al) = e iney, < let (a,,al) =e;ine, : 7.
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Expanding the conclusion, given
YW.Npyryryo.p € DIAIANW,0,0,yr) € GIT],A(W,0,0,yr) € GII]. AW, @1, D, y0) € G[Q1 W Q]
we must show
(W, (@4, close; (yr, close; (yr, close; (yo, let (a.,a.) = e; in e,7)))),

(@, close (yr, closez (yr, closes (yo, let (a,.,al) = e; in e,7))))) € E[7].

By pushing the compilers and substitutions through the let, we can refine this to:
(W, (@4, let Xgresh = close; (yr, close; (yr, close; (yo, €1*))) in
let as = fst Xfresh in let a, = snd xgesh in close; (yr, close; (yr, close; (yo, €27)))),

(D3, let Xfresh = closes (yr, closez (yr, closez (yo, €1%))) in
let ao = fst Xgresh in let @) = snd Xgesh in closez (yr, closes (yr, closez (yo, €2%))))) € E[7].

Next, by Lemma 3.5, we have that yo = y; Wy, ®1 = &1 & &y, and &, = Oy W Oy where

(W, @y, @z, 11) € G[O].
and
(W, @4y, @ar, 12) € G[O].
and forall i € {1,2},
close;(yo, e:*) = close;(y1,e1")
and
close;(yo, e:*) = close;(yz, e2")
Thus, we refine the statement we need to prove to:
(W, (®1; W Dy, let Xresh = close; (yr, close; (yr, close; (y1,€1%))) in
let as = fst Xresh in let @) = snd xgresh in close; (yr, close; (yr, close; (y2, €27)))),
(Py1 W Doy, let xfresh = closey (yr, closes (yr, closez (y1, €1%))) in
let ae = fst Xfresh in let 2, = snd Xresh in closez (yr, closez (yr, closez (y2, €2%))))) € E[7].

Let ey and e; be the first and second expressions, respectively, in the tuple above. Expanding the
definition of the expression relation, given:

V(I)rl,(brz, Hl,HQZW, e;, H;, ] < Wk
O 1 #D1) & Oy A Dpp#tDy & Do A Dy U Dy W By, Oy & Dy W Dy - WA

(Bp1 @ flags(W, 1) & Oy & By, Hy, 1) 5> (B, HY,ef) -
we must show that either e] is fail Conv or there exist @1, @y, o, Dya, v, Hj, W’ such that:
(@5 W flags(W, 2) & Oy & @y, Hy, ) > (@2 W flags(W', 2) & By 1 Do, Hj, Vo) -
A (Di = q)rl (V] ﬂags(W’, 1) (V] (Dfl (V] (Dgl/\
AWEs, 5, WA Hi, H; W’
A (W', (@f1,€)), (D2, v2)) € V[r]p)
Therefore, we find that
(O, ¥ @y, W flags(W, 1) W Oy, Hy, close; (yr, close; (yr, close; (y1,e1%))))

either reduces to fail Conv, in which case the original expression steps to fail Conv, or to some
irreducible configuration (®,; & @, W flags(Wy, 1) W @py; W Oy, HY, €7), in which case

(D W Dy W flags(W, 2) & Dy, Hy, closes (yr, closez (yr, closez (y1, €1%))))
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also reduces to an irreducible configuration (®,; W ®,, W flags(Wi,2) W O py W Oy, HY, e?) and
there exists some world W; where W Co,,wa,,.0,,00,, W1, H], H; : Wi, and (Wi, (@ry, €7), (Pra, e:)) €
(V[[ﬁ ® T_)]]
By expanding the value relation, we find that
Qpyp = Qi W gy
ey = (Vi v3)
Do = Ppon W Oy
= 0D
where
(Wla ((Dfllla Vi’]()s (d)fZIls V":.)) € (VHTlﬂ'
(Wi, (@f117,V3), (Prarrs V1)) € V1],
Thus, the original configuration with H; steps as follows:
(D, W flags(W, 1) W &y W &y, Hy, let xgesh = close; (yr, close (yr, close; (y1,€1%))) in
let ae = fst Xfresh N let @, = snd xgresh in close; (yr, close; (yr, close; (y2, €27)))) 5
(Qp1 W @y, W flags(W), 1) W Dpypp W Dpypp W gy, HY, let Xpresh = (v3,V3) in
let as = fst Xfresh N let @, = snd xgresh in close; (yr, close; (yr, close; (y2, €27)))) 5
(1 W Oy Wilags(Wi, 1) W Opypp W Opygp W By W {fiy, fr }, H,
[a, > protect(v], fi1)][as > protect(v;, for)]close; (yr, close; (yr, close; (y2, €27))))
where fi; # fo and fi;, for € 1 W Dy, W Qpyy W Dy W Dy
By similar reasoning, the configuration on the other side with H; steps to:
(D2 & @y W flags(W1, 2) & @payp & @pppp W Doy W {fir, for }, H3,
[ae protect(vr,ﬁ,)] [a] — protect(v;,fm)]closeg (yr, closes (yr, closes (y2, €2%))))
where fi, # for and fir, for € Oo W Dy W @ po W Dpapr W Doy
Next, notice that:
(Wi, @1, & @11y & Opyp W {fir, for} Por W Cpan © oty W {fir, for ), i
Y2lae = (protect(vy, fi1), protect(vy, fir))][as = (protect(v;, fa), protect(v,, for))]) € G[Q2. a0 : 71,2, = 1]
Thus, we can instantiate the second induction hypothesis with
Wi, yr, . .
Y2lae — (protect(vj,ﬁﬂ,protect(vi,ﬁr))] [al — (protect(vz,fﬂ),protect(vé,fzr))],p
to find that:
(W,
(P1r W Dpyp W Dpyye W {fin, far},
[a, > protect(v], fi)][ay > protect(v;, for)close; (yr, close; (yr, close; (y2, €27)))),
(CI)Zr U q)fle V) (I)ler V {flraﬁr}>
[a. > protect(v], fin)] [a > protect(v}, for)Icloses(yr, closes (s, closes (12, %)) € E[].
Then, consider again the above configurations:
(O WOy, W flags(Wy, 1) W @pyyp W Dpyp W Ry W {fiy, for }, HY,
[as = protect(v], fir)][a; > protect(v;, for)]close; (yr, close; (yr, closey (y2, €27))))
(Prp W Dy W flags (W1, 2) W @y & Dy W Doy W { frr, for }, H3,
[a. > protect(v], fir)][a, + protect(vy, f>)]closes (yr, closes (yr, closez(yz, €:))))
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By applying the above fact, we find that the first configuration either steps to fail Conv, in which
case the original configuration steps to fail Conv, or steps to some irreducible configuration
(@1 & Dy W flags(Wa, 1) W Oy, W By, H €3)
in which case the second configuration also steps to some irreducible configuration
(@2 & Dy W flags(Wa, 2) W Oy W ygyr, HY €]

and there exists some world W, such that W; Co . wo ;0. wp.,, Wo, HT, HY Ws,, and
r19PLg11,Pr2 1 2

g2l

(Wa, (Bp11.€5). (Bpar-€)) € V7],
Finally, since W Co, ,, W1 and W; Co,, 0,, W2, we have W Lo, 6, W2, which suffices to
finish the proof. O
LEMMA 3.47 (ComPAT (e),).

A=NAT=T"AT; G NTre<e:t~»wI[; QA i1 ~71
= AT LOF(e), < (e), i rm AT

Proor. Expanding the third hypothesis, there exists some (. such that O = Q. w Q" and
IQu;A;Tre<e: .

We have A = A’ and T’ = T’ by the first two assumptions. Moreover, A; T;T;Q F (e), : 7w AT
by the conversion typing rule. Thus, to prove the conclusion, it suffices to show A;T;15Q +
le)r < (e)r:

Expanding the conclusion, given
YW.Npyryryo.p € DIAJA(W,0,0,yr) € G[TI,A(W,0,0,yr) € G[I].A(W, D1, P2, v0) € G[].

we must show

(W, (®;, close; (yr, close; (yr, close; (Yo, (€) . F)))), (P, close, (yr, closes (yr, closex (yo, (), 7))))) € E[7].
We can push the compiler and substitutions through the pair to refine that to:

(W, (@1, Criss - (close; (yr, close; (yr, close; (Yo, €%))))),
(P2, Cris - (closes (yr, closes (yr, closez (yo, €1)))))) € E[7].

By Lemma 3.3, it suffices to show:
(W, (0, Criss- (close (yr, close; (yr, close; (yo, e¥))))),
(0, Cris - (closex (yr, closes (yr, closez (yo, €%)))))) € E[7].
Next, by Lemma 3.5, we have that yo = y1 Wy, @1 = &1 & &y, and Oy = Oy W Oy where

(W, @11, @21, 11) € G[Q].
and
(W’ q)lr, cI)Zr, }/2) € g[[Q/]]'
and forall i € {1,2},
close; (yo,e1™) = close;(y1, e™)
Thus, we refine the statement we need to prove to:

(W, (0, Crrs . (close; (yr, close; (yr, close; (y1, €¥))))),

(0, Cris - (closez (yr, closes (yr, closez (y1,€1)))))) € E[7].
Now, by instantiating our induction hypothesis with W, yr, yr, y1, p, we find that:

(W, (0, close; (yr, close; (yr, close; (y1,€)))), (0, close, (yr, closez (yr, close, (y1, €1))))) € 8[[rﬂp
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By Lemma 3.14, it follows that:
(W, (0, close; (yr, close; (yr, close; (y1, €¥)))), (0, closes (yr, close (yr, closes (y1, €7))))) € E[7].
Therefore, by Theorem 3.18, we have

(W, (0, C.r(close; (yr, close; (yr, close; (y1,€%))))),
(0, C.sr(closes (yr, closes (y1, closez (y1,€7)))))) € E[7].

as was to be proven. O
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4 CASE STUDY: MEMORY MANAGEMENT AND POLYMORPHISM
4.1 LCVM Language

Our target is an untyped lambda calculus with pairs, sums, and references.

4.1.1 Syntax.

Expressions e = ()|Z|r]|x]|(ee)|fste|snde]|inle]|inre|ife{e} {e}
| match e x{e} y{e} | letx=eine| Ax{e} | ee | ref e | alloc e | free e
| callgc | gcmove | le|e:=e|failc

Values v x= (| Z]¢](v,v)]| Axe

Error Code ¢ = TypE | CoNV | PTR

Heap H n= [lg—cw, . {’lgv, ..

Evaluation Context K =[] | (K,e) | (v,K) | inl K| inr K | match K x{e} y{e} | if K {e} {e} |
letx=Kine|Ke|vK|ref K|allocK]|free K|gcmovK|!K|K:=e|
v =K

4.1.2  Dynamics. Our operational semantics uses evaluation contexts to lift steps on subterms into
steps on whole programs.

v # (vi,v2)
(H,fst (v,v")) = (H,v) (H, fst v) = (H, fail TypE) (H,snd (V/,v)) = (H,v)

v # (vi,v2) n#0
(H, snd v) = (H, fail TypE) (H,if 0 {e1} {e2}) = (H,eq) (H,if n {e1} {e2}) = (H,e5)

vgZ
(H,if v {e1} {e2}) &= (H, fail TypE) (H, match inl v x{e1} y{ex}) = (H, [x>v]e)
v ¢ {inrv/,inl v'}
(H, match inr v x{e1} y{e2}) = (H, [yrv]ey) (H, match v x{e1} y{e>2}) = (H, fail TypE)
(H,let x =vine) = (H, [x—v]e) (H, Ax{ep} v) = (H, [x—V]ep)
v £ Ax{e} ¢ ¢ dom(H) t ¢ dom(H)
(Hvv) = (Hfall TYre) (4 ref vy 5 (H[550], 0) (H,alloc v) = (H[£50], )
v eH Sy e H ¢ ¢ dom(H)
(H,free £) = (H\ ¢,()) (H, free £) = (H, fail PTR) (H, free £) = (H, fail PTR)
v eH H[¢] = v ¢ ¢ dom(H)

(H, gcmov £) = <H[f'g_cw]’[> (H,!t)  (H,v) (H,!¢) = (H, fail PTR)
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vEL (S veH ¢S veH
<H, 'V> = <H,fa|l TYPE> <H,t7 = V/> = <H[{7$V’]’ ()> <H,f — V/> = <H[ffg—C>V,], ()>
¢ ¢ dom(H) vEL
(H, ¢ :=V") & (H, fail PTR) (H,v := V') = (H, fail TypE)

Let H : MHeap denote that H only contains mappings of the form ¢ > vand let H : GCH eap

denote that H only contains mappings of the form ¢ S

Next, let FL(e) and FL(K[-]) be the set of locations that appear free in e and K, respectively. Then,
we say that a location ¢ is directly reachable from a location ¢’ in the heap H if £ € dom(H) and
¢ € FL(H(¢")). We say that ¢ is reachable from ¢’ in H if one can construct a sequence of locations
b =1,0,0,...,6, = where ¢ is directly reachable from ¢,_; in H for all 1 < i < n. (Note that,
for any location ¢ and heap H, ¢ is reachable from ¢ in H because we can construct the singleton
sequence £ = {.)

Finally, let reachablelocs(H, L) be the set of all locations in dom(H) reachable from L in H. (Note
that L C reachablelocs(H, L) by the previous parenthetical obversation.)

Using the above definitions, we further define a step on whole programs that performs garbage
collection. This step is indexed by a set of locations L denoting the locations that must be preserved
and can not be garbage collected. The step shrinks the heap non-deterministically, ensuring that
garbage-collectable locations which are reachable from either the program or L are not removed
from the heap.

Hgye : GCHeap Hp : MHeap
reachablelocs(Hge W Hy,, dom(H,,) U FL(K[-]) U L) N dom(Hy.) dom(H;C) Hy. € Hge

g
(Hge W Hpm, K[callge]) —1 (Hye @ Hm, K[O])
Finally, we also let steps on whole programs to take steps according to = and to lift fail c errors
out of evaluation contexts:
(H,e) = (H',e") K#[]
(H,K[e]) =1 (H’,K[€e']) (H, K[fail c]) — (H, fail ¢)

Note that we use — to denote — .

4.1.3 Properties.

LEmMA 4.1 (LirTING STEPS OUT OF EvaLuaTioN CoNTEXT). If (H,K[e]) —1 (H’,K[e’]) and
K[e’] is not of the form fail c, then (H,e) —rur(x(.) (H,e’).
Proor. Since it is given that K[e’] is not of the form fail c, there are two cases:

(1) The given — is the result of a callgc instruction. In this case, e must be of the form
K’[callgc] and e’ must be of the form K’[()] for some evaluation context K’. Moreover,
there exist Hy. : GCHeap, H,, : MHeap, H‘(’]C such that H = Hge W Hp, H = H;c W H,,,
Hge € Hyc and

reachablelocs(Hge W Hy, FL(K[K'[]]) U L) N dom(Hge) € dom(Hy,)
Then, notice that FL(K[K’[-]]) = FL(K'[-]) U FL(K[-]). Ergo,
(Hge W Hp, K'[callge]) —rurx()) (Hge @ Hm, K'[O])

as was to be proven.
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(2) The given — is the result of a =. In this case, e must be of the form K’[e,] and e’
must be of the form K’[e_] for some evaluation context K and expressions e,, e, such that
(H,e.) = (H’,€]). It then follows that (H, K'[e.]) = (H’,K’[e.]), as was to be proven.

[m}

LEMMA 4.2 (STEPPING RESPECTS EVALUATION CONTEXT). If (H,e) —rup k() (H',e’) ande’ is
not of the form fail c, then
(1) (H,K[e]) =1 (H,K[e])
(2) for any H., eq such that (H,K[e]) —1 (He, €s), there exists a eqe such that eq = K[€es].

Proor. Proving (1) is trivally similar to the proof of Lemma 4.1, so we focus on proving (2). We
do case analysis on the reduction (H,e) —rur(x[.) (H’,e’):

(1) The given —1yrr(k[.]) is the result of a callgc instruction. In this case, e must be of the
form K’[callgc]. Then, for any H,, e, such that (H,K[e]) —1 (H.,e.), because K[e] =
K[K’[callgc]], that step must be a callgc instruction, so e, = K[K’[()]], and thus choosing
eee = K'[()] suffices to finish the proof.

(2) The given —yp(k[.]) is the result of a =. In this case, e must be of the form K’[e*] and
e’ must be of the form K’[e*’] for some evaluation context K’ and expressions e*, e*’ such
that (H,e*) = (H’,e*’). Moreover, e* # callgc, because (H, callgc) ¥, and e* is not of the
form fail ¢, because (H, fall ¢) ¥>.

Ergo, for any H,, e, such that (H,K[e]) —1 (H.,e.), because K[e] = K[K’[e*]], this step
must be the result of a =. Thus, there exists some e*” such that (H,e*) = (H,,e*"") and
e, = K[K’[e*""]], so choosing ese = K’'[e*”'] suffices to finish the proof.

O

LEmMMA 4.3 (SUBTERM TERMINATION). If (H,e) 5 (H’,€e") /1 where e’ is not of the form fail ¢
and (H, e) 5. (He, K[es]) is a prefix of the aforementioned reduction, then (H, e) 5 (H.,K[e.]) is

also a prefix of the original reduction for some H),, e,” such that (H., e.) _*>LUFL(K[-]) (H.,el) L -
Proor. Consider the largest integer n such that there is a reduction
(H,e) _*)L (He,K[ee]) —1 (H-,la K[e-,l]) —L" " L (H-,m K[eO,n]) (25)

that is a prefix of the original reduction (H, e) 5 (H,e") /1.
There exists such an integer n because we can choose n = 0. Moreover, there is an upper bound
on such integers n because the original reduction is terminating and thus has finite length. Also,

since (Hi, K[eo]) 5 (Hen, K[€en]), by Lemma 4.1, (Ha, €o) 5 (He.n, €e.n). There are two cases:

(1) This prefix is the entire reduction (H, e) 5 (H’,¢’) 41, implying that H" = H,, and
e’ = K[esn]. Thus, (Hepn Klean]) #1, so by Lemma 4.2, (He p,€0n) A rurx|.])- Thus,
choosing H, = H., and e, = e, , suffices to finish the proof.

(2) This prefix is not the entire reduction, so (H, e) 1>L (Hen, Kleen]) =1 (H”,€”) is also a
prefix of the original reduction. e’ can not be of the form K[e’”’] because if it were, then
we could choose He 41 = H” and e, 41 = €’ to create a longer reduction of the form (25),
which would contradict the maximality of n. Ergo, if (H, », €sn) Were not irreducible under
—UFL(K[-])> that would contradict Lemma 4.2. Thus, (He p, €en) 7 1UFL(K[.])> SO choosing
H, = H., and e, = e, » suffices to finish the proof.

[m}
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Note that when applying Lemma 4.3, we sometimes leave K implicit and we often write “e,” as

v”, even though it must actually be proven to be a value.
Moreover, in the proofs of the compatibility lemma, we are often given that (H, e) 5 L (Hy,vy) =+

and then we apply Lemma 4.3, possibly multiple times, to show a reduction (H, e) 5 (H",Vv") -+
for some other configuration (H’,v’). We then conclude that (Hy,vq) = (H’,v’) because, even
though — is not confluent, we implicitly deduce that since we applied Lemma 4.3, the reduction

(H, e) 1>L (H’,v") -» is a prefix of the original given reduction (H, e) i>L (Hy,vq) .

4.2 MiniML Source Language

4.2.1 Syntax.
Type r = a|unit|z— t|Var|refc|{(r)
Expressione = x| ()|Ax:7e|Aae|ee]|e|r]|refe|lele:==¢] (e,

4.2.2 Statics. | \;T;N;T ket

x:7€eTl AN AT, x ke
NI AT Ex: T N AT F () sunit N, NTRAX e > 1
NI AT ke it > 1 NI ANT Rey iy AN, ;T ke T
NI AMT Fepep AT AT+ Aae s Ya.r
NN T Fe:Var AN AT res T AT AT Fe:refr
N NTre ] [a ol AT AT rrefe:refr AT AT Rle: T
NI AT Feqirefr AN AT Rey T NT; A Tre:T TT
AT AT Feqi=ep :unit M ATF (e)r it

4.2.3 Compiler.

X ~mr X

0 ~ ()

Ax:1.6 s Axet

€1€; ~wooeteyt

Aa.e ~wo A et

e [7] ~e*()

ref e ~s et _ = callgcin ref e*
le ~w o let

€1 =6 W 81+ = 62+

(]eDr i CTb—>r(e+)
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4.3 L3 Source Language

4.3.1 Syntax.
Type © = unit|bool|t®7r |7t —o7|!r|ptrl|caplr|V{r|3Ax
Value v = Ax:te|()|B|(v,v)|!V|Ale|T v
Expressione := v |x| (e, e)

|ee|let() = eine|ifeee|let(x, x) = eine|let!x = eine
| duple | drope | newe | freee | swapeee

|e[l] |7 eT|let 7, x7 = eine

| (e

DUPLICABLE := unit | bool | ptr{ | !r
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4.3.2 Statics. | \;T; ;T ket
AT, N x:m ke
AT Ax:TkhX:T NT;MTHAX :Tie i1 — T

AT T eyt — 1 AT T Fey iy
NT; AT W Fepey: A;T;0;0 F () ¢ unit

A;T; AT F eq : unit AT T ey T
AT; AT Wl klet () =ejineg st A;T;A;0 + B : bool

A;T;A;T; + eg : bool NT;ATyFey s T ANT;A Ty Fes: T
NT; AT W Fifejeses: T

AT, N ket AT M) Fes 1y
AT AT W b (el, eg) 71 ® 1Ty

AT T e i1 @1 AT AT, X1 i1, X i o b eyt T AT T RVt
N;T; AT W, ket (xq, Xo) =ejiney: T NT; N TRV I
AT, N Feg s Iy AT, ATy, X1 Feg o A;T;A;Tre: !t
AT AT W Flet!x =ejiney : 1 A;T; AT Fduple: It @It
AT AT keIt AT AT re:t
A;T; AT F drop e : unit A T; AT Fnewe : 3 .cap {7 ® Iptr ¢

A;T;ATRe:3capl T ® Iptr
AT AT F freee: A1

A T; AT  Fep:capln A T; ATy Fey:ptr ¢ N T;A;T3 Fes: 13
AT, AT Wl Wi Fswapeyeges:capl s ® 11

ANT;AGTRe: T AT; AT Re: VT e
A;T; 0T FALe VT NT;ATrRe [ [C- e

AT ATRe: [( - ] e
NT;ATRT, €730

AT; 0T ke s A0 NN Gl x:TF ey 1o FLV () C A
AT ATy Flet 70 x7 = ejine;

AT AT re:t T~T
N T AT F qur i T




4.3.3 Compiler.

X
Ax:T.e

€1 €2

0

let () =ejine;
true

false

lf €1 €2 €3

(e1, e2)

let (xq, x2) =ejine;
v

let!'x =e;in ey
dupl e

drop e

new e

free e

swap e. e, ey

Al.e

e [¢]

rg, e’

let "¢, x7=ejine,

(e)-

4.4 Logical Relation

LA I I 2 2 2 2 T A A A 2 2 O I I A
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X

Ax.e*

61+ e2+

0

let _= €1+ in €2+
0

1

if €1+ e2+ 63+

(e, ex*)

let p=e;*inletx; =fstpinletx, =snd piney*
+

v

letx =e;"iney?t
let x =e*in (x, x)

let _=¢e*in()

let _ = callgc in let x, = alloc €™ in ((), x;)

let x = e* in let x, =!(snd x) in let _ = free (snd x) in x,

let x, = e, inlet _=ecinlet x, =!x,inlet _ = (x, := e, ") in ((),xv)
A_.et

et ()

e+

letx =e;Tineyt

CTb—»r(e+)

4.4.1 Worlds. A world W is drawn from:

World,, = {(k,¥) | k < n A¥Y C HeapTy, A dom(¥) is a bijection}

World = U World,,
n

where k is the step index and ¥ is a heap typing.
This heap typing has the following shape:

where ¢ are heap locations.

HeapTy, = {(t1, &) — Typ,....}

Atom,, = {(W, (Hy,eq), (Ha,e2)) | W € World,, A dom(H;)#dom((W.¥)!) A dom(H,)#dom(( W.¥)?)

A H;: MHeap A H, : MHeap}

H; and H; represent the manually managed locations owned by e; and e,, respectively. As stated
in the definition above, none of the locations in H;, H, can be in the world and all locations in
H;, H, must be manually managed.

AtomVal, = {(W, (Hy, v1), (Hy, v2)) € Atom, }
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Atom = U Atom,,
n
AtomVal = UAtomValn
n

Restrictions. We define restriction based on indexing over relations as:
I_RJ] = {(W, (Hl, e1), (Hz, 62)) I (W, (Hl, 81), (Hz, 62)) ERAWEk< _]}

[¥]; ={(6, &) — [R]; | (&1, &) — Re ¥}

Later. We define a > (later) modality defined as restricting the index to the current one, which
forces the worlds “forward” one step (as it cuts out everything with the current step index). On a
world W, bW = (W.k— 1, [ W.¥]wr_1).

Heaps. A heap H is:

Hz{flgv,...}t’f){t’nﬁv,...}
And we define when a pair of heaps H;, H; satisfy a world as Hy, Hy : W:

H; : GCHeap A Hy : GCHeap A
V(fl,fz) — Re WV, 3V1,V2.[1 }%‘) vieH{ AL 'ﬁ v € Hy A ([>W, (0,V1), (0, Vz)) €R

i.e., locations must point to closed values that are in the relation specified by the heap typing.
Notice that these locations must be garbage-collectable.

World Extension. In Atom, the tuple (W, (Hy, e1), (H2, e2)) contains manually managed locations
owned by the heaps in Hy, H; and garbage-collectable locations in the world W. Moreover, ey, e;
contain locations that are reachable which must remain valid and not be garbage-collected for the
tuple to still be well-defined. Therefore, to define world extension, we must index world extension
both by the sets of locations owned by H;, H; and the sets of locations reachable from e; and e;.

Let L denote a pair of sets of locations and n denote a bijection of locations. For any worlds
(k, V), (j,¥') € World, if L.1#dom(¥!), L.2#dom(¥?), and 5 C dom(¥), we define that (j, ¥’) is
a world extension of (k, ¥) while avoiding L and preserving n, denoted by (k, ¥) Cr, (j, ¥’), when:

<k
A L.1#dom((¥")!) A L.2#dom((¥")?)
AV (b, b) € n.Y' (0, 6) = ¥ (6, 6)];
We also define a strict version, that requires that the step index actually decreased:
Wy CLy Wy £ Wik > Wok A W; EL,U W,

For any set of locations Ly, Ly, let rchgclocs(W, Ly, Ly) be the subset of pairs of locations in
dom(W.¥) whose first component is in L; and whose second component is in L,.

Then, we define a shorthand notation for world extension indexed by heaps and expressions,
since .1, L.2 are usually domains of heaps and 5!, 5? are usually sets of free locations in expressions:

Wi Bty Hyere, W2 = Wi Edom(H,).dom(Hy))n W2

where
n = rchgclocs( Wi, FL(cod(H1)) U FL(e4), FL(cod(H2)) U FL(e;))
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Finally, we define Typ in terms of world extension as follows:

Typn = {R (S zAtomValn | V(W, (Hl, V]), (Hz, Vz)) € R. VW/ w EHI,HZ,VI,VZ W/
= (W', (Hy,v1), (Hz,v2)) € R}
Typ = {R € 2At°mVal | vk | R, € Typ,}

4.4.2  Expression Relation.

Elrl, = {(W,(Hye), (Hze)) |

VL, Lz, v, Hige, Hoge © W, Hy1y : MHeap, Hy..

(Higs & Hy W Hiy, e1) =1, (Hiwvi) =1,

= 3H}, H{, VHy, : MHeap 3H;, W/, Hy v,
Hi. = Hj WH] W Hy AH{H - WA
w E(dom(HH),dom(Hz+)),rchgclocs(W,LIUFL(cod(H1+)),L2UFL(cod(H2+))) W’ A
(W', (H],v1), (H},v2)) € V7], A
(Hage W Hy W Hay,€2) =1, (Hy W HY W Hopvo) -,
A Hl/ = Hg/ = 0}

Note that the parts highlighted in MiniML colors only apply to types 7 from MiniML, not types 7
from L.

4.4.3  Value Relation.
V[al, = pF(a)
V[unit], = {(W,(0,0),(0,0)}
Vo — ], = {(W,(0,Ax1.e1), (0, Ax;.€2)) |
VW/,V], V2.W E@,@,el,ez W’ A (W’, (0, V1), (@, Vz)) € (V[[ﬁ]]p -
(W7, (0, [x1 = viler), (0, [x2 = valez)) € E[n2],}

V[Va.1], = {(W,(0,A_.eq),(0,A_.ep)) |
VR € RelT, W . W Eppe e, W = (W', (0,e1),(0,e7)) € 8[[T]]p[F(O.’)r—>R]}
V[ref 7], = {(W,(0,6),(0,6) | WY, ) = V[]plwi}
VIO, = V[,
V[unit], = {(W,(0,0),(0,0N}
V[bool] , = {(W,(0,b),(0,b)) | b e {0,1}}
V[ ® ], = {(W,(Hy WHy, (vi, vir)), (Hz W Hap, (Va, var))) |

(W, (Hy, va), (Haz, var) € V] pA
(W, (Hyp, vir), (Hap, vor)) € q/[[7'2]]p}’
VI < ], = {(W,(H,Ax.e1), (Hz, Axz.€2)) | VW', Hig, v4, Hao, va.
W EH, Hyere, W A (W', (Hio, V1), (Hao, v2)) € V1],
= (W', (H1 WHy, [x1 = viler), (Hz WHy, X2 > valez)) € E]n],}

(V[[!T]]P = {(W’ (05 V])’ (0’ VZ)) | (W’ (0’ VT): (05 VZ)) € (V[[THP}
Vptr ], = {(W,(0,4:),(0,8)) | p.L3(0) = (&1, 8)}
Vcaplr], = {(W,(Hiw{fi = vi},0), (HoW{ - v2},0)) |
pL3(0) = (61, &) A (W, (Hy,v1), (Hz, v2)) € V[7],}
Vv, = {(W,(Hy,A_e1), (Hz,A_.e2)) | Vllo. (W, (Hy, e1), (Hz,€2)) € E[r]p1is(0)m (a1}

(V[[Eé(‘[ﬂp = {(W, (Hl, V]), (Hg,Vz) | 3{71(2. (W, (Hl,V]), (Hz, Vz)) € (V[[T]]p[L3(§)*—>(l’1,f2)]}



142 Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed

4.4.4 Extending to Open Terms.

G, = {(W,)}
Glhx:7], = {(W,ylx= (vi,v2)]) [ (W,y) € G[T]p, A (W, (0,v1),(0,v2)) € V[r],}
g[[]]p = {(W,@,O,)}
Glhx:7], = {(W,HiWHi,HaWHoy y[x = (vi,v2)]) |
(W,Hy, Ha,y) € G[T]p A (W, (Hix, 1), (Hax, v2)) € V[z],}
O[] = {}
DA, o] = {pla—>R]|pe D[A] AR € RelT}
DA ] = {pl{ = (6,0)] | pe DA}
AT AT ey Zey:7 = VpyL,yr W

pL3 e D[A] A p.F e DIA] A (W,0,0,y1) € G[I], A (W, yr) € G[T],
= (W, (0, (1 (1)), (0, ¥ (v} (e2M)))) € El7],

AT AT Rey ey = Vp,yr, vy, W, Hp Ha.
p.FeDIA]ApL3e DIA] A (W,yr) € G[I], A (W,Hy, Hay1) € G,
= (W, (Hy, v (y} (er)), (Ha, yE (vE (e2M)))) € E[7],

4.5 Convertibility

7 € DUPLICABLE

C<T>»—>T’Cﬂ—><7.'> : <T> ~T

CVa.a — (@ = a)msboob CooolVa.a — (a — a) * ¥&-& — (& — a) ~ bool

71 € DUPLICABLE CronCrmrn 111 ~ 1y Crmr Crr, 1 T2 ~ 12

CT1 — Ty (lrp—1y)s C!(!‘rlwrz)i—)ﬁ -1 2 !(!Tl -0 TZ)

Cron,Crorir~1

Cref T3¢ .capd 7 ® Iptr? Cﬂg.cap_{‘r ® Iptryref T refr~ Eg.capgr ® !ptr§

(o) ® ¢

Con(r) € e

CVO(.O( — (0( — 0()»—>b001 € let f=ein ((f ()) 0) 1

C letx=ein A_AtAfif xtf

bool-Ya.aa — (a — a) €
Cri > el(inon) € letf =ein Ax. (Cr,r, (f (Crory X)))
let f =ein Ax. (CTZHT2 (f (CﬁHTl x)))

let x, = alloc Cr—.(1e) in (), xp)

C!(!Tlﬂ"fz)'—’ﬁ — 1€
C
C

ref T—3{.cap{7 ® !ptr{ €

L L o | L | Lo [ o

Stcapit @ priroref T € let x, =snd e inlet _= (x; := Crsr(!xp)) in gcmov xg

THEOREM 4.4 (CONVERTIBILITY SOUNDNESS). If 74 ~ tp then for all p,

(1) V(W, (Hl,e1), (Hz, 62)) <€ 8[[TA]]p. (W, (HI:CTAl—)TB 61) s (HZyCTAl—)TB 62)) € SHTBHP; and
(2) Y(W,(Hy e), (Ha,e2)) € 8[ra]p. (W, (Hi, Cryry €1), (Ha, Cryinry €2)) € E7a]p

Proor. By simultaneous induction on the structure of the convertibility relation.
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(1) We are to show that
V(W, (Hi,e1), (Hz €2)) € E[(D)]p. (W, (H, Crpyy @) (Ho, Gy ez)) € &[],

Expanding the definition of C .y _, , &[] and pushing substitutions in the goal, we are to
show that

3H, Hi, VHy, : MHeap.3H), W/, Hy, v,.

Hl* B H;g V] H; V] H1+ A H;g, Hgg/ : W’ A

W' E(dom(Hyy).dom(Hsy)),rehgelocs (W, L UFL(cod (His ), LaUFL(cod(Has ) W A

(W', (H,v1), (H),v2)) € V], A

(Hzg+ W Hy W Hayoe2) =1, (Hy WH) WH vo)

given arbitrary W, Ly, Ly, Higy, Hagy : W, vy, Hy, Hy, Hiy : MHeap, Hy. such that

(Hig+ WHy WHyy, eq) =1 (Hi,vi) A1,
Because (W, (Hy, e1), (Hz, e2)) € E[(7)],, we find that Hy, = H{g @ Hy, and

(Hags W Hy W Hay, e2) 1>L2 (Hég W Hap, vo) A1,
where Hi , H)  : W’ for some world W' (dom (Hy, ) dom (Hy) ).rehgelocs(W.LyUFL (cod (H 1)), LUFL (cod (Hz4))
W’ such that
(W,(0,v1), (0,v2)) € V[(D)],
From here, we can take W' = W', H] = 0, H; = 0, H{g = Hig, and Hgg = Hgg. Then, from
expanding (W', (0,v4), (0,v2)) € V[(1)],, we find (W', (0,v4), (0,v,)) € V[r],, which
suffices to finish the proof.
(2) We are to show that

V (W, (Hye)), (Hy ) € E[],. (w, (H1,Clpy,se e (Ha Crpy ez)) e &[],
Expanding the definition of C .y _, , &[] and pushing substitutions in the goal, we are to
show that

EIH;g.VHzJr : MHeap.3W’, Hég, Vj.

Hi = Hi W H] W Hiy AH Hag s WY A

w E(dom(H1+),dom(Hz+)),rchgclocs(W,L1UFL(cod(H1+)),L2UFL(cod(H2+))) W’ A

(W7, (0,v1), (0,v2)) € V[(D)], A
(Hzg+ W Hy W Hayoe2) =1, (Hy) WHa, va) =+,

given arbitrary W, Ly, Ly, Higi, Hagy @ W,vq, Hy, Ho, Hyy @ MHeap, Hy. such that

(Hige W Hy W Hi ) 1, (Hiovi) A1,
Because (W, (0, e;), (0,e;)) € E[7],, we find that Hy. = H{g W H} W Hyy and

(Hzg+ W Hoy, ez) —1L, (H;g W Hé ) H2+;V1) 7L)Lz

where H , H) : W’ for some world W' (dom (H,,),dom (Hz) ).rehgelocs(W,LyUFL(cod(H 1)), LUFL (cod (Hz4))
W’ such that

(W', (Hi, 1), (Hg, v2)) € V[r],
Recall that 7 € DUPLICABLE = {unit, bool, ptr {, !7}. Then by inspecting definitions of V[7],
for all four of these cases, we have that H] = H} = 0.
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We then take W’ = W', H] = 0, H, = 0, H{g = H;g, and Hgg = H;g. Finally, given
(W', (0,v1), (0,v3)) € V[r],, it follows that (W’, (0,v+), (0,v2)) € V[(1)],.
‘Va.a - (a—>a)~ bool‘
(1) We are to show that
VY (W, (Hye1), (Hy ) € E[Va.a — (a0 — a)],.

(W, (H,.Cyy g — (¢ = a)-bool e1), (H2, Cypy o s (@ — &)rbool e2)) € &[bool],

Expanding the definition of Cy/,, , _, ( we are to show that

a — Q)bool’
(W, (Hy,let fy =eyin ((fi () 0) 1), (Hp, let f, =eyin ((f, () 0) 1)) € E[bool],
given arbitrary e;, e; such that (W, (Hy, e), (Hz, e2)) € E[Va.a — (a — a)],.
Expanding the definition of Cy/, , (4 — &) rspoor &[']- and pushing substitutions in the
goal, we are to show that

3H{, HY, VHy, : MHeap.3H), W/, Hy, v,.

Hl* = H;g V] H; V] H1+ A H;g, Hzgl : W' A

w E(dom(H1+),d0m(H2+)),rChgclocs(W,L1UFL(C0d(H1+)),LZUFL(cod(HB))) W’ A
(W', (H},v1), (H},v2)) € V[bool], A

(Hage W Ho W Hap let f = ey in ((F2 () 0)1) =1, (Hy ® Hy 8 Hay,va) 5,
given arbitrary W, Ly, Ly, Higs, Hogy = W, vi, Hy, Hy, Hyy © MHeap, Hy. such that
(Hig+ WHy W Hyy, let fy =eqin ((f; () 0)1) —*>L1 (His v1) =L,

By Lemma 4.3, we have that (Hygy W H; W Hyy,eq) —*>L1 (Hi*,v}) -, for some Hh,v}. Ex-

panding the definition of E[-],, in the premise and specializing where appropriate, we have
that H% =H] WHy; and
* g
(Hag+ W Hy W Hyy, e) S (H3y ¥ Has, vy) #I,
where Hig, Hég : W’ for some
W L (dom(Hyy).dom (Has ) ) rchgclocs(W,Li UFL(cod (Hys)),LsUFL (cod (Hap))) W'
such that
(W, (0,v)), (0,v3)) € V[Va.a — (o — )],
Expanding the definition of V[Va.ao — (@ — «)],, we have that
vi=A_elAvy=2_e) A
VR € RelT.(W’, (0,e}), (0,e))) € E]ar — (o — ] p1F (@)or]

To proceed, we take R = V[(bool)],. We do this because we expect the reduction to
eventually need a value in V[bool],, but by using the type (bool) instead (which has the
same interpretation in our model), we can apply Lemma 4.9 to get that:

(W', (0,e)), (0,e))) € E[(bool) — ((booly — (bool))]»



145

By the operational semantics of LCVM, we now have that
(Hig+ WHyg, let fy =eqin ((f; () 0) 1) —*>L1 (Hig WHy, let f; = A_elin ((f; () 0)1)
=1, (Hig 8 Hi, [fr o Ael] () 0) 1)
= (Hly W Hu, (((A_e3) 0) 0) 1)
51, (H, wHu, (] 0) 1)
i>L1 (Hiwvi) »1,
By Lemma 4.3, we have that
(Hig @ H1+,e}) =1, (Hi V) A1,
for some H3,, v3. Expanding the definition of E[-], and specializing where appropriate, we
have that H? = H{, ¥ Hy, and
(Hyy W Hay,e;) 1, (Hyy @ Hap,v3) 1,

where Hi?, Hy : W for some W’ T (dom(Hy),dom(Hae) ) rehgelocs (W, L UFL (cod (Hia)),L2UFL (cod (Hz )
W" such that

(w”, (0, v%), (0, v%)) € V[(bool) — ({bool) — (bool))],
Expanding the definition of V[(bool) — ({bool) — (bool))],, we have that
=3.e2 AVE = Axd.es A
V( W”,(0,v9), (0,v5)) € V[(bool)],.
(W”, (0, [x% — v?]e?), (0, [x% — vg]eg)) € &[(bool) — (bool)],

Observe that V[(bool)],, = V[bool] , and (W", (0,0), (0,0)) € V[bool], by definition, so
(W”,(0, [x3 — 0]e3), (0, [x5 — 0]e3)) € E[(bool) — (bool)],. By Lemma 4.3, we now have
that

(H;’ W Hu,, (Ax2.€2) 0) Ny (H W Hyy, [X2 o]ef) S (HR VD) -5

for some H3

3 .vi. Expanding the definition of &[] ,, we have that H? = H{, @ Hi, and
(H3y @ Hay, [x5  0]e3) —p, (Hy, @ Hay, Vi) b1,

where H;/g,, H;,g, : W for some W"’ l;(dom(H1+),dom(H2+)),rchgclocs(W,L1UFL(cod(H1+)),L2UFL(cod(H2+)))
W’ such that

(W”,(0,v3), (0,v3)) € V[(bool) — (bool)]
Expanding the definition of V[(bool) — (bool)],, we have that
= Axi.e] Av; = 1xg.eA
V(W"' (0,v9), (0,v3)) € V[(bool)],. (W, (0, [x1 — vile 3) (0, [x2 — vg]eg)) € &[(bool)],
Recall that V[(bool)], = V[bool], and (W', (0,1), (0,1)) € V[bool], by definition, so
(W,(0,[x3 — 1]e3), (0, [x3 — 1]e3)) € E[(bool)],. We now have that

(Hi;’ W Hyy, (Ax;.€7) 1) I, (H W Hpy, [x] — 1]3?) —*)L1 (Hi V) =+
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Expanding the definition of &[] ,, we have that H], = H{7”© Hy, and

(Hyy ¥ Hay, [x3 > 1]e3) i>Lz (Hyg" @ Hay, va) P,

where H{7”, H)7” « W for some W & (dom(Hy,),dom(Hy)),rehgelocs (W,Ly UFL(cod (Hi4)),LoUFL (cod (s )))

W//// and

(W, (0,v7), (0,v5)) € V[(bool)],
It follows that Hy, = H;’g" WH,and vy = v‘1‘. Thus, we choose H] = 0, H; = 0, H;g = H;’g",
Hj, = Hj’, and W’ = W"”. The fact that (W"”, (0, v1), (0,v3)) € V[bool], follows
trivially from the above statement and that V[(bool)], = V [bool] ,.
Finally, all that remains to show that

(Hage © Haplet fo = ey in ((f2 () 0) 1) Sy, (Hy) © Haopov) 51,

given arbitrary Ha,.
We have that

(H2g+ V] H2+, let f2 =€) in ((fz ()) O) 1) —*>L2 (Hég (V] H2+, let fz = /‘1_.8; in ((fz ()) 0) 1)
1
=1, (Hyg ¥ Hau, [f 5 ] ((F, () 0)1)
= (Hj, ¥ Hay, (A3 () 0) 1)
1 ’
—)Lz (HZg ] H2+, (e; 0) 1)
_*)Lz (H;; ¥ Hay, ((Ax3.€3) 0) 1)
1
=1, (Hay W Ha, [x5 > 0]e31)
_*)Lz (H;'g' W Hay, 15 e31)
1
—1, (Hyy W Hay, [ = 1]e))
_*)Lz (H//N U H2+, V;l)

29
L,
as was to be demonstrated.
(2) We are to show that

V (W, (Hy,e1), (Ha, €)) € E[bool],.

(W’ (Hi. CopoVaa — (¢ = a) e1), (H2,Coo oo — (o — @) e2)) €&Vaa — (a = a)],

Expanding the definition of C (a — o) Weare to show that

bool-Ya.at —
(W, (Hl, let X1 =€q in ()._).h/lf]lf X1ty f])),
(Ha, let x, = €3 in (A_Aty. AfL.if X2 15 f,))) € E[Va.a — (a — a)],



147

given arbitrary es, e, such that (W, (Hy, e1), (Hz, e2)) € E[bool],. Expanding the definition
of &[] 5, we are to show that

E]H;g.VHZ+ : MHeap.3W’, Hgg, vs.
Hye = Higb‘) Hiw A H{g,Hzg/ WA

w ;(dom(H1+),dom(H2+)),rchgclocs(W,L1UFL(cod(H1+)),L2UFL(cod(H2+))) W’ A
(W, (0,v1),(0,v2)) € V[Va.a — (o — )], A

(Hgg+ (V] Hg V] H2+, let X1 = €1 in (/1_/1t1/1f1lf X1 ty f1)) LLZ (Hég V] H2+, Vz) L,
given arbitrary W, Ly, Ly, Higy, Hogy @ W,vi, Hy, Hy, Hyy @ MHeap, Hy, such that
(Hige W Hy W Hyy, let xo = €5 in (A_Aty Afif xo £ £5)) =1, (Hiwvi) /1,

By Lemma 4.3, we have that (Hyg & Hy W Hyy, eq) i>L1 (H},.v}]) -1, . Expanding the def-

1%

inition of &[], in the premise and specializing where appropriate, we have that Hj, =
Hi, WH] WHy, and

g 1

(Hzge © Hy W Hay, €9) =1, (Hpy W H) © Hay, vy) =,
where H;g, H;g : W’ for some
w E(dom(H14,),d0m(H2+)),rchgclocs(W,L1UFL(cod(HH)),LZUFL(cod(Her))) w’
such that
(W', (H{,v}]), (H),vy)) € V[bool],
Expanding the definition of V[bool],, we have that
Hi=0 AH,=0 Avi=v5=b Abe{0,1}

By Lemma 4.3, we now have that

(Hig (V] Hl (V] H1+, let X1 = bin (/I_At]/lﬁlf X1 tq ﬂ)) i>L1 (H;g V] H1+, [X1 [ad b] (/1_/1t1/1f1lf X7 ty f1))
= (H;g (V] H1+, (/17/1t1/1f1lf b t1 f1))

.
=1, (Hisve)

-+

from which we conclude that Hy, = Hig W Hyy and vi = (A_.At1.Af1.if b t; f1) since config-
urations with values as programs do not step.

Then, to prove the goal, we take W’ = W', H;g = H;g, and H;g = H;g.

To show the configuration with the heap Hyy W Hy W H,, terminates, we have
(HZg+ (V] H2 (V] H2+, let X2 =€) in (/17/1t2/1f2lf Xy to fz)) i)Lz (Hég U] H2+, let Xy = bin (/17/1’[2/1{:2]1: Xy ty fz))

1 , .
1, (HZg V] H2+, [X2 (g b] (/1_./1t2./1f2.lf X7 by fz))
= (Hég (V] H2+, (A_/ltzllef b tz fz))

-+

Then take H), = H},.

All that remains to show is

(W7, (0, (A_Aty.Af1if bty f1)), (0, (A_Atz Af.if b t; f3))) € V[Va.a — (a — a)],
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Expanding the definition of V[-], and applying Lemma 4.12, we are to show that
(W (0, (A1 Af1.if bty £7)), (0, (Atp.Af.if bty 7)) € V][ — (a — a)]]p[F(O{)l—)R]
given arbitrary R € RelT and worlds W’ such that W’ Tg g at, 4f,.if b t; At A6.if b t, f,

W”. Expanding the definition of V[ — (a — )] ,{F (¢)r»r;> Pushing substitutions, and
applying Lemma 4.12, we are to show that

(W, (0, (Afy.if bvie 1)), (0, (Af2.if bva ) € V] — o ,iF (a)r)
given arbitrary worlds W’ such that W' T g af,.if b vy, fi0f.if bvy £, W'~ and arbitrary

vie, Vae such that (W7, (0, vay), (0, var)) € V[a] ,(F (o)) Expanding the definition of Vo — af ,(F (¢
and pushing substitutions, we are to show that

(W”H, (@, (If b Vit V1f)), ((Z), (lf b Vot V2f))) < Sﬂaﬂp[F((X)'—)RJ

given arbitrary worlds W’””" such that W*"' £ g,if b vy, vipif b v vor W'~ and arbitrary vy, vor
such that (0, vif, 0, vyr) € (V[[“HP[F(a).—»R]- Expanding the definition of E[-] ,, we are to show
that

3H{, VHy, : MHeap.3W’, Hy, v,.

Hl* = Hig V] H1+ A Hig,Hzg/ : W/ A

W’ E (dom(Hys),dom(Hss)),rehgclocs(W,Li UFL(cod (Hys) ), LaUFL(cod (g, ))) W' A

(W, (0,v1),(0,v2)) € V[Va.a — (& — )], A

(Hage W Hay, if b v vig) =1, (Hyy W Hap, vo) =+,

given arbitrary Ly, Ly, Hygy, Hagr : W', vy, Hy, Hy, Hyy : MHeap, Hy. such that

(Hig+ WHyy, if b vy vor) =1, (Hisvi) A1,
The operational semantics of LCVM offers two cases depending on the value of b. Suppose,
without loss of generality, that b = 0. Then we have
. 1 .
(Higs WHyg, if by vi) =1, (Hige WHy vi) =1, (Hisve) »1,
from which we conclude that vq = vy, Hy. = Hygy W Hy, since configurations with values as
programs do not step. Then we can take W’ = W”"”, H;g = Hygs, H;g = Hygy, and vy = vy
All that remains is to show that
. *
(Hags WHaoy, if 0 vy var) =1, (Hage W Hay, var) -5,

This is actually just one step by the operational semantics of LCVM.
The case in which b = 1 is analogous, exchanging vi; with vif where appropriate.

‘1'1 — 1~ !l — Tg)‘
(1) We are to show that
V(W,(0,e),(0,e2)) € E[r1 — 12]p.
(W, (0,Cr; — 1110101 €1 (0,Cr; — 1101 07,) €2)) € E[I(111 — )]
Expanding the definition of C7; — 7,1(1r,—1,) €1, We are to show that

(W, (0,let f; = e1 in Ax1. (Crysr, (-2))) (Oslet £, = €5 in Axp. (Crysr, (-.2)))) € E[N(IT1 — )],
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given arbitrary ey, e, such that (0,e,0,e;) € E[r1 — 1,],. Expanding the definition of
&['],, we are to show that

3HI, Hig.VHZJ, : MHeap.3H,, W', Hég, Va.
Hye = H{g WH{WH A Hig, Hagy : W' A

W C (dom(Hyy).dom(Ha)),rehgelocs( W, Ly UFL (cod (Hiy)),L2UFL(cod (Hzy))) W' A
(W', (H},v1), (H), v2)) € V[!(!1y — )], A

(Hage W Hy W Hyp, let 5 = €5 in Axa. (Cryar, (-22))) =1, (Hp, W H W Hap,va)
given arbitrary W, Ly, Ly, Higy, Hogy @ W,vq, Hy, Hy, Hyy @ MHeap, Hy. such that

(Hig+ W Hy WHyy, let f; = eq in Ax1. (Crymr, (-.0))) i>Ll (Hiuvi) A1,

By Lemma 4.3, we have that (Hyg+ & H; W Hyy, eq) —*>L1 (H},.v}) -1, for some H], v]. Ex-

panding the definition of E[ry — 7], in the premise and specializing where appropriate,
we have that H], = Hi, ¥ Hy, and
(Hzg+ @ Hz W Hay,e5) =1, (Hyy ® Hay,v))

where Hj , H) : W’ for some W' (dom(Hy,),dom(Hz)).rchgelocs(W.LyUFL (cod (H1.) ), LUFL (cod (Hz4))
W’ such that

(W,) (05 V:Il)’ (0, V;)) € (V[[T1 - TZ]]/)
Expanding the definition of V[r; — 7,],, we have that

v = Axj.e] A vy = Axy.ey A
yw"” . w’ Co.0.cle! W AV(W”,(0,v3), (0,v5)) € V[r:],.(W”, (0, [x; — Vile)), (0, [x; — v5le))) € E[x],
(26)
By the operational semantics of LCVM, we now have that
(Hige & Hy W H let fi = e in Axp.(...)) —p, (H], © Hyg let f; = Axle] in Axi.(...)
1
=1, (Hiy WHu, [fi - Ax.el]Axi.(...))

= (Hig & Hiw Ax1. (Coarr, ((2x}€]) (Coary x1)))
-
so Hy, = H{g W Hyy and
vi =21 (Cryor, ((Ax1.87) (Crimry x1)))
Then we show the goal by taking W’ = W', H;g = H{g, Hgg = H;g, H1=0,H, =0, and
V2 = 2x2. (Crpor, ((g€5) (Crimory x2)))
To show the configuration with Hyg, W Hy W Hy, terminates, we have
(Hags W Hy W Hay, let f; = €5 in Axy.(. . ) i>L2 (Hag+ W Hy W Hyy, let f5 = /lx;.e; in Axq.(...))
1, (Hage W Hy W Hay, [y > Ax).el]Axo (.. )
= (Hzg+ ¥ Hav, Ax2. (Crpr, ((Ax2.€3) (Coimry x2))))

—I-)LZ

Then take H, = 0, Hj, = H},.
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All that remains to show is that:
(W (0, (A (Cromsr, ((Axqee7) (Criry x1)))))s (0, (Axa- (Crpor, (Ax385) (Criiory x2))))))
€ V[!(lry — )],

Expanding the definitions of V[!(!7; — 12)],, V[!-], (twice), and pushing substitutions,

we are to show that

(W, (0. (Crpor, ((Ax1.67) (Crinry V1)1 (0. (Cromor, ((Axge5) (Crimry V3)))))

(S Sﬂfzﬂp

given arbitrary worlds W* such that W' Cg g1 .1 W and arbitrary v{, v such that

(W”,(0,v3), (0,v5)) € V[r1],. Expanding the definition of &[-]., we are to show that
3H;, HY, VHz, : MHeap.3Hj, W', Hy  v,.
Hy, = Hj, & H] 6 Hy, A H oy WA

W T (dom(Hy,),dom(Hzy)),rchgelocs(W”,LiUFL (cod (H1y ). L;UFL (cod (Hzy))) W' A
(W,’ (H,’ V1)> (H;>V2)) € (V[[Tﬂp A

(Hags © Haw, (Crymnr, ((AX]-0]) (Criory V1)) =1, (Hpy W HY 0 Hawvo) o,

given arbitrary Ly, Ly, Higy, Hage + W, vy, Hy, Hy, Hyy : MHeap, Hy. such that
(Hige W Hyy, (CTZHTz ((Ax}.e}) (Cn'—ﬂ'w V?))) _*’L1 (Hisvi) A1,

By Lemma 4.3, we have that (Hyg+ W H; W Hyy, Crry V2) i)LluFL(e}) (Hi.v9) L UFL(e])

for some H},, v]. Recall that (W”, (0,v?), (0,v3)) € V[r1], by assumption, so (W, (0,v?), (0,V3)) € &
by Lemma 4.12. Then, appealing to the induction hypothesis that 7; ~ 7; is sound, expanding
the definition of &[] ,, and specializing as appropriate, we have that H], = H} g ¥ HL and

*
1
(Hage W Har, Criory V3) = p,umi(el) (Hag © Hawo Vo) 1, 0mcen)

’ ’ . 1244 144
where ng, HZg : W’ for some W E(dom(H1+),dom(H2+)),rchchocs(W”,LluFL(e])UFL(cod(H1+)),L2UFL(e;)UFL(cod(H;
W’ such that

(W”,(0,v), (0,v,)) € V[ri],
Now, by the operational semantics of LCVM, we have that

(Fige 8 i (€, (Bl (€ 1)) i (g M (Coomr, ((ie]) v1)
_I)Ll (Hig W Hyy, (Cl'zl—>r2 [X} [ad v}]e}))

*
-1, (Hl*’ V1)

—I—)Ll

Then applying Lemma 4.3 again, we have that (H;g W His, [x] v]]e}) S (H2.Vv2) —»p,

for some H2_, v2. Since (W', (0, v}), (0,v})) € V[r1], and W’ Co.0.le! W’ (by Lemma 4.6),
we have (W', (0, [x] — vile}), (0, [x5 — v,le,)) € E[r2], by (26). Expanding the defini-
tion of &[], we have that H}, = H{, ¥ Hy, and

(H3g ¥ Has, [ — vile)) 51, (Ho, ¥ Ha., Vi) -1,
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where H{7, H) : W for some W' T (dom (Hy,).dom(Hz4)) rehgelocs (W, L UFL (cod(Hy) ), Ly UFL(cod (Ha)))
W’ such that

(W”,(0,v3), (0,v3)) € V[z],
Now, by the operational semantics of LCVM, we have that

(H;g @ H1+’ (CTZHTZ [X:[I = V:[[]e})) _*)Ll (H © H1+> (CT2I—>TZ 2))

—1, (Hiwv1)

—I—)Ll

Recall that (W, (0,v7), (0,v3)) € V[r:],, so (W"”,(0,v3), (0,v3)) € E[2], by Lemma
4.12. Then, appealing to the induction hypothesis that 7, ~ 7, is sound, expanding the
definition of &[], and specializing as appropriate, we have that Hy, = H;’g' WH"”WH,
and

(H V] H2+, CTZHTzVZ) _)Lz (H”/ (V] HN/ V] H2+, Vz) I,

where H,;]I Hé’g/ W”", for some W’ £ (dom(Hy,),dom(Hy4)),rchgelocs (W, LiUFL(cod (Hiy)),LaUFL(cod (Ha4)))
W'"""" such that
(W7, (HY,v1), (Hy", v2)) € V[z],
Then we show the goal by taking W’ = W’"””, H] = H{”’, H) = H.", H; H;;’, and
H; g = H g;’ . Finally, to show the configuration with Hygy W Hy, terminates, we have:

(o (k) (Comry ) (H; Mo (oo, () ¥1)
U Hay, CTZ»—m [Xz — Vz]ez))
Hyy & o, (Crpar, ¥3)

HLZ (H/// ® H/// W Hayy, Vz)

(2) We are to show that
YV (W, (0,e1),(0,e;)) € E[!(!11 — 12)]p.
(W, (0,Cii1t,mysry — 13 €1)5 (0. Cr1ryomyinry — 1, €2)) € E[n — 2],
Expanding the definition of Cy(17, r,)~7; — 7, €1, We are to show that
(W, (0,let f; = ey in Ax1. (Crpmr, (-.2))), (0, let £, = €5 in Axp. (Crimr, (..0)))) € E[n — 2],

given arbitrary ey, e, such that (0,e4,0,e,) € E[!(!7; — 7,)],. Expanding the definition of

&[], we are to show that
M, VHy. : MHeap 3W’, Hy , v,.
Hl* = H' W H WHi. A ng,Hgg W’ A

w E(dom(HH),dom(Her)),rchgclocs(W,LIUFL(cod(HIJ,)),LZUFL(cod(H2+))) W’ A
(W’, (0,V1), ((D, Vz)) € (VHﬁ - Tzﬂp A

(Hag+ W Hy W Hyy, let f; = e; in Ax,. (Crzl—ﬂ.'z (.. ))) -1, (Hég W Hay, vo) 1,
given arbitrary W, Ly, Ly, Higy, Hagy = W, vy, Hy, Hy, Hyy © MHeap, Hy. such that

(Hig+ WHy WHyy, let f; = e in Axy. (Crz»—ﬁz (.. ))) i>L1 (Hiwvi) A1,
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By Lemma 4.3, we have that Hyg, W H; WHy, eq) i>L1 (H%*,v}) -1, for some Hi*,vl. Ex-
panding the definition of E[!(!7; —o 73)], in the premise and specializing where appropriate,
we have that H%* = Hig W HIH, and
"
(Hags W Hy W Hyy,€5) =1, (Hyy © H) W Hay,v)

where Hig’ Hég : W’ for some W £ (dom(Hy,),dom(Ha,)),rchgelocs (W, Ly UFL (cod (Hyy) ), LaUFL(cod (Hay )
W’ such that
(Wl, (HLV])’ (H;a V;)) € (VH‘('Tl -0 TZ)HP
Expanding the definition of V[! -]. (twice) and V[- — ]., we have that
vi=Axle] Avi=Axje; AH, =0AH,=0
YW Copeler W = @7)
V( W”; (@, V?)’ (@’ V;)) € (V[[Tl]]p'(®’ [X} [ V?]e}a 0’ [X; [ Vg]e;) € 8[[T2]]p

where we associate empty heaps with the v? because the tuple comes from V[!z],. By the
operational semantics of LCVM, we now have that

(Hige & Hy W H let £ = e in Axi(...)) —p, (H], © Hyg, let f; = Axle] in Axi.(...)
1
=1, (Hiy WHu, [fi - Ax.el]Axi.(...))
= (Hig & Hie Ax1. (Cory ((2x}€]) (Cryrr, x1))))
—I—)Ll
SO Hl* = H;g V] H1+ and
vi =M. (Comr, (A1) (Crpion 1))
Then we show the goal by taking W’ = W’, H;g = H{g, Hég = Hég and
v2 = I (o (Axhel) (Coyma, %2)
To show the configuration Hygy W Hy & H,, terminates, we have
(H2g+ (V] H2 (V] H2+, let f2 =€ in AXz.(. . )) i)Lz (Hég V] H2+, let fz = AX;.C; in AX1.(. . ))
1
I, (Hég V] H2+, []cz (g AX;.G;]AXz.(. . ))
= (Hjy & oo 20 (Corr, (X)) (Cryior, x2)))
—I-)LZ

All that remains to show is that
(W, (0, (21 (Copor, ((Ax3.€1) (Crynr, x1))))) (0 (M- (Coory ((A5:€3) (Cryory %2))))))
€ (V[[’ﬁ — TZ]]p
Expanding the definition of V[r; — 7], and pushing substitutions, we are to show that
(W, (0, (Coor, ((A€7) (Crimr Vi) (0 (Coory ((X3€3) (Crior, ¥3)))))
€ 8[[7.'2]])0
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given arbitrary worlds W such that W” Cg 1.0 W” and v§, v such that (W”, (0,v9), (0,v3)) € V][]
Expanding the definition of E[-]., we are to show that

EJHig.VHz+ : MHeap.3W’, Hég, Vs.

Hyw = Hi, W H] W Hy A H] Hy s WA

W T (dom(Hy,),dom(Hzy)),rchgelocs(W,Li UFL(cod (Hyy)),LoUFL (cod (Ha))) W A
(W,’ (0’ V])a (0’ VZ)) € (V[[TZ]]P A

(Hags ® Har, (Coory ((Ax1el) (Cryr, v2)))) 51, (Hy, 8 Haruva) 1,
given arbitrary Ly, Ly, Higs, Hags * W, vy, Hy, Hp, Hyy : MHeap, Hy. such that

(Hige ¥ Hiw (Comr, ((AX303) (Cryr, V3)))) 1, (Hiwvi) 1,

By Lemma 4.3, we have that (Hig+ W Hyy, Cryimry V2) —*>L1UFL(E}) (Hi.v7) +pum(e for

some Hj,, v}.Recall that (W, (0,v3), (0,v5)) € V[r], by assumption, so (W”, (0,v3), (0,v3)) € E[r]
by Lemma 4.12. Then, appealing to the inductive hypothesis that 7; ~ 7; is sound, expanding

the definition of &[] ,, and specializing as appropriate, we have that H], = H] 0¥ H] W Hy,

and

¥
1
(Hzge W Hay, Cryn,V3) TL,UFL(e)) (Hég W Hj © Hay,vy) 7 L,UFL(el)

’ ’ . 244 7
where Hj, Hy : W’ for some W C (gom(H,,), dom(Hyy)) rehgelocs (W, L UFL(e! ) UFL(cod (H4)),LUFL (e}) UFL (cod (H:
W’ such that

(W, (H}, v}), (Hs, v;)) e V[u],
Since 7; € DUPLICABLE, expanding the definition of DupLiCABLE and V[-]. reveals that we
have H{ = H; = 0.
Now, by the operational semantics of LCVM, we have that

(Hige 9 Hue, (Coary (1)) (o V1)) 21, (Mg 9 Huas (Coary () )
—I)Ll (H;g W H1+, (CTZ’—)TZ [X} [ d v}]e}))

*
-1, (Hl*’ V1)

—I—)Ll

Then applying Lemma 4.3 again, we have that (H;g W Hyy, [x] v]]e}) S (HZ,,v3) -+,
for some H2_, v2. Since (W', (0, v}), (0,v})) € V[r1], and W’ Co.0.ele W (by Lemma4.6),
we have (W', (0, [x] + vile}), (0, [x3 — v,le,)) € E[r2], by (27). Expanding the defini-
tion of &[], we have that H}, = H{/ W H{ & Hy, and

(H2g+ V) H2+a [Xg [ V;]e;) _)Lz (Hélg ) H;/ V) H2+, V%) _HLZ

where Hi?, Hyo + W for some W T (dom(Hy),dom(Has))rehgelocs (W77, L UFL (cod (1)), Lz UFL (cod (Hz4))
W’ such that

(W//N, (H”, V%), (HN, V%)) c (V[[TZ]]p
Now, by the operational semantics of LCVM, we have that
(Hige & Hiss (Coor, [x) > viled) ) S (Hiy W HY 8 i (Cor, V2))

5 (Hywvi)

-+
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Recall that (W, (HY,v?), (HY,v3)) € V[n:], . so (W, (H},v3), (H},v3)) € E[r:], by
Lemma 4.12. Then, appealing to the indcutive hypothesis that 7, ~ 7, is sound, expanding
the definition of &[] 5, and specializing as appropriate, we have that Hy, = H;;}' W Hyy and

(H W HN ) H2+» CQHTQVZ) _)Lz (Hzg V H2+, V2) L,
where H’;’ H"’ : W for some W'’

'C (dom(Hi4),dom(Hz4)),rchgelocs(W””, L1 UFL(cod(H14)),L2UFL(cod(Hz4)))
W’ such that

(WH”I, ((D: V1)’ (0’ V2)) € (V[[TZ]]p

Then we show the goal by taking W' = W', H; Hi’g’, H’ = Hé’g’, and v, = v,. For
showing the configuration with Hygy & Hay terminates we have

(Hage & How, (Coor, () (Cryoar, v3)))) —*»Lz (H3y & Har, (Cor, () V1))
9 o, (Conr, [x) - viTed) )

Hyy & HY @ Hyy, (Copar, V3))

=1, (M
o (1
A ( 'y H2+,vz)

‘ refr~3l.caplt® !ptr{‘
(1) For the first direction, we show that
V (W, (Hy, eq), (Hy, e)) € E[ref 7],.

(W’ (H1, Cref T—3.caplT ® !ptrg(e])) > (HZ’ Cref T—3.caplT ® !ptrgv(eZ))) € Sﬂag.CapgT ® Iptr ﬁ]l’

where we have, by our induction hypothesis, that we can convert 7 to 7.
We first expand the conversions, noting that the terms in question are:

let x, = alloc Cri-(lei) in ((), xe)

Expanding the definition of &[3.cap { 7 ® Iptr {],, we see that what we need to show is
that:

3HY, Hy, VHy, : MHeap 3Hj;, W/, Hy v,
Hie = H] W H W Hip A H{ Hag 0 WA

W C(dom(Hy).dom(Ha)).rehgelocs( W, Ly UFL (cod (Hiy)),L2UFL(cod (Hzy))) W/ A
(W', (H},v1), (H),v2)) € V[3.cap {7 @ Iptr (], A

(Hag+ W Hy W Hyy, let x; = alloc Cri, . (lez) in (), x¢)) i>Lz (Hég W H) W Hay,vo)
given arbitrary Ly, Ly, Higy, Hags * W, vq, Hiy : MHeap, Hy,, such that
(Hig+ W Hy WHyy, let x, = alloc Cris.(leq) in ((), %)) =1, (Hi,vi) 1,

By Lemma 4.3, we have that (Hig+ W Hy W Hyy, e) —*>L1 (H},.v}) -1, for some H]

l*’
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Our induction hypothesis, appropriately instantiated and simplified, then tells us that

IW' H{ HL = Hi, WHu A H Hy s WA

w E(dom(HH),dom(Hg+)),rchgclocs(W,L1UFL(c0d(H1+)),L2UFL(cod(H2+))) Wl/\

VHa4.3v;, Hyyy.(Hage @ Hay, e9) S, (Hygy W Hap,v)) »r, A (W (0,v9),(0,v))) € V[ref 7],
(28)

This means, in particular, that v} and v; are locations, call them ¢; and £;, and heap satisfaction
means that H}g . () are values (call them v; and v,) related by V[z],. Also, since the value
relation for MiniML doesn’t allow heap fragments, this means that the locations in H; have
been consumed.

Thus, we can instantiate our induction hypothesis for Cr.,, with v; and get reductions that
we can use to again appeal to Lemma 4.3, with. In particular, we know that we proceed
with the following reductions thus far (with related ones on the other side):

(Hig+ W H; WHy, let xp = alloc Crs-(Yeq) in (), x¢))
S, (Hi,y W Huy let xp = alloc Crsr (161) in (), xe))

S, (Hi, WHy, let xp = alloc Crisr (v1) in (0, %))

S, (H2, W H W Hy, let x, = alloc vy in (0, %))

Where we know we have W' T (dom(H,,) dom(Hy.)) rchgelocs (W, L UFL(cod(Hy, ), LyUFL (cod(Hy, )
w2, Hngr, H§g+ : W2, and (W2, (H3,vy), (H3,v2)) € V[r],.
Now, we can proceed with the remaining reductions, after which we have to complete all
our original obligations at the resulting future world. The reductions are:

(Hfng ¥ H? W Hyy, let x, = alloc vy in ((),x¢))

_*)Ll (H%g_'_ V] {[1/ Pg U{} (V] H% (V] H1+, let Xp =y in ((),X[))

S1, (H2, WH2 W {6 ¥ 0]} W Hyy, (0, 00))
Where the latter has clearly terminated to a value. We know, analogously, that the other
side will run in the same way, terminating with the configuration:
2 2 m.
(Hzge W H3 W {fy — 03} & Hay, (0, £2))

The world we choose is simply W? — our manual allocation doesn’t change the garbage
collected fragments of the heap (indicated by name with a subscript g), and thus the same
world and heap satisfaction still holds. Since we already have the values to which both sides
terminated, our remaining obligation is to show:

(W2, (H2w {ey 5 0]}, (O, &), (H2 W {&r > 03}, (0, &) € V[ .cap { 7 ® Iptr ],
Expanding the definition of V[3( 7], it suffices to show that:

(W2 (H} w {&r = ov}, (0, &), (H3 8 {&x > 03}, (0, &))) € V[cap{ 7@ Iptr { piso) s eyt
Now, we turn to the definition of V[r; ® 7,],, which says we need to split the heaps and

then prove, using the split (we use empty heaps on one side of our split), the following two
obligations:
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(W2, (H2w {&r ™ 07}, 0), (H2 @ {&x 5 03}, ) € V]eap £ tlpiis)o et}
(W2,(0,6v), (0, £)) € V['ptr D piis@)m (6,1
The second one holds trivially, since ! requires empty heaps and the ptr type requires that
the locations are mapped to by the type environment, which they are. The first is only
slightly less trivial: it requires, first, that p[L3({) +— (&, £)]({) = (&, &), which it clearly
does. Then, that those locations map to values in the heap, and that, for the rest of the heap,
the following holds:

(W2, (H3, ver), (H3,v21)) € VIl pis)ys (b6}
This holds by earlier assumption on vy and v, and weakening in the type substitution.

(2) The other direction, requires that we show

V (W, (Hy,e1), (Hy,e2)) € E[F.cap {7 ® Iptr (] ,.

(W’ (Hl’ Cﬂg.capg‘r ® Iptry-ref T(el))’ (Hz, CE{.cap'gr ® Iptry-ref T(eZ))) € Sﬂref Tﬂp

where we have, by our induction hypothesis, that we can convert 7 to 7.
We first expand the conversions, noting that the terms in question are:

let x, = snd ej in let _ = (x; := C.57(!X,)) in gcmov x,

As before, we expand the definition our obligation, in this case E[ref 7] p» to show that
what we need is that:

HWI, H;g, H;g.VH2+.3V2.
Hie = Hi; WH AH[ H) - WA

w E(dom(H1+),d0m(H2+)),rchgclocs(W,LIUFL(cod(H1+)),L2UFL(cod(H2+))) W’ A
(W7, (0,v1),(0,v5)) € V[ref ], A

(Hag+ W Hy W Hyy, let x, = snd ey inlet _ = (x; := Criur(!xg)) in gcmov x,) i>L2 (Hgg W Hay, va) 1,

given arbitrary Ll, Lz, H1g+, H29+ ' W, Vi, H1+, Hl*, such that

(Higy W Hy W Hyy, let xp =snd ey in let _ = (x; :== Crisr(!xp)) in gecmov xp) —*>L1 (His v1) L,

We appeal to Lemma 4.3, which tells us that (Hyg W H; W Hyy, eq) Sh (H1,.v}) -»p: for
some H], v].
Our induction hypothesis, appropriately instantiated and simplified, then tells us that

3H1, Hi,.VHz, : MHeap.3H,, W/, Hyy v,

Hy = H}g WH] WHp, A Hi, H;g, WA
W E (dom(H,,),dom(Hz.)),rchgclocs(W,LyUFL(cod(H1y)),LyUFL (cod(Hz4))) W' A (29)

(WY (Hi,viY), (Hyvo')) € V[ cap { T @ Iptr ], A
(Hag+ WHoi, e9) i>Lz (H;g W H) W Hap, vo')
In particular, that means that v] and v} have the form ((), #,), where the value relation means

that the heap fragments map ¢ to a v;. Note that H} is composed of {¢; s vil W Hl!/. This
follows from the value relation.

If we continue evaluating our original terms, we step as follows:
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(Higr WHy W Hy, let x, = snd ey inlet _ = (x; := Crsz(!x,)) in gecmov x,) i>L1
(HigJr Wit vy HY & Hyy, let x, = snd (), &1) inlet _ = (x¢ := Cor(Ix,)) in gemov x;) —1,
(H%ng W {f S Vit W H%/ W Hyy, let xp = £y inlet _ = (x, := Cosr(!X,)) in gecmov xp) — 1,

(Hl,, w{t ™ vi} wHY wHy let = (6 = Cor(161)) in gemov 1) -1,
(Hi,, & {f > vi} W HY W Hy, let _= (& 1= Corur(v1)) in gemov £1)

Since we know that v; was in the value relation at type 7, we can appeal to our induction
hypothesis with the heap fragment H! to get that C,1,7 (v1) (and, correspondingly C,,7 (v2))
are in the expression relation at E[[7],. That expression relation will tell us that once the
term runs to a value, that heap fragment will be consumed.

This means, in particular, that we can combine Lemma 4.3 with the definition of the
expression relation to get that

(H1,, W {f S vi} WHY @ Hyy, Coar(vi)) 1, (H2, 0 {5 vi} W Hy,, v2) -, for some
H? . vZ, where v? is related to a corresponding v2 in V], at a world W* that is an exten-
sion of W1 (note that all the other steps did not change the garbage collected portion of
the heap, so the only changes happened during the conversion, and are thus guided by the
expression relation that our induction hypothesis produces).

This means our final sequence of steps are:

(H%ng CREA s Vit W Hl!l W Hiy, let _ = (£ :== Crsr(vy)) in gcmov &) i)Ll
(Hfg+ W{f v} WHu let = (6 = v?) in gemov £) >,

(Hfng W {f S v} WHy, let _ = () in gcmov ) —p,

(Hfng W {f v} W Hyy, gemov £) —p,

2 9° 2
(H1g+ W{f — vi} WHy, f)

And in particular, we can relate our final values, #; and 6, at V[ref 7] p at a world w3,
which is W? extended with the mapping from (¢, ) to V[z],. We note, critically, that the
owned portion of the heap is now empty, a requirement of V7] ,, having been moved into
the garbage collected portion of the heap.

]

4.6 Logical Relation Soundness

4.6.1 Supporting Lemmas.

LEMMA 4.5 (WORLD EXTENSION WEAKENING). If W Ty, W', then for any L’ such thatLL’.j C L.j
forall j € {1,2} and foranyn’ € n, W Cp,y W',

Proor. Let W = (k,¥) and W’ = (j, ¥’). From W Cp, W’ we have j < k. We also have
L.1#dom((¥’)!) and L.2#dom((¥’)?). SinceL’.1 € L.1andL’.2 C L.2, this implies L’.1#dom((¥’)!)
and L".2#dom((¥’)?). Moreover, for all (£, &) € n, ¥’ (¢1,6) = | ¥ (£, &) ;. Since n’ C n, it follows
that for all (¢, ) € ', ¥/ (£, ) = [¥(f,£)] ;. Ergo, W Cp/,y W, as was to be proven. O

LEMMA 4.6 (WORLD EXTENSION TRANSITIVE). If Wi Cy, ,, W, and W, Ty, ,, W5 then

Wi E(L,.10Ls.1L1.20Ly.2), 0, W3
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Proor. Let L = (L;.1 N L3.1,L;.2 N L3.2) and 7 = 5y N 772. By Lemma 4.5, W; Ty, W; and
W, B, Ws. We would like to show W; Ty, Ws.

Let W1 = (kl,“Pl), Wz = (kz, ‘I’z), and W3 = (k3, \P3)

We know from world extension that k; < k; and k;, < ks, so by transitivity, k; < ks.

By W, Cp, W, L.1#dom(¥;) and L.2#dom(¥Z).

Finally, by both world extensions, for all (¢, &) € n,

Y3 (1, 60) = [ Vo (b1, £2) |1, = | L¥1 (81, £2) i, Iy

Then, since k; < ks, we find that ¥3(f, ) = [|[V1(f, &) |k, 1k, = [¥1(4, £2) |k, This suffices to
show that W) Ty, W3, as was to be proven. ]

LEMMA 4.7 (WORLD EXTENSION).
(1) If (W, (Hy,v1), (Ha, v2)) € V[z],, and W Ty, pyvyv, W, then (W', (Hy,vq), (Ha,vo)) €
Vlr,.
2) If (W,H,Ho,y1.D) € G, and W By 4,0 1) 2y W then (W, Hy Ha, .)€
Glrl,-
() If (W.yr) € G[T]p and W T g1 (5,y2() W', then (W', yr) € G[T],.

Proor. (1) By induction on 7. Most cases are trivial, relying on Lemma 4.6 where appropriate.
The only non-trivial cases are 7 = ref rand 7 = cap { 7.

e 7 = ref 7: Suppose that (W, (0,£),(0,6)) € V[ref r], and W Cog,, W'. We
would like to show (W’, (0,4), (0,£,)) € V[ref 7] ,. Expanding the premise, we have
that W.¥(#1, &) = |V[r],]w k. This shows that (£, £) € dom(W.¥), so since # is
free in the expression #; and ¢, is free in the expression 4, it follows that (¢, £,) €
rchgclocs(W, FL(¢,), FL(£,)). Ergo, by the definition of world extension,

W ¥ (b, ) = WY, &) lwi =LV wilwi = LVI]plw i
which suffices to prove (W’, (0, 4), (0,£,)) € V[ref 7],.
(Note that [ |V[7],]wilw ik = [V[7],] wr k follows from W’ .k < W .k, which we get
from world extension.)
e 7 = cap { 7: Suppose that (W, (H; W {f; = v1}, (), (Hy W {& > v;)) € V[cap 7],
where p.L3({) = (#1,4) and W T w{e v, LHw{tmv, 10,0 W' Expanding the defini-
tion of world extension, we find

w E(clom(Hl)Lﬂ{(’l},dom(Hg)Lﬂ{t’g }),rchgcloes(W,FL(cod(Hy))UFL(vy),FL(cod(Hz))UFL(v2)) w’
Thus, for j € {1, 2}, (dom(H;)w{¢;})#dom(W’. /), so (W', (Hiw{t; — vi}, (), (Haw
{t, — v}, ())) is still in Atom, which is required to show this tuple is in the value
relation.
Moreover, by Lemma 4.5, we find W Ty, vy, W
By expanding the value relation, we find (W, (Hy, vq), (Hz, v2)) € V[r],.Since W En, 1,00,
W’, by the induction hypothesis, we find (W’, (Hy,v1), (Hz,v2)) € V[r],, which suf-
fices to prove (W’, (H W {£; = v}, (), (H2 W {£ = v,},())) € V]cap { 7],.
(2) By induction on y; .I', appealing to the previous case where appropriate.
(3) By induction on yr, appealing to the previous case where appropriate.
O

LEMMA 4.8 (WORLD EXTENSION AND GARBAGE COLLECTION). Consider some world W and two sets
of locations Ly, Ly. Then, consider arbitrary heaps Hig, Hag : W and Hyp, Hap, such that Hyp, : MHeap,
Hom : MHeap, dom(Hip,)#dom(W.¥"), and dom(Hapm)#dom(W . ¥?). Let L} = reachablelocs(Hy @
Hym, dom(Hy,) W FL(Kq[-]) U Ly) and L}, = reachablelocs(Hyy & Hypp,, dom(Hyp,) W FL(K,[]) U Ly).
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Then, if

(Hig W Him, Ky [callge]) =1, (Hig @ Him, Ki[O])
and

(Hag W Hapm, Ky [callge]) —p, (Hég W Ham, K2[O)])

where H;g : GCHeap, H;g : GCHeap, then there exists some world W’ such that H;g,

Hgg : W and
W T (dom(Hipm).dom(Hapm)) rehgelocs(W L2 L) W' (30)
Note: Remember that for all H, L, L C reachablelocs(H, L) and FL(cod(H)) C reachablelocs(H, L).
Ergo, FL(cod(H;m)) U FL(K;[-]) UL; C L} for j € {1,2}, which implies
rchgclocs(W, FL(cod(H1m)) UFL(K1[-]) ULy, FL(cod(Hap)) UFL(K [-]) ULz) C rchgclocs(W, L1, L)
so by Lemma 4.5, it follows that
W E (dom(Hym).dom(Ham) ) rehgelocs(W,FL(cod(Hym))UFL(K, [ -] UL1,FL(cod(Ham) ) UFL(Ko [ - )UL) W

Proor. Let W’ = (W .k, ¥’) where ¥’ is the subset of ¥ restricted to rchgclocs(W, L1, L}).

First, it is clear that W’.k < W k.

Second, since W% € W.¥, dom(H;,,)#dom(W.¥1), and dom(H,,,)#dom( W.¥?), we find that
dom(Hy,)#dom(W’.¥!) and dom(Hy,,)#dom( W’ ¥?).

Finally, to finish showing (30), we need to show that for all (¢, #,) € rchgclocs(W, L], L),

W/.\P(fl, [2) = I_W\P(fl, [2)] w’ .k
If (f1,4,) € rchgclocs(W, L], L,), then by the definition of ¥’ above, W' ¥ () = W.¥(#, £).
Thus, since W’.k = W.k,
W ¥ (b, )= WY (4, ) = WY, &) wi = WY (6, &) |wk

as was to be demonstrated.

Next, we must show that Hig, Hég : W’. First, since H{g C Hyy and Hég C Hyy, it follows that
H;g : GCHeap and Hég : GCHeap.

Next, we must show that for all (¢,¢f) € dom(W’.¥), we must show £; € dom(H;g), t €
dom(H;g), and

(=W, (0,Hi,(6)), (0, Hyy () € W.¥ (8, 6) (31)

By definition, dom(W’.¥) = rchgclocs(W, L], L,), so if (£,4) € dom(W'.¥), then (£, ) €
dom(W.¥), £ € L] and £, € L,. Since (£;,f;) € dom(W.¥) and Hyg Hyy : W, we find that
£ € dom(Hyy), £ € dom(Hyy), and (=W, (0, Hig(£1)), (0, Hyy(£))) € W.¥ (4, 4).

Then, since (£, ;) € dom(W'.¥), W' . ¥(¢f,£f,) = W.¥ (£, ;). Moreover, by the operational
semantics of callgc, L] N dom(Hy) C dom(Hig), sof, € dom(Hig) and H;g(t’l) = Hyy(f). By
similar reasoning, ¢, € dom(Hgg) and Hég(fz) = Hyg(£,). Thus, we deduce that

(=W, (0. Hi, (). (0.Hyy (%)) € W' ¥ (4, 6) (32)

Next, notice that, by the definition of reachablelocs, since ¢; € L7, it follows that FL(H] g({’l)) =
FL(Hy4(#1)) C L;. By similar reasoning, FL(Hgg({’g)) C L;. Ergo,

rchgclocs(W, FL(Hig(l’l)), FL(Hég({’Z))) C rchgcloes(W, L, Ly)
By Lemma 4.5, we then have
W' C(0,0) rehgelocs(W.FL(H; , (£)).FL(H, (£))) W

so it follows that
>W T (0,0),rchgclocs( W,EL(H,  (8),FL(H}, (£))) >Ww’
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In other words, >W Co.0.1y, ().Hy, (22) > W’. Ergo, by (32) and the fact that W' ¥ (£, £2) € Typy,
to deduce (31), as was to be proven. o

LEMMA 4.9 (COMPOSITIONALITY). IfA + 71 and A, o + 75 and p € D[A], then
Ve = nlz], = VIl Foovin,
Proor. By induction on 7,. We show the interesting cases:
Case 7, = .
V[la - rlal, = VIn, (by sub)
= p[F(a) = V[n],].F(a) (by lookup)
= (V[[O‘]]p[F(a)H(V[[ﬁﬂ,,] (by def V[].)
Case, = f # .
Ve - w1, =V, (by sub)
= p-F(p) (by def V[].)
= p[F(a) = V[n],].F(p)  (by lookup)
= VI, iFmving,)  (by def V[])

The other cases are straightforward by expanding the definitions of “V[-]., &[-]. and applying the
induction hypotheses. O

LEMMA 4.10 (L? COMPOSITIONALITY). If A, + 7, p € D[A], and p({’) = (¢],¢;), then
VI - Il = Vel s @)

Proor. By induction on 7. We show the interesting cases:

Case 7 = ptr (.

VI - Iptr ], = Vptr ] (by sub)
={(W,(0,0),(0.5)) | p.L3(J") = (&1, &)} (by def)
={(W,(0,6),(0,)) | (f.4,) = (b, &)} (by assumption)
={(W,(0,8),(0,)) | p[L3() = (£,6)].L3(0) = (4, )} (by lookup)
= Vptr {ppsy- g1 (by def)

Case 7 = ptr {, where {; # (.
VIIL o ptr &l = Vpte ], (by sub)
={(W.(0,0),(0,%)) | p.L3(%2) = (61, &)} (by def)

={(W,(0,8),(0,5)) | p[L3({) = (£, 5)].L3(%) = (&, &) }(by lookup)
= VIptr &Ll pps)o .61 (by def)
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Case 7 = cap { 1.

VIS - eapln], =V]cap ' [{ = {]z], (by sub)
={(W,(Hi ¥ {1 > vi}, (), (Hz 0 {& = va},())) |
pL3(") = (b, ) AW, (Hy,vi), (Hz,v2)) € V][ = ]} (by def)

={(W,(Hi ¥ {61 > vi}, (), (Ha W {& = v2},())) |
(£,€,) = (61,6) A (W, (H1,v1), (Ha,v2)) € V][ = {']2],} (by assumption)
={(W,(Hiw {1 - vi},0), (Ha W {tr > v2}, () |
pIL3(Q) = (£, £)].L3(0) = (&, LA
(W, (Hy,v1), (Hz, v2)) € V[[{ = ]} (by lookup)
={(W,(Hiw{t1 > vi}, (), (Ha W {t > v}, () |
pIL3(Q) = (£, £)].L3(8) = (f, )N

(W, (Hi,v1), (Ha,v2)) € V[l pis)- 01} (by induction)
= V[cap { ] ps- ) (by def)
Case 7 = cap {, 7, where {, # (.
VIS = {eap L]y, = V[eap & [{ = 2], (by sub)
={(W,(Hi {61 = vi}, (), (Ha W {& — v}, ())) |
p.L3(52) = (61, 6) AW, (Hy,vq), (Hz,v2)) € V][ - 12],} (by def)

={(W,(Hi {61 > v1}, (), (Ha W {f = v2}, () |

pIL3({) = (6, )].L3(%) = (&, L)A

(W, (Hi,v1), (Hz,v2)) € V][ = n],) (by lookup)
={(W,(Hi ¥ {1 = vi}, (), (Ha W {& > v}, ())) |

pIL3(Q) = (6, )].L3(%) = (0, L)A

(W, (Hy,vq), (Ha,vp)) € (V[[TZ]]p[L3(§)P—>({’1',l£)] } (by induction)

= V[cap { 2] ps)m (.01 (by def)
The other cases are straightforward by expanding the definitions of V[-]., [-]. and applying the
induction hypotheses. O

LEMMA 4.11 (IRRELEVANT LOCATION VARIABLES IN L?). IfA+17,p € DI[A], and { ¢ A, then

VIelp = VIt pism- e

Proor. Since { ¢ A and A F 7, it must be that { is not free in 7. Therefore, the definition of either
VIrlp or V] pi13(2)—(a,6)] Will never require looking up p.L3({), so whether { is in the domain
of p.L3 or not is irrelevant for the definition of the value relation. It then trivially follows that these
two value relations are equal. O

LEMMA 4.12 (VALUE LIFTING). If (W, (Hy, 1), (Ha,€2)) € V7], and, if T is aMiniML type, Hy =
Hy, = 0, then
(W> (Hla eT)s (HZ’ ez)) € 8[[1-]]/7

PRrOOF. Since MiniML and L* have different definitions of &[-]., we must show the claim for the
two languages separately.
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MiniML Language. Expanding the definition of E[-], we are to show that
AW’ H; H;g.VH2+ : MHeap.3v,.

1g°
Hio = Hj, & Hye A Hi, Hyyc WA
w E(dom(HH),dom(Her)),rchgclocs(W,L1UFL(cod(HH)),LZUFL(Cod(H2+))) W' A (33)

(W, (0,v1), (0,v2)) € V][], A
(HZg+ V] H2+, ez) i>L2 (H;g ) H2+, VZ) L,
given arbitrary Ly, Ly, Higs, Hags : W, vq, Hy, Ho, Hiy : MHeap, Hy., such that

(Hig+ WHyp, eq) i>L1 (Hissvi) =+
But if (W, (0,e1),(0,e;)) € ’V[[r]]p, then ey, e, are values. Since configurations with values
as programs do not step, v; = e; and we can choose W’ = W, H] = Hy, Hgg = Hyy, and
v, = e,. Then, by assumption, we have (W, (0, e1), (0,e,)) € (V[[T]]p, which suffices to finish
the proof.
L? Language Expanding the definition of E[-]., we are to show that
3H}, Hi,.VHy, : MHeap.3Hj, W', Hj, v,

Hl* = H{g (V] H; U] H1+ A Hig’ HZg’ : W/ A

W C (dom(Hyy).dom (Hay ) ),rchgclocs(W,Ly UFL (cod (Hys)),LaUFL (cod(Hay))) W' A (34)
(W', (H{,v1), (H3,v2)) € V7], A
(Hag+ W Hy W Hyy,e9) i>Lz (Hég WH, W Hay, vy) »
given arbitrary Ly, Ly, Higs, Hogs : W, vi, Hy, Hy, Hyy : MHeap, Hy., such that
(Hig+ W Hy WHyy, eq) i>Ll (Hiev1) =+
But if (W, (Hy,eq), (Ha,e))) € (V[[T]]p, then ey, e, are values. Since configurations with

— A ’ — ’
values as programs do not step, vi = e; and we can choose W’ = W, ng = Hy, HZg

and v, = e,. Then, by assumption, we have (W, (Hy, e1), (Hz, e;)) € V[7],, which suffices
to finish the proof.

= HZg;

]

LEMMA 4.13 (SPLIT SUBSTITUTIONS). For any world W and substitution y such that
(W,Hy,Ha,y) e Gl W1y,
there exist y1, Y2, Hi, Hir, Hop Hop such that y = y1 W ys, Hy = Hyp W Hyp, Hy = Hyp W Hyp.,
(W,Hy, Hin1) € G4,
and
(W, Ha, Har, 1) € G[I2],
Moreover, for any i, j € {1,2}, for any A;T; AT kej - T and yr € G[I] s
Y () = v ()
Proor. First, we need to show that there exist substitutions y; and y,. This follows from the

inductive structure of G[I'y W I,],, where we can separate the parts that came from G[I';], and
G[I':] - The second follows from the fact that the statics means that the rest of the substitution

must not occur in the term. and thus y/(e;*) = yli(yg(el*)) = y{(ef’) (for example). O
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LEMMA 4.14 (BANG SuBsTITUTIONS OWN No HEAP). For any (W, Hy, Ha, yr) € G['T],, it must

be the case that H; = Hy, = 0.

Proor. We will prove the lemma by induction on the size of !T. If IT" is empty, then the theorem

is trivial. Otherwise, suppose that !T' = IT'y, x :!7. Then,

(W,Hy, Ho,yr) = (W, H; W Hyg, H; W Hap, yi.I"[x = (v, v2)])

where (W, H!,H), y1.I') € G['T2], and (W, (Hiy, v1), (Ha0,v2)) € V[!7],. By induction, H] = H} =
0 and by expanding the value relation, Hy, = Hy, = 0. Thus, H; = Hy = 0, as was to be proven. O

LEMMA 4.15 (L3 VALUES COMPILE TO LCVM VALUES). IfAT; AT v v e T then given p, v, yr, W, Hy, Ha

such that

p.L3 € D[A], p.F € D[A], (W, Hy, Ho,y1) € G[T],. yr € GIT],
it holds that y} (v} (v"))) and y?(y2(v*))) are both target values.

Proor. We will prove the theorem by induction over v.

Case v = ().
If v = (), then v* = (), which is a target value.
Case v =D for some b € B.
If v = b, then v* = n for some n € {0, 1}, which is a target value.
Casev = Ax: r.e.
If v = Ax : 7., then v* = Ax.e™, which is a target value.
Casev =Ale.
If v.= Al.e, then v* = Ax;.e”, which is a target value.
Casev="{, v
If v=r{, v'7, then vt = v'*. Ergo, for any i € {1,2}, y{ (y} (v*)) = ¥ (yL(v'*)), which is a
target value by induction.
Case v = (v, vy).
Ifv = (vi,v2), thenv* = (vi*,v,*). Ergo, forany i € {1, 2}, y{ (v} (v1)) = (v{ (y (1), ¥ (v} (v21)))
is a target value because it is a pair of values as, by induction, y{ (y(v1*)) and y{ (y}(v2"))
are target values.
Casev =1V,
If v=!v/, then vt = v'*. Ergo, for any i € {1,2}, yi(yf' vh) = yi(yf (v'*)), which is a target
value by induction.
O
LEMMA 4.16 (FUNDAMENTAL PROPERTY). IfA;T; AT ke : 7, then ;T AT +e < e : 7 and if

AN;T; AT e, then A;T; AT e <e:T.

Proor. By induction on typing derivation, relying on the following compatibility lemmas, which
have to exist for every typing rule in both source languages. O
THEOREM 4.17 (TYPE SAFETY FOR MiniML). If-;-;-;- + e : 7, then for any heap H, if (H, e*) 5
(H’,¢e’), either there exist H"”, e” such that (H’,e’) — (H”,e”") ore’ is a vlaue.

Proor. By the fundamental property, since the environments under which e is typechecked are
empty, (-, (0,e%), (0,e%)) € &[7]..

Then, either (H’,e") — (H”,e”) or (H’,¢’) is irreducible. If (H, e’) is irreducible, we can ap-
ply the expression relation and find that there exists a world W and expression v, such that
(W, (0,¢"), (0,v,)) € V[r].. Since expressions in the value relation are target values, this suffices

to show that e’ is a value. O
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THEOREM 4.18 (TYPE SAFETY FOR L?). If ;- + e : 1, then for any heap H, if (H, e*) 5 (H’,¢’),
either there exist H”, e”” such that (H’,e’) — (H”,e”") ore’ is a viaue.

Proor. By the fundamental property, since the environments under which e is typechecked are
empty, (" (0’ €+), (@, €+)) € 8[[T]]

Then, either (H’,e’) — (H”,e”") or (H’, ¢’) is irreducible. If (H, e’) is irreducible, we can apply
the expression relation and find that there exists a world W, heaps Hj, H), and an expression v,
such that (W, (H/,e"), (H}, v2)) € V[r].. Since expressions in the value relation are target values,
this suffices to show that e’ is a value. O

4.6.2 MiniML Compatibility Lemmas.

LEMMA 4.19 (COMPAT Xx).
AN A T, X:TEXSX:T

Proor. Expanding the definition of <, -*, and E[]. (noting via Lemma 4.14 that H; = H, = 0),
we are to show that

AW’ HY, Hyy va.Hi = Hi W Hiy A HY,

w E(dom(HH),dom(H2+)),rchgclocs(W,LluFL(cod(H1+)),L2UFL(cod(H2+))) WA (W/» (Oa V1); (Os VZ)) € (V[[T]]p A

Hég WA

(Hage ® How v2 (e (%)) 1, (H W Hauva) b,
(35)
given arbitrary p, yi, yr,x.z, W, Higs, Hags, His, Hiw, Hay, v, Ly, Ly such that p.L3 € D[A], p.F € D[A],
(W,0,0,y.) € G['T],p,
YF,X:T € g[[ra X T]]pa
H19+, H2g+ : Wand

(Higy W Hy, )’ﬁ()’%,x;r(x))) —*>L1 (His v1) 1,
Expanding the definition of G[]., we have that
yrxr = ylx = (vi,va)] Ay € G, A (W, (0,v1), (0,v2)) € V7],
) Yi(YIi‘,x:r(X)) = v;. Then we have (35) by taking W’ = W, H;g = Hygs and Hég = Hygs noting that
configurations with values as programs do not step. O

LEMMA 4.20 (ComPAT ()).
NI ATF() Z()sunit

Proor. Expanding the definition of <, -*, and &E[-]. (noting via Lemma 4.14 that H; = Hy = 0),
we are to show that

W’ H}, Hyy vaHy = Hi W Hi, AHY,

W C (dom(Hys).dom (Hay ) ),rchgelocs(W, L UFL (cod (Hia) ), LoUFL (cod(Hzp))) W A (W', (0,v1), (0,v2)) € V[r], A

(Hage ® Ho Y2 (YE(0))) 1, (Hy W Hayva) 1,

H;g : WA

(36)
given arbitrary p, yi, yr, W, Higs, Hags, His, His, Hay, vi, Ly, Ly such that p.L3 € D[A], p.F € D[A],
(W,0,0,y) € G['T],,
yr € g[[rﬂp,
Higs, Hagy : Wand
(Higs & Hip, v (11 (0)) =1, (Hiwvi) 1,
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We can simplify the substitutions away, and note that the configuration (Hy4 W Hyy, ()) does
not step because () is a value. Thus, we have (36) by taking W’ = W, H;g = Hygs and H;g = Hags.
]

LEMMA 4.21 (COMPAT Ax : 7.e). If A;IT; AT, x i 1 F e < e: 1y, then
NN X EAX e AX e > 1
Proor. Expanding the definition of <, -*, and E[]. (noting via Lemma 4.14 that H; = H, = 0),
we are to show that
3W’ H}, Hy, va.Hi = Hi, @ Hiw A Hj Hy, « WA
W C (dom(Hys).dom (Hax ) ),rchgelocs( W, L UFL (cod (Hia) ), LaUFL (cod(Hzp))) W A (W', (0,v4), (0,v2)) € V7], A
(Hage ® Ho Y2 (YE(€%) > (Higy © Hapov)
(37)
given arbitrary p, yi, yr, W, Higs, Hags, His, His, Hay, vi, Ly, Ly such that p.L3 € D[A], p.F € D[A],
(W,0,0,y.) € G['T] .
yr € g[[rﬂp,
H1g+, Hgg+ : W and
(Hige W Hi, Ay (vE (1)) =1, (Hiwvi)
We show (37) by taking W’ = W, H] g= Hig+ and H; g = Hag+, noting that configurations with
values as programs do not step. It thus suffices to show:
(W, (0,211 (v} (e), (0, Ax.yP (vE (")) € V[r — 7],

Expanding the definition of V[r; — 7], and pushing substitutions inside yr, we are to show that

(W7, (0, YE(YI{,X:T[X = (Via, v2a)[(€9))), (0, YI%(Y]g,x;T[X = (Via, v2a)](€7)))) € 8[[72]],0

given arbitrary Via, V2a such that W E(D,@,){(y}(e*)),yf(ylg(e*)) W* and (W*, ((b, V1a), ((D, VZa)) (S
V[r1], We have this by expanding the definition of < in the premise and specializing where
appropriate. O
LEMMA 4.22 (COMPAT e; e3). If ;I AT ey ety = npand AT AT Fep < e i1y, then
AT AT Ferer; 2ejer:
Proor. Expanding the definition of <, -*, and E[-]. (noting via Lemma 4.14 that H; = Hy = 0),
we are to show that
AW Hi, Hpy vaHy = Hig © Hi A HY,
W L (dom(Hys).dom (Has)),rchgelocs( W, L UFL(cod (Hya) ) LoUFL (cod(Hzp))) W A (W', (0,v1), (0,v2)) € V2], A

(Hage W Hay, (v2 (v (e17) v2 (v (227)))) 1, (Hiyy © Hapva)

H;g WA

(38)

given arbitrary p, yi, yr, W, Higs, Hags, His, His, Hay, vi, Ly, Ly such that p.L3 € D[A], p.F € D[A],
(W,0,0,y) € G['T],,
yr € g[[rﬂp,

Higs, Hagy : Wand

(Hige ® Hiw (v (7 (&%) ¥ (1 (e27)))) 1, (Hiwvi)
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By Lemma 4.3, we have that (ng+ W Hyg, yﬁ (y} (e1+))) _*)LlUFL(Yﬂ(Yﬁ(ef))) (HL,V}) -» for some
H},.v] . Then expanding the definition of < and &[]. in the first premise and specializing where
appropriate, we have that

1 1 1 1 1 _ gl 1
3IW! HY, Hi, vl HY, = Hl @ Hi AR,

Hyy: WA
W C (dom(Hy.),dom(H,)),rchgelocs (W, FL (cod () \UFL(y} (v (€2%))) ULy FL(cod (o) UFL(2 (2 (€57 uly) W' A
(WL (0,v}), (0,v)) € V[ — e A
2 (2 * 1 1
VHas. (Hage W Har 17 (1 (617))) = L0m(y2 (v2(esm)) (Hag @ Hasvo)
(39)
Expanding the definition of V[r; — 7,],, we have that
v} = Axj.ep A v; = Axp.expA
V(Wl*, (03V1a)s ((b; VZa)) € (V[[ﬁ]]p-Wl C0,0.e1p.e0 W™ A (Wl*» (0, [XT i Vla]e1b» 0, [XZ [ V2a]eZb) € 8[[‘[2]]/)
(40)

Proceeding to work on our second premise, by Lemma 4.3, we have that

(Hig W Huw vt (v (e2+))) —Lu(ey) (HT V) =+

for some H? , v2.
Then expanding the definition of < and &[]. in the second premise, noting due to Lemma 4.7
that we can use W, and specializing where appropriate, we have that
IW? HE, HE v, HY, = HY W Hy A H HE - W2A
1 2
W E(dom(H,y).dom(Hss)),rchgeloes (WL UFL (eqy) UFL(cod (H1s) ), LaUFL (e25)UFL (cod (Hazs))) WA

(W2(0,v3), (0,v3)) € V[ri], A (41)

VHz4. (Hég ¥ Hay, Yﬁ ()/1g (eZ+))) i>LZUFL(eZb) (Hgg ¥ Ha., Vg) -

Now, we want to start putting things together. We appeal to (40), instantiating it with the values
found in (45), taking W** to be W2. Thus we have (W2, (0, [x1 — Vvile), (0, [xo > V3]ex)) € E[r],.
Then, expanding the definition of -] and specializing where appropriate, we have that
IWH], H3, vo° HY, = HY W Hy A HY L HS, - WA
W2 T (dom(Hy).dom(Has ) ) rchgelocs( W2, L UFL (cod (Hy) LaUFL(cod (e ))) W A (W2, (0,v7), (0,v3)) € V[r2], A
VMo (HE, 8 o, Do 1 vileny) So1, (M, 9 Hapov)
(42)

Then we show (38) by taking Hy. = H?g @ Hy4 and v, = v,. All that remains is to show that

3. (HE, & Ha, 17 (7 (01) 12 (7 (€)1, (H, © Havv)
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Specializing where appropriate, we have that
(Hege & Haw, (1 (v (1) v (v (e27))))

T LUFL(y2 (y2(€2M)) (Hgg W Hay, (Axa.€21) YE (Ylg (ef))) (by 45)
i>L2LJFL(e2b) (Hgg W Hay, (Ax2.€20) V%) (by 41)
i>L2 (Hig ¥ Hax, [x2 — vﬁ]ezb) (by LCVM)
i>Lz (Hgg ¥ Hay, VZ) (by 42)
- (values don’t step)

LEMMA 4.23 (CompAT Aa.e). If A;IT; A o T e < e: 7, then
N IT; AT+ Aae < Aae s Va.r

Proor. Expanding the definition of <, -*, §[-]. and pushing substitutions in the goal (noting via
Lemma 4.14 that H; = H, = 0), we are to show that

ElW/,Hig,H;g.VHZ_'..ElV}
Hio = Hj W Hy AHLH) - WA

W' T (dom(H,4).dom(Hz.)),rehgeloes (W, Ly UFL(cod (Hi)),LyUFL(cod (Hz4))) W’ A
(W', (0,v1),(0,v2)) € V[Va. 1], A

(Hage & Hars A y2 (r2(e")) =1, (Hjy & Hauova) =
given arbitrary p, yi, yr, W, Ly, L, Higs, Hagy © W, vy, Hiy, Hys, such that
p-L3 € D[A], p.F € DIA], (W,0,0,y1) € G['T],, (W, yr) € G[I],
and
(Hige & Hie 1 1 (1 (€9) =1, (Hivi)
We show the goal by taking W’ = W, H] g = Higs, and H, , = Hags, noting that configurations
with values as programs do not step. Thus, it suffices to show that

(W, (0.2_r (1)), (0.2 (2 (e")) € V[V,
Expanding the definition of V[Va.7],, we are to show that
(W (0 yi (yr (€)), (0¥ (£ (€M) € E[n2] 5 1F (i)

given arbitrary R € RelT and W’ such that W' T g 1(y1(e%)) y2(p2(er)) W'
We have this by expanding the definition of < and then D[] in the premise and specializing
where appropriate. O

LEMMA 4.24 (CompaT e [7]). IfA;IT; AT e < e :Va.r,, then
N ATrRe ] e n]:[a rln

Proor. Expanding the definition of <, -*, E[]. and pushing substitutions in the goal, we are to
show that



168 Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed

AW’ HY ) Hy VHy, 3v,.

Hi. = H] W Hy AHI H) - WA

w E(dom(HH),dom(Her)),rchgclocs(W,L1UFL(cod(HH)),LZUFL((:od(H2+))) W’ A
(W/’ (0’\/1)! (®> VZ)) € (VH[OC = T'I]TZHP A

(Hage & Hap, YE(y2(€9)) O 1, (Hjy ¥ Harovo)
given arbitrary p, yi, yr, W, L1, Ly, Higs, Hagy : W, vy, Hiy, Hys, such that
p.L3 € D[A], p.F € DAL (W, 0,0.11) € GITs & ol (W, ye) € GITT,
and
(Higs @ Hiw v (11 () 0) =1, (Hisvi) »

By Lemma 4.3, we have that (ng+ W Hyg, yﬁ (yll (e+))) —*>L1 (Hl*,v}) -» for some HL,V} . Then
expanding the definition of < and &[-]. in the premise and specializing where appropriate, we have
that

HYV”HE?’HQQ'VHZ'F'HYZ' ) )
Hi, =Hj,WHy AHH) - WA

W C (dom(Hy).dom(Has)).rehgelocs( W, Ly UFL (cod (Hyy)),L,UFL(cod (Hzy))) W' A
(W, (0,v1), (0,v))) € V[Vara], A

(Hags & Hap, YE(rE(e%))) =1, (Hjy W Hapv!)
Expanding the definition of V[Vea.7,],, we have that
v} =A.epA v; =A_.eppA
VR € RelT.(W’, (0, e‘]b), (0, ezb)) € SHTZ]]p[F(O,’)F—)R]

By Lemma 4.3, we now have that
1
(H{g W Hy, (A_.ep) ()) - (Hig W H1+,e1b)

£
=1, (Hiwvy)
-

Recall that (W', (0,e1,), (0,e5,)) € SHTQHP[F(C()HR] given arbitrary R € RelT. Then take R =

V1] ,. Expanding the definition of &[], specializing where appropriate, and applying Lemma
4.9, we have that

AW, Hy HY YHa, Fvs.
1 _ ’” 1 V72 7
Hi, = H wHy AH HY - WY A

4 14
W’ E(dom(H,,),dom(Ha)).rehgelocs (W, Ly UFL(cod(Hyy)).LyUFL (cod(H4))) W'~ A
(W,/, (Qa V1)’ (09 VZ)) € (v[[[a [ T]TZ]]p A

*
(Hagr W Hay,e25) =1, (Hy) WH,p,vo)

Then all that remains is to show that

(Hage W Hay, (v (12 (e7)) 0)) 51, (Hagr © Haopov)
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Specializing where appropriate, the above gives us that
(Hoge 9 Hae, (v (12 (%)) 0)) 1, (Hig © Hows (Aem) 0)
—1>Lz (Hég W Hay, ezb) (by MiniML)

—*>L2 (Hé;] ¢ Hay, Vz)

-+ (values don’t step)

LEMMA 4.25 (CompAT ref e). IfA;IT; AT Fe < e: 1, then

N T;A;TFrefe<refe:refr

Proor. Expanding the definition of < and -* and pushing substitutions in the goal, we are to
show that
EW/, H;g’ Hég.VH2+.3V2.
Hy, = H;g WHi A H;g,Hgg : WA
W' E (dom(Hyy).dom(Hzy)).rehgelocs (W, Ly UFL(cod (His )),LaUFL (cod (Hgs))) W A
(W, (0,v1), (0,v)) € V[ref 7], A

(Hag+ W Hay, let _ = callgc in ref yf(y?(eJr))) —*>L2 (Hég W Hoy, vp) =
given arbitrary p, yi, yr, W, L1, Ly, Higs, Hagy : W, vy, Hyy, Hys, such that

p.L3 € D[A], p.F € DIA], (W,0,0,y1) € G['T],. (W.yr) € G[I],
and
(Higs W Hyy, let _ = callge in ref ' (y2(e"))) —*>L1 (Hyws vy) =
First, notice that

(Hige W Hyy, let _ = callge in ref y! (y(e"))) —p,

(Higa W Hyy, let _ = () in ref yﬁ(yﬁ(eﬂ)) -

(Higa ¥ Hus,ref y! (yi (%))
and

(Hags W Hapy, let _ = callge in ref y?(y2(e*))) i>L2

(HZga W H2+’ ref YE(Y%(e-‘-)))
for some heaps Hi4q : GCHeap, Hyg, : GCHeap. By Lemma 4.8, there exists a world

W' E (dom(Hy,).dom(Ha,))rehgelocs( W, FL (cod (1)) UFL(y? (v} (e4))UL1FL (cod(Has) UL (Y2 (y2 () ULy) Wa
such that Hygq, Haga : Wa.
Then, since G[['],, G['T], are closed under world extension by Lemma 4.7, we can instantiate
the induction hypothesis with p, yr, y., W, and then expanding the expression relation, so we find
that:

(W (0.7 (y (€M), (0 y{ (y7 (e9))) € &[],
Then, by applying Lemma 2.1 and expanding the expression relation, we find that
(Higa ¥ Hip 1 (1 (e9))) 1, (H] WHLL ) -+

and
(HZga ) H2+’ YE(}/%(Q-‘-))) _)Lz (H;g W H2+’ V;) -
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7
where H] 7

Hég : W’ for some

Wa E(dom(Hys).dom(Ha)),rehgelocs(W,FL(cod (Hys)) ULy FL(cod (Has ) )ULy) W
where
(W7, (0,v7), (0,v3)) € V][],

Thus, we find that
(Higs W Hyy, let _ = callgc in ref y! (y1(e*))) S
(Higa W Hyy, ref v (yi(e))) =1,
(Hig W Hyy, ref vi) —p,
(H, [65vi] @ Hy, )
and
(Hags W Hyy, let _ = callge in ref y! (yL(e*))) —p,
(Hazga W Hay, ref 2 (y2(e))) =1,
(Hp, W Hap, ref v3) =1,
(Hy, [653] © Hay, £)
for some ¢, ¢ dom(H{g+ WHi)and £, ¢ dom(H;ng W Hyy).
Since H;g+, H§g+ Wb ¢ dom(H;ng), and £, ¢ dom(H§g+), it follows that (¢, &) ¢ dom(W’.¥).
Then, let
W = (Wk |[W.¥wil(b, &) = LV[c]pJwi])
Notice that W"'.k < W’ k. Moreover, since W E(dom(H,,),dom(Hs,)),- W', we have dom(H )# W' ¥
and dom(H,,)#W’.¥. Since #; ¢ dom(H;) and ¢, ¢ dom(H,,), it follows that dom(H,)#W".¥
and dom(H,.)#W”.¥. Finally, for all (¢],£;) € dom(W".\¥), W’ ¥ ({],£,) = |[W' . ¥]w r(£,4,) =
LW’ ¥ (41, 4)]wr k. This suffices to show that W’ E(dom(H,,),dom(Ha).dom(w.¥) W’. Then, by
Lemma 4.6, W C (dom(Hy,),dom(Hss )),rchgclocs(W,FL(cod(Hys)) ULy FL (cod (Hzs))ULs) W'

c 4
Then, choose Hj = H§g+[t’1'g—>VT], Hy, = H§g+[t’1'g—>v;], and W’ = W”. One can see that

(W”,(0,4),(0,6)) € V[ref 7],
because by definition of W, W' (1, &) = |'V[] ;] w» k. To finish the proof, we must show

H1 ., 651 Hyg [65v3] - W

For any (¢/,£,) +— R € W".¥, there are two cases: (1) (f;,) = (£/,¢,), in which case
W" ¥ (b1, ) = |V[r]plw k- Then, since (W', (0,v7), (0,v;)) € V[z],, by Lemma 4.6, we have
(W, (0,v}), (0,v3)) € V][], and thus (>W", (0,v7), (0,v3)) € [V[z],lwk (2) (£, €) € dom(W’.¥),
in which case we must show (>W", (0, H{(£))), (0, H;(£,))) € W ¥ (¢, £,) = | W' . ¥ (¢, &) |w k-
First, since H},H, : W’, we have (>W’, (0,H (¢))), (0,H;(¢£,))) € W' ¥(¢],¢,). Then, since
>W’.k < W'k, it follows that (>W’, (0, H](¢))), (0, H,(£))) € LW ¥(#,£,)|w k. Finally, since
W’ C (dom(Hys),dom(Hys)),dom(w?.w) W, it follows that >W’ C(dom(Hy,),dom(Hys)).dom(w”.w) B>W”', s0
by Lemma 4.7, we have

(>W”, (0, H{(£)), (0, Hy(£))) € LW ¥(8), 6) |k

as was to be proven. O

7’
29+

LEMMA 4.26 (CompaT le). IfA;IT; AT e < e:ref ¢ then
AN ATRle<le:
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Proor. Expanding the definition of < and -* and pushing substitutions in the goal, we are to
show that

AW, H1, Hy VHo, 3vs.
Hie = Hj, W Hy AH{H) - WA

W E (dom(Hy).dom(Hae)),rehgelocs( W, EL(cod (Hy4)) ULy FL(cod (Hzy))ULy) W A
(W', (0,v1), (0,v2)) € V][], A

(Hage ¥ Haw, 12 (rE(e) =1, (Hj, ¥ Hawyv)
given arbitrary p, yi, yr, W, L, L, Higs, Hagy * W, vy, Hiy, Hys, such that
p.L3 € D[A], p.F € DAL, (W, 0,0,y1) € G['T]p. (W, yr) € G[T],
and )
(Hig+ W Hys, !YE(}’%(9+))) =1, (Huovy) -+

By Lemma 4.3, we have that (Hyg+ W Hip, y (vf (e%))) —*>L1 (H1,,v}) -» for some H},, v} . Then

expanding the definition of < and E[-]. in the first premise and specializing where appropriate, we
have that

3IW' H{, Hy, vo' H, = Hi, © Hyy A Hj

1 . 1
1o Hag s WIA

W C(dom(Hy,),dom(Has ) rehgelocs (W, FL(cod (1, )) UL FL(cod(Hae))ULy) W' A (W (0,v7), (0,v3)) € V[ref 7], A
VHar. (Hags © Hay, v (v (7)) —1, (H, & Hapov))
(43)

From the definition of V[ref 7],, we know that v} and v, are both locations (call them ¢; and
t,) and that W' ¥ (61, &) = |V [r], w1 «. Since H%g, H%g : W1, this means that

(Hi, WHu, 16) =1, (Hj, WHy, vy)
and

(Hzy W Hay, 1) =1, (Hzy W Hay, Vo)
Further, we know that (>W?, (0,v4), (0,v,)) € V[z],.
By Lemma 4.7, we know that
W Cdom(Hys).dom(Hay ) rechgelocs (W, FL(cod (i) )ULy,FL (cod (Has ) ULy) W'
Edom(H1+),dom(H2+),rChgclocs(W,FL(cod(H1+))ULI,FL(cod(H2+))ULZ) [>W1

which, with Hy, = Hig W Hyy and Hyyy = H%g, is enough to prove our goal.

LEMMA 4.27 (CompaT e :=e). IfA;IT; AT ey <ep:ref rand A;IT; AT+ ey < ey : 1 then
AT AT ey i=e; <ep:=e2:unit

Proor. Expanding the definition of < and -* and pushing substitutions in the goal, we are to
show that

HW” H;g’ Hég.VH2+.3V2.

Hl* = H;g U} H1+ A H;g’Hég WA

W E (dom(Hy).dom(Har)).rehgelocs( W, EL(cod (Hy4)) ULy FL(cod (Hzy))ULy) W A
(W, (0,v1), (0,v2)) € V[unit], A

(Hage © Hay, Y2 (y2(e1")) = y2(r2(e2"))) =1, (H 8 Hay,va)
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given arbitrary p, yr, yr, W, L1, Lz, Higy, Hage © W, vy, Hiy, Hys, such that
p.L3 € D[A], p.F € D[A], (W,0,0,y1) € G['T],. (W,yr) € G[I'],

and
(Hige ® Hi v (v (e1)) = vyt (e2)) =1, (Hiwva) =
By Lemma 4.3, we have that (Hig+ W Hip, v (v} (1)) LLIUFLyz(yz.(ez")) (Hi,.v;) -+ for some
Hl LMT
1% 1 :
Then expanding the definition of < and &E[-]. in the first premise and specializing where appro-

priate, we have that

IW! Hi, Hy, vo' Hi, = Hig WHy AHL Hy : WA

W C (dom(Hy.),dom(Hs.)),rehgclocs (W, FL (cod () \UFL(y} (v (€2%))) ULy FL(cod (o) UFL(2 (2 (€57 Uly) W' A
(W (0,v7), (0,v,)) € V[ref ], A

VH2+' (H29+ @ Has, )/I% (YI% (e1+))) i>LZUFLyﬁ(y%(ezJ')) (H%g W Hay, V;) -+
(44)
From the definition of V[ref 7],, we know that v] and v} are both locations (call them ¢; and
t,) and that W' ¥ (61, 6) = [V[r],] wi k-
Now, we again appeal to Lemma 4.3, this time with the context ¢ := [-]. This means, in particular,
that we have that:

Hig W Hipy) (1) (92+))) i>L1UFL(¢’1) (H,,v]) » for some H{,, vi .
Now we expand the definition of < and &[]. in the second premise and specialize where
appropriate to get that

3W? Hi, H3, v,  HY, = HY W Hy A HL HE - W2A
Wl E(dom(H1+),dom(H2+)),rchgclocs(WI,FL([l)UFL(cod(H1+))UL1,FL(£’Z)UFL(cod(Hz+))UL2) Wz/\

(W2 (0.v3), (0,v3)) € V[unit], A (45)

VH,,. (Hég W Hau, v (yF (ez+))) —LurL(n) (Hyy ¥ Hav))

Now we can assemble the pieces that we need to complete the proof. First, we stitch together
our reductions (we reduced analogously on the left side):

(Hzg+ W Hay, Y2 (Y2 (erh) = Y2 (yE(e2h)))
_)LZUFL(yL(yr(ez"))) (Hzg W Hop, & = i (yi(e2")))
_)LZUFL(ll) (Hzg W Hoy, £ :=V3)

—LUFL(8) (Hgg[fz = v3] W Hay, ()

Next, we need to show a W’ such that W I:dom(HH) dom(Ha,), rchgclocs(WFL(cod(HH))ULl ,FL(cod(H24))ULy)
W’ and Hf [6 == V3], H2 [£ := v3] : W’. We can choose W?, as we know that at W?, £, £, mapped
to V7] p» and W2 is an extensmn of W? that protected those locations, and thus the above worlds
satisfy this world. Since otherwise, membership in V[unit] p is trivial, this suffices to finish the
proof.

]

LEmMa 4.28 (CompAT (e)),). If A;T;A;IT+e <e:7andt ~ 1, then
MIT; ATk (e)r < (et
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Proor. Expanding the definition of < and -* and pushing substitutions in the goal, we are to
show that
(W, (HisConar (7 07 ())).)- (Har Come (7 (02 (€)) < &I, (40
given arbitrary p, yr, yr such that p.L3 € D[A], p.F € D[A], (W,Hy, Hz, y1) € G, yr € G[T],
. Expanding the definition of ~ in the premise, specializing where appropriate, and commuting
substitutions, we have that

(W, (Huyr (11 (€9) - (Ha. w7 (7 (%)) € &l
Then since 7 ~ 7, we have (46) by Lemma 4.4. O
4.6.3 L3 Compatibility Lemmas.
LEMMA 4.29 (COMPAT x).
AT Atk x<x:7T
Proor. Expanding the conclusion, we must show that given
Vp, Yrs YL, W, Hl, H2.
pF e DIA] A pL3 e DIA] A (W,yr) € G[T], AW, Hy, Hay1) € Gx: 7],
it holds that:
(W, (Hy, v (i 65))s (Ha v (rE (x))) € 8],
By Lemma 4.12, it suffices to show that:
(W, (Hy, v (yp (<)), (Hz, ¥ (P () € V7],
Because (W, Hy, Hy, y1) € G[x : 7], we must have yi (x) = (vq,v2) and (W, (Hy,v4), (Hz, v2)) €
V[r],. Thus,
1) = () = v () = vy
VPG = () =i () = v,
Finally, noting that (W, (Hy, v1), (Hz,v2)) € V[r], by assumption suffices to finish the proof. O
LEMMA 4.30 (COMPAT Ax : 7.e). If AT AT, x: 7y ke < e: 1, then
ANT;MTREAX:Te < Ax:Te:1] o 1y

Proor. Expanding the conclusion, we must show that given

Vp, Y. yo, W,Hl, H2.
p.Fe DAl ApL3 e DIA] A (W,yr) € G[I'], A (W,Hy, Hay1) € G,

it holds that:
(W, (Hy, Ay (11 (€))), (Ho, AP (vE(e)))) € E[r — z],
By Lemma 4.12, it suffices to show that:
(W, (Hy, Ay (r1(€9))), (He, Ayt (v (e) € Vn — 7],
Thus, consider some arbitrary W’, Hyy, vy, Hay, vo such that W EH],Hz,yﬁ(y}(c*)),yﬁ(yﬁ(c*)) W’ and
(W', (H1p, V1), (H20,v2)) € V[11] ,. We must show
(W', (H1 W Hy, [x = vily (11 (%)), (Hz2 W Hao, [x - Va2 (Y2 (")) € &[],

Let y/ = yL[x = (v1,v2)]. Next, notice that (W', H; W Hy,, Hy W Hy,, ) € G[I.x : 71], because
(W',Hy,Ha, y1) € G[I], (by Lemma 4.7) and (W', (H1y, v1), (H20,v2)) € V[11],. Thus, we can
instantiate the first induction hypothesis with p, yr, y{, W', H; & Hy,, H & Hy,, which suffices to
prove the above statement. O
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LEMMA 4.31 (COMPAT e e;). If \;T;AT 1 Fep <ep i1y —o 1 and A; T3 ATy Fey < eyt , then
A;F;A;Fl L+JF2 Fejey <ejer:n
Proor. Expanding the definition of <, -*, E[]. and pushing substitutions in the goal, we are to
show that
3H}, Hi, VH, : MHeap.3Hj, W/, Hj ).
Hy = Hi, W H] W Hy A Hj H WA
W E (dom(Hy).dom(Has)),rehgelocs( W, Ly UFL (cod (H1y)),L2UFL(cod (Hzy))) W' A
(W,’ (H13V1)’ (Hé1 VZ)) € (V[[TZHP A
(Hzge W Hz W Hay yP (v (e1) ¥ (vE(e2%))) =1, (Hyy WHS W Hapvo)
given arbitrary p, yi, yr, W, Ly, Lo, Higs, Hagy * W, vy, Hy, Hy, Hyy : MHeap, Hy., such that
p.L3 € DAL p.F € DIA], (W,yr) € G[I'],, (W,Hy, Hay) € G,
and .
(Hig+ WH; WHy,, v (rr(ei™) v (rh(e2)) =1, (Hiwvy) »
Then, by Lemma 4.13, there exist y1.;, Y15, H1, Hir, Har, Hor such that yr, = y1 Wy, Hy = HyjwHy,,
Hz = Hy W Hyy,
(Ws Hlla HZI, YLl) € g[[rl]]p
(W, Hir, Har, }’Lz) € g[[rz]]p
and for all j € {1, 2}, o o
1 (i (er) =y (vl (e™)
1 (ri(e2) = yiy(ri(e))
Then, by instantiating the first induction hypothesis with p, yr, y1.;, W, Hyj, Hay, we find
(W, (Hu v (vi(er™))), (Ha v i (vE (i) € 8l — 2],
Thus, by Lemma 4.3, we have

(Higs W Hy W Hy W Hi, v (vh(erh))) D LURL(y L (v () (Hiy WHy W Hi WHj vi) -+
and, for any H,,,

(Hage & Ha @ Hapr & Haw v 3 (v (€17) = Lum(n22(ey)) (Hag ¥ Har @ Hap WHS vop)
where H{g, H;g : W’ for some
w
E(dom(leLﬂH1+),dom(ngLﬂHz+)),rchgclocs(W,FL(Cod(H1,))UFL(cod(HH.))UFL(y]é(y;(cz")))ULI,FL(cod(HZr))UFL(cod(H2+))UFL(y[A§(yI%(
W/
and
(W', (H},,va), (Hy, va) € V[ — 2],
By expanding the value relation, we find that there exist expressions e}, e such that vy = Ax.eq
and vy = Ax.ey.

Then, since G[I'],, G[I'1 WT.], are closed under world extension by Lemma 4.7, we can instan-
tiate the second induction hypothesis with p, yr, y1.,, W', Hyr, Hz, to find

(W', (Hyp, yig (v (e2)), (Hop vii (vE(e2)) € E[ni],
Thus, by Lemma 4.3, we have

(Hi, WHy © Hy W H v (v (e27)) = numien (Hip © Hip W HY WHT i)
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and
(Hjy W Hy & Hay © Hy v 3 (v2(e2"))) = L,umi(en) (Hy ® Hoyw W HY W HS vor)

7" "o, ”
where ng, HZg : W’ for some

’ 7
w E(dom(H’IlLﬂHH),dom(H;IWH2+)),rchgclocs( W’,FL(cod(H},;))UFL(cod(H1+))UFL(ey)) ULy, FL(cod(H},;)) UFL(cod(Hz+)) UFL(ez) ULz) w

and
(W”, (Hi,, vie), (H3,, var)) € V],
Thus, the original configurations step as follows:

(Hig & Hi & Hup, p i (r (1) yi (v () >,
(H;g WH W Hy WHY, Axey n%(y}(ef))) —*>L1
(Hio W Hy W HE, W HE, Axen vir) =i,
(H;’g W Hye WH], WHY, [x = vieleq)

and similarly on the other side, the configuration steps to

(Hy, W Hay WHY, WH, | [x = vorea)

2r?
Since (W', (H], Ax.en), (H;,, Ax.ez)) € V[r1 — ], W’ ChHHenen W (by Lemma 4.5), and
(W, (H;,.,vir), (H3,, var)) € V][], we have
(W”, (H}, W H,, [x = vi]ey), (Hy WH;, [x = valex)) € E[r], (47)

Next, by the assumption that the configuration on the left-hand side terminates, we have

*
(Hi; WH WH] WHL, [x > viJen) -1, (Higvi) »r,

1r>
Then, by applying (47), we find

(Hie,vi) = (Hi7 WH W Hyp, vi)

and
(Hoy W Hoy WHY, W H,,, [x > varlea) =i, (Hyy W Har W Hap, vor)
where Hi’g/’ Hé;, : W for some W” £ (dom(Hy,),dom(Hay)),rchgelocs (W, Ly UFL(cod (Hyy) ), LaUFL(cod (Hay )
W’ and
(W, (Hip, vag), (Hap, var)) € V][],

Then, choose H; = Hiz, H, = Hyp, W = W, Hig = H;;’, and Hég = H;;’. Notice that
w E(dom(H1+),dom(Hz+)),rchgclocs(W”,LlUFL(cod(H1+)),L2UFL(cod(Hz+))) w’ bY Lemma 4.6. This suffices to
finish the proof. O

LEMMA 4.32 (COMPAT ()).
A;T;0;0 F () < () : Unit

Proor. Expanding the conclusion, we must show that given

Vp’ YT, YL, W’ Hla HZ'

p.F e DIA] A pL3 € DIA] A (W,yr) € G[I], A (W, Hy, Ha, .)€ G[0],

A VLA = Yioes(p.L3)
it holds that:

(W, (H1, (), (Hz, ())) € &[Unit],

By Lemma 4.12, it suffices to show that:

(W, (H1, ). (Hz, ))) € V[Unit],,
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Notice that, since (W, Hy, Ha, y1.T) € g[[(z)]}p, it must be the case that H; = H, = 0. Thus, one can
easily see by definition that (W, (0, ()), (0, ())) € V[Unit],, which suffices to finish the proof. O

LEMMA 4.33 (CompAT B). If b € B, then
A;T;A;0 b < b : Bool

Proor. By a simple case analysis, one can see that, for all b € B, there exists a b € {0, 1} such
that b* = b. Expanding the conclusion, we must show that given
VYp,yr.yL, W, Hy, Ha.
p.FeDIA]ApL3 e DIA] A (W,yr) € G[T], A (W, Hy, Hy,y1.T) € G[0],
A YL-A = Yioes(p.L3)
it holds that:
(W, (Hy, b), (Hs, b)) € 8[[Boolﬂp
By Lemma 4.12, it suffices to show that:
(W, (Hy,b), (Hz, b)) € V[Bool],

Notice that, since (W, Hy, Hy, y1.I') € G[0],, it must be the case that H; = H; = 0. Thus, since
b € {0, 1}, one can easily see by definition that (W, (0,b), (0,b)) € V[Bool],, which suffices to
finish the proof. O
LEMMA 4.34 (CompAT let (). If A;T; AT - ey < ey : Unit and A;T; AT, +ep < ey : 7, then
AT AT Wl Flet () =ejiney <let () =ejiney: 7
Proor. Expanding the definition of <, -*, E[]. and pushing substitutions in the goal, we are to
show that
3H;, H}, VHz, : MHeap.3H), W', Hy  v).
Hio = Hj W H] @ Hi, AH H o WA
W E(dom(Hiy).dom(Hss)),rehgelocs (W, Ly UFL (cod (Hy1)),LaUFL(cod(Hz4))) W' A
(W, (Hj,v1), (Hp,v2)) € V[r], A
(Hags W Hy W Hay let _ = y2(yE(er?)) in yE(yi(e2"))) —u, (Hy, WH, WHap,vo) »
given arbitrary p, yi, yr, W, L1, L, Hige, Hagy = W, vy, Hy, Hy, Hiy © MHeap, Hy., such that

p.L3 € D[A], p.F € DIA], (W, yr) € G[I']p. (W,Hy, Ho,y) € G W T3],
and
(Hige W Hy © Hyplet _ =yl (yl(er™) in v (y2(e2") D1, (Hiavi) »
Then, by Lemma 4.13, there exist y1.1, y1.5, H11, H1r, Hai, Har such that yr, = yr,Wyr,, Hy = HyjwHy,,
Hz = Hy W Hyp,

(Ws Hlls HZI’ YLl) € gﬂrl]]p
(W5 le’ H2ra YLZ) € QIIFZHp
and for all j € {1, 2}, o o
¥ (r(er™) =yl (rl(er)
¥ (v (") = yiy(ri(es)
Then, by instantiating the first induction hypothesis with p, yr, yr.;, W, Hyj, Hy, we find
(W, (Hi v (ri(er™))), (Ha v 3 (vE(erh)))) € E[Unit],
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Thus, by Lemma 4.3, we have

(Hige W Hy W H @ Hi vy (17 (€)= L 0mn (e (Hig @ Hir @ Hip W H L va)

and, for any Hay,

(Hags W Hyy  Har & Hop, v 2(r2 (1)) =L oron 2002 (e,0y) (Hao © Hop @ Hoy W HE, v)) =
g 2UFL(y15 (vf (e27))) g 21
where H{g, H;g : W’ for some

w

I;(dom(H1rL+JH1+),dom(H2er2+)),rchgclocs(W,FL(cod(le))UFL(cod(H1+))UFL(yL§(y[{(ez’f)))ULI,FL(cod(HZr))UFL(cod(H2+))UFL(YL§(yIZ.(
Wl
and
(W', (Hy, van), (Hy, van)) € V[Unit],
By expanding the value relation, we find H], = H}, = 0 and v; = v, = ().
Thus, the original configuration steps as follows

(Hige W H; 8 Hyplet =yl (vi(er)) in yd(ri(ex") =
(H;g WHy, WHy,let _=()in }’Lz()’r(€2+))) —
(H;g W Hy W H, YL%(YE(62+)))
and
(Hoge W Hy W Hpy let = YLl(}’r(el+)) in y13(y2(es*)) =
(Hég W Har W Hapy let _ = () in yi2(y2(e2"))) —
(Hj, W Har W Hay, yLi(ri(ex")))
Then, since G[I'],,, G[I'1 W T3], are closed under world extension by Lemma 4.7, we can instan-
tiate the second induction hypothesis with p, yr, y1.,, W/, H1p, Hap:
(W', (Hip v (v (e2))), (Har yi3 (vf (e27))) € El7], (48)

Next, by the assumption that the configuration on the left-hand side terminates, we have

(Hig W Hir W Hi v (1 (e2%)) 1, (Hiw vi) 1,
Then, by applying (48), we find
(Hie,vi) = (HI; W H], WH, vy)
and
(Hj, & Hap & Haw, 115 (E (%)) —1, (Hiy & H3, 8 Hay, v))

where H" H” W, W E(dom(HH),dom(H2+)),rchgclocs(W’,L1UFL((:od(HH)),LZUFL(czod(Hng))) W, and
(w”, (le, 1) (H3,.v2")) € V[r],. By Lemma 4.7, we find that
w I:(dom(HH),dom(Hng)) rchgeloes(W,LiUFL(cod(H14)),L,UFL(cod(Hz4))) w”. Finally, we can take Hig = Hilg,
Hl =Hj,, H = Hg’ and Hj = H}_, which suffices to finish the proof. ]
9 r
LEMMA 4.35 (Compar if). If A;T; AT + e; < e; : Bool and A;T;A0T, + ey < ey @ 7 and
N;T;A;Ty +es <es:7,then

AT, AT W, I—ife1 €y €3 ﬁifel €ye3: T
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Proor. Expanding the definition of <, -*, E[]. and pushing substitutions in the goal, we are to
show that
3K}, Hy, VHz, : MHeap 3Hj, W/, Hj ).
Hy. = Hi, W H] W H AH]HY o WA
W E(dom(H,4).dom(Hyy)) rehgelocs(W,Ly UFL(cod(Hy)),LUFL (cod (Hpy))) W A
(W', (H},v1), (Hy, v2)) € V[r], A
(Hage W Ha W Hoy, if y2(r2(er) v2(vE(e2") Y2 (y2(es™))) =1, (Hjy WH, W Hap,va) +
given arbitrary p, yi, yr, W, Ly, Lo, Higs, Hagy * W, vy, Hy, Hy, Hyy : MHeap, Hy., such that
pL3 (S D[A]],pl: € Z)[[Aﬂ, (W, }/1“) € Q[[F]]p, (W, Hl, H2, YL) S g[[l"l V) rz]]p
and X
(Hige W Hy WH L if yl (v (e™) v (1 (e2) vl (r1(e5T))) =1, (Hiwve)
Then, by Lemma 4.13, there exist y1.;, Y15, H1, Hir, Har, Hor such that yr, = y1 Wy, Hy = HyjwHy,,
Hz = Hyy W Hy,,
(Ws Hlla HZI, YLl) € g[[rl]]p
(W, Hir, Har, }’Lz) € g[[rzﬂp
and for all j € {1, 2}, o o
¥y (r(er™) =y (rl(er)
1 (i (ea") = yij(ri(e2"))
Then, by instantiating the first induction hypothesis with p, yr, y.;, W, Hyj, Hyy, we find

(W, (Hi vy (vE(er™))), (Han v 2 (vE (e %)) € E[Bool],
Thus, by Lemma 4.3, we have

(HigeWHWH1 WH v (v (en ) ;LIUFL(yLé(yll,(ef)))UFL(YLé(yIl.(e}*))) (HyWHWH L WHY, vq) -

and, for any Hy,,

(H29+WHZI®H2”®H2+’ YL%(YIZ*(el-P))) HLZL_JFL()/],%(yl%(ch')))LJFL(yL;(y%(cff))) (H:IZgL-UHZrL'UH2+L'UH;l, V2]) -

where H{g, H;g : W’ for some

w E(dom(HlrLt'Hl+)’dom(HZVWH2+))=rCth10CS(WsFL(C0d<H1r))UFL(COd(Hl+))UFL(YLé(Yll'(CZ+)))UFL(YL;(YII'(eﬁJr)))ULl,
FL(cod(Ha,))UFL(cod(Hz4))UFL(yL3 (v (e2*)))UFL(yL5 (vE (e3*)))ULy) w’
and
(W', (H]; va), (Hy va)) € V[Bool],
By expanding the value relation, we find H;‘l = H;l = ( and either v = vy = 0 or v{ = v, = 1. Both
cases are trivially similar to each other, so we only prove the case where v = v = 0.
Then, the original configuration steps as follows:

(Hige & Hy W Hip if i (vr(en™) vip (v (e2) v; (17 (e5%)) —
(Hi, ® Hir W H1 i 0y b (1 (e2") yid(ri(es™)) =i,
(Hig W Hy W Hy, YL;(Y;(32+)))

and
(Hage & Hp W Hau if 71 2(v2(er*) y1.2(r2(e2)) n2(rE(es™))) =1,
(Hp, W Hap © Hay, if 0 1 2(r2(e2%) 112 (r2(es™) =1,
(Hég W Hyr W Hyy, YLS(YF(62+)))
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Then, since G[I'] ,, G[I'1 ¥ T:], are closed under world extension by Lemma 4.7, we can instan-
tiate the second induction hypothesis with p, yr, y1.,, W/, Hip, Hap:

(W', (Hip yia (v (e2))), (Har yi3 (vf (e27))) € E7], (49)

Next, by the assumption that the configuration on the left-hand side terminates, we have

(Hig & Hy W Hi v (1 (e2%))) =1, (Hiw vi)
Then, by applying (49), we find
(Hyw, vq) = (H{'g W HI, W Hyy, vp)
and
(H3y ® Har & Hau, yi5 (1 (1)) =1, (Hiy ® Hj, 0 Hae,v))
where H7, Hyo © W, W’ C(dom(Hy,).dom(Hss)) rehgcloes(W,Li UFL(cod(Hy,)),LUFL (cod (Hay))) W''» and
(W”, (H7,.v}), (H},,v2")) € V[r],. By Lemma 4.7, we find that
W' E (dom(Hy),dom(Hsy)),rehgelocs (W, Ly UFL(cod (Hi.)),L;UFL (cod(H,))) W' Finally, we can take H = H{},
Hi = Hj,, Hég = Hé;, and Hj = H}_, which suffices to finish the proof. O
LEMMA 4.36 (COMPAT (ey, €3)). If A;T; AT ke <ep:rpand AsT;0;T, ey < ey i1y, then
NT; T Wk (eq, €2) < (e, €2): 11 ® 1
Proor. Expanding the definition of <, -*, E[]. and pushing substitutions in the goal, we are to

show that

3H], Hi VHa, : MHeap 3Hj, W/, Hj ).

Hi. = Hi, W H] W Hy A H H WA

W E (dom(Hyy).dom(Has)),rchgcloes (WL UFL (cod (H1s ). L,UFL (cod (Hgy))) W' A

(W', (H{,v1), (H}, v2)) € V11 ® ], A

(Hage W Hy W Hay, (Y2 (Y2(e1h)), P (yE(e2")))) i>Lz (Hyy WH, W Hyv)
given arbitrary p, yi, yr, W, Ly, L, Higs, Hagy = W, vy, Hy, Hy, Hyy : MHeap, Hy., such that

p.L3 € DAL, p.F € DAL, (W,yr) € G[I'],, (W,Hy, Hay) € G W],
and

(Hige W H1 W Hup, (7 (v (e), v (1 (e29)))) 51, (Hiwvi)

Then, by Lemma 4.13, there exist y1.;, y1.5, H1, Hir, Har, Hor such that yr, = y1 Wyr,, Hy = HyywHy,,
Hz = Hy W Hyy,

(Ws Hlla HZI, YLl) € g[[rl]]p
(W: lea HZra }/Lz) € g[[rz]]p
and for all j € {1, 2},

v (r(et) = ni(rl (™)
¥ (i (e2") = yiy (v (e2"))
Then, by instantiating the first induction hypothesis with p, yr, y1.;, W, Hyj, Hyy, we find
(W, (Hi, yei (v (er™)), (Han v i (vE(er™))) € &[],
Thus, by Lemma 4.3, we have

(Hige @ Hy WH1 W Hin vy (11(e0) =100t (e (Hig W Hiy WHL W H vy
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and, for any H,,,

*

(Hage & Hap @ Har  Haw v 3 (v (€17) = Lum(n2(2(ey)) (Hag ¥ Har @ Hap WHS vop)

7
where H] .

Hy, : W’ for some
w
E(dom(H1VL+JH1+),dom(ngLﬂH2+)),rchgclocs(W,FL(cod(le))UFL(cod(HH))UFL(yL;(yll(ef)))UL1,FL(cod(HZ,))UFL(cod(H2+))UFL(y[,§(ylg(
W/
and
(W/, (HTZ’ V]l)a (H;ls V2])) € (V[[TI]]p
Thus, since vy, vy are values as they are in the value relation, the original configuration will
continue reducing on the second component of the pair. Then, since G[I'] ,, G[I'1 W I';], are closed
under world extension by Lemma 4.7, we can instantiate the second induction hypothesis with
P Yrs YLz: W’: les HZr to ﬁnd

(W', (Hir, y13(y1 (e29))), (Har yi3 (vE(e29)))) € E]r2],
Thus, by Lemma 4.3, we have

*

(Hi, WHy & Hy W H v (v (e27)) = nume (Hi W HL WHY W HT vep) -

and

*

(Hy, ® Hiy W Hoy w Hy, v 5 (12 (e27))) > rumv (Hiy W Hay W HS 0 H; L vo)

14

where H] 7

Hé’g : W’ for some

! 7/
W E(dom(H;,wHy.).dom(H3,&H,)).rechgelocs (W, FL (cod (H?,)) UFL (cod (H1: ) JUFL (v4) ULy, FL (cod (H3,)JUFL (cod (4 ) )UFL (v UL) W

and
(WN, (HT;«, V1r), (H;r, VZr)) € (V[[TZ]]p
Thus, the original configurations step as follows:

(Hig W H W H, (g (ri(enh), v (vi(e2))) —u,
(Hi, WHi & Hi W HY, (Vi v (v (e2))) =
(H; WH WHY WHT (i, var))
and similarly on the other side, the configuration steps to
(Hyy © Hay WHE WHG (vir, var))
’Iﬁlen, choose H] = H’l‘l wHI,, H) = H’z‘l WH; , W =Ww", Hig = H;;, and Hég = H;;. First, notice
that
W' T (dom(Hys).dom (Has)).rehgelocs(W,FL(cod (Hys)) ULy, FL(cod (Hgy) ) UL) W
by Lemma 4.6. One can see
(W”, (Hil W HT;«’ (V"’ V]r))s (H;[ W H;r’ (V2|9 VZI‘))) € (VIIT] ® TZ]],D

because we have (W”, (H}, vi), (H;,, va1)) € V][], (by Lemma 4.7) and (W”, (H,, v1), (H,, var)) €

V(1] . This suffices to finish the proof. m]
LEMMA 4.37 (CompAT let (xq, x3)). IfA;T50T 1 Fep <ep:11® 1y

and \;T; AT, %1 1 11,X0 1 Ty ey < ey : T, then

AT AT WT ket (xq, X0) =epiney <let (xq, Xp) =ejiney: 7
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Proor. Expanding the definition of <, -*, E[]. and pushing substitutions in the goal, we are to
show that

3HY, H YHy, - MHeap.3H), W, Hy v,
Hio = H] W H W Hy AHIH) - WA

W C (dom(Hyy).dom(Has)),rehgclocs( W, EL(cod (Hys)) UL FL(cod (Hzy))ULy) W A
(W, (H{,v1), (H3,v2)) € V[r], A

(Hags W Hy W Hay, let p = y2(y2(e1™)) in let xq = fst p in let x; = snd p in yZ(y2(e2"))) LLz
(H;g WH) W Hyy,vy) »
given arbitrary p, yi, yr, W, Ly, L, Higy, Hagy © W,vq, Hy, Hy, Hyy © MHeap, Hys, such that
p.L3 € DAL, p.F € D[A], (W,yr) € G[I'],, (W,Hy, Hay) € G WT],
and
(Hig+WH WH 1, let p = ¥ (y7(e1%)) in let x; = fst p in let x, = snd p in y{ (v} (e2"))) i’Ll (Hyws vy) =+

Then, by Lemma 4.13, there exist y1.;, y1.5, H1, Hir, Har, Hor such that yr, = y1Wyr,, Hy = HyjwHy,,
Hz = Hy W Hyy,

(Ws Hlla HZI, YLl) € g[[rl]]p
(W: Hir, Hap, }’Lz) € g[[rz]]p
and for all j € {1, 2},

L (r(et) = ni(rl (™)
TACACHESACAC)
Then, by instantiating the first induction hypothesis with p, yr, y1.;, W, Hyj, Hay, we find
(W, (Hi v (vi(er™))), (Ha v 2 (vE(er))) € E[n @ 1],
Thus, by Lemma 4.3, we have
(Hig & Hu W Hir W H v (v (e0))) = Lomin i eny) (Hig ¥ Hir @ His W HY vi) »

and, for any H,,,
(Hzg & Hy W Hyp W Hou yi 2(vE (1)) = LU (72 (er4))) (Hag ® Har @ Hay WH3, vo)
where H{g, H;g : W’ for some
w

£ (dom(Hy, H,,),dom(Hyy wH,, ) rehgelocs (W, FL (cod (Hy, ) UFL(cod (Hyy ) )UFL(y1.1 (2 (€2+))) ULy, FL(cod (Ha, ) )UFL(cod (Hay ) )UFL(y1 2 (2
w’
and
(W', (H,v1), (Hy,v2) € Vo @ ],
By expanding the value relation, we find H}; = Hyy WHyy,, H, = Haiy WHapp, vi = (v, vir), and vy =
(vai, var) where (W', (Hyy, var), (Hai, var)) € V[n], and (W7, (Hyr, vir), (Hapr, var)) € Vo],
Thus, the original configuration steps as follows:
(HiyWHy WHy WHy letp = yﬁ(y}(ef’)) inlet x; =fstpinletx; =snd p in yL;(yll(ef))) i)Ll
(H{g WHy WHy WHyp WHyp let p= (vi,vay) inlet x; = fstpinlet x, =snd p in yL%(yll,(ez‘L))) i)Ll
(Hig WH1 WH WHy WHy, [x 9 vipxg virdyiy (v (e2%)))
and the original configuration on the other side steps to:

(Hég W Har © Hay W Hop W Happ, [X1 5 var, o 5 Vo lyi(v2(e2™)))
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Next, notice that
(W, HinWH 1, WHy,, HopWHo WHap, v [0 = (Vi van), X2 = (Vi var)]) € G2, %1 2 11, %2 < 2]l
because (W', (Hu, vir), (Hai, va)) € V[zi]p, (W', (Hugr, vir), (Hapr, var)) € V2], and (W', Hyp, Hap, y1,) €
G[I2], (by Lemma 4.7).

Let y15 = yry[x1 = (Vi va), xa = (Vi var) |

Thus, we can instantiate the second induction hypothesis with p, yr, y.5, Hiy W Hyp W Hyp, Hopp W
Her (V] H2r to find that

(W', (Hur W Hyp W Hyp, [x1 9 vixo = vy (v (e21))),
(Hai W Hapr W Hayp, [x1 95 var, xo > Varlyi3 (Y2 (e2)))) € &[],

Next, by the assumption that the configuration on the left-hand side terminates, we have

(50)

(Hig WH WH, WHy W Hyy [x 6 vinxa 2 vidy (7 (e21))) _*>L1 (Hisv1)
Then, by applying (50), we find
(Hieve) = (Hilg WH, W ij, Vif)
and
(H3g W Hay W Hap W Hay @ Hapr, [X1 5 vai, X varlyi i (vi(ex"))) _*’Lz (Hy ¥ Ha 0 H;f, Vaf)

where Hi7, Hy - W for some W’ C(dom(Hy.),dom(Ha.)).rchgelocs (W, FL (cod (1)) UL FL(cod (Ha ) ULy) W/
and

(WN’ (H;Ff’ V]f)’ (H;f; V2f)) € (V[[T]]p
Then, choose H] = H’l‘f, H; = H;f, w' =w", H{g = H;’g, and Hég = H;’g. Notice that

W T (dom(Hys).dom (Has)),rehgelocs(W,FL(cod (Hyy)) ULy, FL (cod (Hay) ) ULy) W
by Lemma 4.6. This suffices to finish the proof. O
LEMMA 4.38 (CompAT !v). If AT AT Fv < v:7, then
AT TRV v !
Proor. Expanding the definition of <, -*, E[-]. and pushing substitutions in the goal, we are to
show that
3H}, Hi, VH, : MHeap. 3Hj, W/, Hj o,
Hiw = Hj W H] W Hy AHIH; o WA
w E(dom(HH),dom(Her)),rchgclocs(W,L1UFL(cod(HH)),LZUFL(Cod(H2+))) W’ A
(W', (H],v1), (H),v2)) € V[!7], A

2g+ ¥ Mo Y Hoy, Y (Yp(V i>L2 5o WHs WHo vy) -
(Hags W Ha ® Hay, Y2 (y2(v1))) (Hj, W Hj W Hau, vo)
given arbitrary p, yi, yr, W, Ly, Ly, Hig, Hagy * W, vy, Hy, Hy, Hyy : MHeap, Hy., such that
p.L3 € D[A], p.F € D[A], (W, yr) € G[I'],. (W, Hy, Ho,y1) € G['T],
and
(Higs WH1 W Hi v (1p (v)) =1, (Hisvi)

By Lemma 4.14, (W, Hy, Hy, y1) € G['T], implies H; = H, = 0. Then, by instantiating the first

induction hypothesis with p, yr, y., W, 0, 0, we find
(W, (0.7 (V). (0, (R (v)))) € &[],
Therefore,
(Hiwve) = (Hig WHir W Hy,vy)
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and
(Hags W Hay, }’E(Y?(W))) —I, (Hég W Hyr W Hay, v2) 1,
where H] . H; - W’ for some W' T (dom(Hi.).dom(Hss)) rehgelocs (W,LyUFL(cod(Hy.),LoUFL(cod (Ha.))) W and
(W/: (Hlf’ VT): (HZf’ VZ)) € (V[[T]]P

However, by Lemma 4.15, y/ (y£ (v*)) and y?(y2(v*")) are target values, so the original configura-
tions (Hig+ W Hiy, 17 (11 (v"))) and (Hage W Hay, y2(yZ(v*))) must be irreducible. Ergo, the heaps
that these configurations step to must be the initial configurations, so Hygy = Hj g Y Hiy and
Hage = Hj, © Hay.

Now, notice that, by the definition of Atom,, Hiy : MHeap and Hyr : MHeap. However, since
Higs, Hage © W, we also have Hygy : GCHeap and Hygy : GCHeap. Thus, Hir and Hy¢ has only
manually mapped locations while H4, and Hyy, have only garbage collectable locations. However,
the observation above implies Hiy C Higy and Hyp C Hygy, so this must imply Hyp = Hyp = 0.

Ergo, (W', (0,v1), (0,v2)) € V[r],. From here, it follows that (W', (0,v1), (0,v,)) € V[!7],,
which suffices to finish the proof. O

LEMMA 4.39 (ComPAT let Ix). If AT AT Fep Seqp:lrpand AT AT, x i1y ey < ep: 1o, then

AT, AT wlgplet!x=ejiney <let!x=ejiney : 1
Proor. Expanding the definition of <, -*, &[-]. and pushing substitutions in the goal, we are to
show that
3H;, Hy, VHy, : MHeap.3Hj, W', Hy v,
Hy. = Hi, WH] W Hy A Hj H o WA
W' E(dom(Hyy).dom(Hsy)),rehgelocs (W, L UFL(cod (H1s ), LaUFL(cod (Has ) W A
(W', (H,v1), (H,v2)) € V[n], A
(Hags ® Hy W Hay let x = y2 (y2(er™)) in yP (yi(e2"))) —u,
(Hég W H) W Hyy,vy) +
given arbitrary p, yi, yr, W, Ly, Lo, Higs, Hags * W, vy, Hy, Hy, Hyy : MHeap, Hy., such that

p.L3 € DAL, p.F € DAL, (W,yr) € G[I'],, (W, Hi, Hayi.T) € GII1 W Ia] s i A = Yioes (p.L3)
and
(Hige & Hy W Hyy let x = 7 (v (er™) in v (v} (e27))) 1, (Hiavi)
Then, by Lemma 4.13, there exist y1.;, y1.5, H11, H1r, Har, Hap such that yr, = yr,Wyr,, Hy = HyywHy,,
Hz = Hy W Hyp,
(W, Hy, Ha yy) € G,
(W, Hir, Hap, YLz) € g[[rzﬂp
and for all j € {1, 2}, o o
1 (r(er™) =y (vl (en™))
¥ (i (e2") = yiy (v (e2"))
Then, by instantiating the first induction hypothesis with p, yr, yr;, W, Hy, Hy, we find
(W, (Hiyii (vi(er™)), (Hap v 2 (vE(er™))) € E['nl,
Thus, by Lemma 4.3, we have

(Higr WHy WHy WHLL v (r7 (e ) LUy () (Hig @ Hir @ Hi WHY vqp)
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and, for any H,,,

(Hage & Hap @ Har  Haw v 3 (v (€17) = Lum(n2(2(ey)) (Hag ¥ Har @ Hap WHS vop)

7
where H] .

Hég : W’ for some
w
E(dom(H1VL+JH1+),dom(ngLﬂH2+)),rchgclocs(W,FL(cod(le))UFL(cod(HH))UFL(yL;(yll(ef)))UL1,FL(cod(HZ,))UFL(cod(H2+))UFL(y[,§(ylg(
W/
and
(W, (Hypva), (Hy,va) € V['n],
By expanding the value relation, we find H}, = H}, = 0 and (W’, (0,v}), (0,v3)) € V[r],.
Thus, the original configuration steps as follows:

(ng+ V] Hll V] le V] H1+, let x = n%(y}(eﬁ)) in YL%(}/%(GZ+))) i)LI
(H, WHy WHy, let x = viin ys(rr(e2h)) -1,
(Hig W Hy W Hyy, [x - Vv (rh(e2™)))

and

(Hzg+ W Hy W Hyp W Hyy, let x =y 3 (y2 (e ™)) in i3 (v (e2™))) —*>L2

(Hj, ¥ Har W Hay, let x = v in v (ri(ex"))) —u,

(Hjg W Har @ Hay, [x > V3113 (47 (e27))
Then, notice that

(W’, le: H2ra }’Lz[x — (V}k, V;)]) € Q[[F, X : Tlﬂp
because, by Lemma 4'7’.(W/’ Hir Haryiy) € GII % 11]p and (W7, (0,v7), (0,v5)) € V]ri]p.
Let yi5 = yr,[x = (v, v3)].
Ergo, we instantiate the second induction hypothesis with p, yr, yr5, H1,, Ha, to find that:
(W', (Hup, [x = Vil (v (e2))), (Har, [x = V315 (vf(e2))) € 8], (51)

Next, by the assumption that the configuration on the left-hand side terminates, we have
(Hig W le U Hl+s [X — V?]YL%(YE‘(62+))) i)Ll (Hl*sVT) _’-)Ll
Then, by applying (51), we find
(Hievq) = (H;_:, WH, W Hif,Vﬂ)

and
(Hyy W Har © Hay, [x = V3115 (vE(e2"))) =1, (Hy, @ Hpp @ H3 p. var)

where Hilg, Hé’g : W’ for some W’ E(dom(H1+),d0m(HZ+)),rchgclocs(W,L1UFL(cod(H1+)),L2UFL(c0d(H2+))) w”
and and

(W”, (H{ . vae), (Hypvar) € V],
Then, choose H = H’l‘f, H; = H;f, W =w", H{g = Hi’g, and Hég = Hé;]. Notice that

W' T (dom(Hy,).dom(Hay)).rehgelocs (W, Ly UFL (cod (Hys ) ), LoUFL(cod(Hs,))) W'’ by Lemma 4.6. This suffices to
finish the proof. o

LEMMA 4.40 (CompAT duple). If A;T;A;TFe <e: !z, then
A;T; AT Fduple < duple: 7@l
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Proor. Expanding the definition of <, -*, E[]. and pushing substitutions in the goal, we are to
show that

3K}, Hi, VH, : MHeap. 3H;, W/, Hj ).
Hi = Hi, W H] W Hy A HjH WA
W E (dom(Hyy).dom(Hae)),rehgelocs( W, Ly UFL (cod (Hiy)),L2UFL(cod (Hzy))) W' A
(W', (H7,v1), (H), v2)) € V[Iro!r], A
(Hage W Ha © Hay, let x = 2 (y2(e)) in (x, X)) —1,
(Hég V] Hé V] H2+, V2) -+
given arbitrary p, yi, yr, W, Ly, L, Higy, Hagy © W,vi, Hy, Hp, Hyy : MHeap, Hys, such that
p.L3 € DAL, p.F € DIA], (W,yr) € G[I'],, (W,Hy, Ha,y1) € GII],
and
(Higs WHy W Hy, let x =y (yp(e1") in (%) =1, (Hywvi) »
We can instantiate the first induction hypothesis with p, yr, yr, Hy, H, to find
(W, (Hi v (v (e9))), (Hz, P (vE(e1))) € E['7],
Thus, we find
(Hige & Hy W Hi y (12 (e%) D1, (Hi, WHT 8 Hv) g,
and .
(Hags W Ha & Hay, y7 (vE(eh))) =1, (Hpy W HS © Hap,v)) 1,
where H ), H; + W’ for some W' C (dom(Hi.).dom(Hss)) rehgelocs (W,Ly UFL(cod(Hy.),LoUFL(cod (Ha.))) W and
(Wl, (HT’V?)’ (H;,Vz)) € (V[['T]]p
By expanding the value relation, we find H} = H; = 0.
Thus, the original configuration steps as follows:
(Higs W Hy @ Hyy, let x = pl(yh(e™) in (x, X)) =1,
(H{g W Hyy, let x = viin (x, x)) —*>L1
(H{g W Hyy, (v3, V7))
and
(Hag+ W Hy W Hay, let x = y2(yE(e™)) in (x, X)) =1,
(Hp, W Hap, let x = v in (x, X)) >,
(Hég @ H2+> (V;a V;))
Notice that both of these configurations are irreducible because (v], v}) and (v3, v;) are both values.
Next, choose H] = 0, Hgg = H;g, H; = 0,and Hég = Hgg.Finally, we find (W’, (0, (vi,v9)), (0, (v;,V3))) €
V[!r@!7], because (W’, (0,v}), (0,v;)) € V[!7],, which suffices to finish the proof. O
LEMMA 4.41 (CompaT drop e). IfA;T; AT Fe <e:lr, then
A;T; A;T - drop e < drop e : Unit
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Proor. Expanding the definition of <, -*, E[]. and pushing substitutions in the goal, we are to
show that

3HY, HY VHy, - MHeap.3H), W/, Hj v,
Hio = H] W H W Hy AHJH) WA

w E(dom(H1+),dom(H2+)),rchgclocs(W,L1UFL(cod(HH)),LzuFL(cod(H2+))) W’ A
(W', (H7,v1), (H, v2)) € V[Unit], A

(Hage & Hy W Hay, let = p2(yE(e%)) in () =1,
(H;g WH) W Hyy,vo) »
given arbitrary p, yi, yr, W, Ly, L, Higy, Hagy © W, vy, Hy, Hp, Hyy © MHeap, Hys, such that
p.L3 € D[A], p.F € D[A], (W,yr) € G[I']p, (W, Hy, Ha, y1.1) € G, yi-A = Yioes(p.L3)
and
(Hige WHy W Hy, let _ =y (yp(e") in ) =L, (Huwvi) 1,
We can instantiate the first induction hypothesis with p, yr, y., Hy, H, to find
(W, (Hy, v (y1(€))), (Ha, v (vE (M) € E['7],
Thus, we find
(Hige & Hy W Hi y (12 (e%) D1, (Hi, W H W HL V) g,
and .
(Hags W Ha W Hay, y7 (v (eh))) =1, (Hpy W Hay WH, V) =,
where H ), H; + W’ for some W' C (dom(Hi.).dom(Hss)) rehgelocs (W,Ly UFL(cod(Hy.),LoUFL(cod (Ha.))) W and
(W', (H},v)), (H3,v3)) € V[i7],
By expanding the value relation, we find H} = H; = 0.
Thus, the original configuration steps as follows:
(Hige W Hy W Hyy, let =yl (yl(e%)) in () =1,
(Hj, W Hy, let _= viin () =y,
(H, ¥ Hy, )
and
(Hzgs W Hy W Hay, let _ = y2(y2(e™)) in () =1,
(Hj, © Hpp W H3 let = v3in () 5
(Hj, ¥ Ha W HZ,, ()
Next, choose H] = 0, H;g = H;g, H; = 0, and Hég = H;g. Then, we find (W’.(0,()), (0,())) €
V[Unit], by definition, which suffices to finish the proof. ]
LEMMA 4.42 (CompaT new e). If A;T;A\;TFe <e: 7, then

A;T;A;TFnewe <newe: 3l.capl7® Iptr{
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Proor. Expanding the definition of <, -*, E[]. and pushing substitutions in the goal, we are to
show that

3H}, H] VHy, : MHeap.3Hj, W', Hj v,
Hi = Hi, WH] @ Hi AHj L H WA
W E (dom(Hyy).dom(Ha)).rchgelocs( WL UFL (cod (Hys)),L;UFL(cod (Hzy))) W' A
(W', (H},v1), (H), v2)) € V[3.cap {7 @ Iptr (], A
(Hzg+ ¥ Hy W Ha,y, let _ = callge in let x, = ref y2(y2(e™)) in ((), x¢)) 5,
(Hyg WH; WHspvo)

given arbitrary p, yi, yr, W, Ly, Lo, Higs, Hagy * W, vy, Hy, Ha, Hyy : MHeap, Hy., such that

p.L3 € DAL, p.F € D[A], (W,yr) € G[I'],, (W,Hy, Ha,y1) € G[I],
and
(Higy W Hy WHyy, let _ = callgcin let x, = ref yﬁ(y%(eJ')) in ((), x¢)) =1, (His,v1) #1,
First, notice that

(Hig+ W Hy W Hyy, let _ = callge in let x, = ref y (y2(e*)) in ((), x¢)) —1,
(Higa W Hy W Hyy, let _ = () inlet x, = ref y! (y2(e*)) in ((), x¢)) =1,
(Higa W Hy W Hyy, let x, = ref yﬁ(y}(eﬂ) in ((), x¢))

and similarly,
(Hag+ W Hy W Hay, let _ = callge in let x, = ref y2(y2(e*)) in ((), x¢)) —*>L2
(Haga W Hy W Hay, let x, = ref y2(y2(e®)) in (), x¢))

for some heaps Hyg, : GCHeap, Hyg, : GCHeap. By Lemma 4.8, there exists a world

w E(dom(H1)L*Jdom(HH),dom(Hz)Lﬂdom(Her)),rchgclocs(W,FL(::od(HH))UFL(yﬁ(yll(e)))ULI,FL(cod(Her))UFL(yf(yl?(e)))ULz) Wa
such that Hygq, Haga : Wo.

Then, since G['],, G[I'], are closed under world extension by Lemma 4.7, we can instantiate
the first induction hypothesis with p, yr, y1, Wy, H1, Hz, so we find

(War (H1, 1 (v (€9), (Ha, v (vE(e)) € E[7],
Ergo,
(Higa © Hi W Hi v (r2(€9))) 1, (Hf, W H] @ Hipvy)
and
(Hzga ¥ Hz W Haw, Y2(r2(€9))) 1, (Hy, W H3 © Hapovo)

where H;g, Hég : W’ for some W, ;(dom(HH),dom(H2+)),rchgclocs(W,FL(cod(HH))ULl,FL(cod(H2+))UL2) w’
and

(W', (H{,v1), (H3, v2)) € V[r],
Thus, the original configuration steps as follows:
(Hig+ W Hy WHyy, let _ = callgc in let x; = ref yﬁ(y%(eJ')) in ((), x¢)) i)Ll
(Higa ¥ Hi & Hus,let xe = ref i (v (<) in (0, x0) =1,
(H;g W HT W Hy,, let xp = ref vy in ((), x7)) =1,
(Hiy W H;[6 ¥ vi] W Hu letxe = £ in (0, x0)) =1,
(Hi, WH;[& = vi] W Hyy, (0, 6))
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and, by similar logic,
(Hage & Hy & Hay, let x, = ref y? (yE(e%)) in (0, x1)) =1, (Hj, & H3[& > va] & o, (0, £))
for some locations #; ¢ dom(H;g WHIWHy,)and 4, ¢ dom(H;g W H} W Hy,).
Now, we can choose H] = H[# = v¢], H, = H}[f& — vo], W = W, H{g = H;g, and H;g = H;g.
Thus, it suffices to show:
(W', (H{[&1 = v1], (), &), (H3[& = v>], (), &))) € V[3.cap {7 @ Iptr ],

By expanding the value relation, it suffices to show:

(W', (Hi[&r = 1], (0, 1), (Hz[&2 = V2], (0, 2))) € V][cap {7 ® Iptr (o sy et
By expanding the value relation and splitting the heaps appropriately, it suffices to show

(W', (Hi[&r = vi], ), (H3[& = V2], () € V]cap { ] p[is o) (a0 (52)
and
(W, (0,0, (0,62)) € V['ptr L pis(eyo (e (53)
We first prove (53). By expanding the value relation, it suffices to show:
(W, (0,0),(0,£)) € Vptr {p30)0 (6.0

Then, since { clearly maps to (£, £;) in the environment in the above value relation, we are done.
Next, we prove (52). By expanding the value relation, since { clearly maps to (#, ;) in the
environment in the value relation, it suffices to show

(W” (HIs V1)s (Hz, VZ)) € (V[[Tﬂp[L3(§’)»—>(l1,f2)]
However, we have (W', (H,v1), (H},v2)) € V7] »» and extending p does not remove any atoms
from the value relation, so this suffices to finish the proof. O
LEMMA 4.43 (CoMPAT free e). If A;T;AsT e <e:3.cap7® !ptr, then
A;T; AT + free e < freee: 3.7
Proor. Expanding the definition of <, -*, E[]. and pushing substitutions in the goal, we are to
show that
3H;, Hy, VHy, - MHeap.3H), W', Hy v,
Hiw = H, W H] W HL AH]H; o WA

w l;(dom(H1+),dom(Hz+)),rchgclocs(W,FL(cod(H1+))UL1,FL(cod(H2+))ULz) W’ A
(W, (H{,v1), (H,v2)) € V[3L 7], A

(Hag+ WHy W Hy, let x = yf(y?(eﬂ) in let x, =!(snd x) in let _ = free (snd x) in x;) i>LZ
(Hy, & Hy Wy, va)
given arbitrary p, yi, yr, W, L, Lo, Higs, Hogy * W, vy, Hy, Hy, Hyy : MHeap, Hy., such that
p.L3 € DAL, p.F € DAL, (W,yr) € G[I'],, (W,Hy, Hay1) € G,
and
(Hig+ WHy W Hyy, let x = y (¢! (")) in let x, =!(snd x) in let _ = free (snd x) in x;) S
(Hiw vi) 1,

By instantiating the first induction hypothesis with p, yr, y., H1, Ha, we find
(W, (H1, v (rr(eM))), (Hz, 1 (v (e1)))) € E[3cap { 7 @ ptr I,
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Ergo, by Lemma 4.3,

(Hige & Hy W Hip y (12 (e%) D1, (Hi, WHT 6 Hyvy) g,
and

(Hage & Hz & Hay, yE(vE(€%))) =1, (Hj, & H3 8 oy, va) 5,
where Hi , H)  : W' for some W' L (dom(Hy,),dom(Hs,)) rehgelocs (W, FL(cod (Hy:)) ULy, FL(cod (Hay))UL;) W' and

(W', (H},v1), (H3,v2)) € V[3.cap (T @ Iptr (],
By expanding the value relation, there exist some locations #;, £, and, for any i € {1, 2},
vi=(0,4)
and
Hi = H} W {; = vhi}

where

(W', (HY, vi1), (H3, vh2)) € V7] p[is)m (o0
Thus, the original configuration steps as follows:

(Hig+ W Hy WHyy, letx = yﬂ(y\1 (e*)) in let x, =!(snd x) in let _ = free (snd x) in x,) i>L1
(H;g WHY W {f — vpi} WH,
let x = ((), £;) in let x, =!(snd x) in let _ = free (snd x) in x,) —*>L1
(H;g WHY W {f = vpi} W Hyy, let x, =l inlet _ = free £ in x,) i)Ll
(H;g WHY W {6 — vpi} WHy, let x, = vpy in let _ = free £ in x;) —*>L1
(H;g WHY W {f — vpi} WHy, let _ = free £ in vy) LLI
(H, @ HY © iy, vi)
and by similar logic,
(Hzg+ W Hy W Hay, let x = y2(y?(e")) in let x, =!(snd x) in let _ = free (snd x) in x;) 5
(Hyy W H W Hay, vha)

Then, we can take W’ = W', H] = HY, H} = HS, H{g = H{g, and Hj, = Hég. Thus, it suffices to
show
(W', (H7, vi), (H3, vi2)) € V[3 7],
Because we have (W', (HY, vi1), (H3, vh2)) € V[7]p[13(2)(e,0,)]> the above statement clearly fol-
lows, which suffices to finish the proof. ]
LEMMA 4.44 (CompAT swap). If A;T;A T Fep <ep:capl oy, AsT5A0T, F ey < ey :ptrd, and
N;T;A;T3 +es <es: 13, then

A T; AT Fswap e ep e3 < swapejezes:capl s ® 7;
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Proor. Expanding the definition of <, -*, E[]. and pushing substitutions in the goal, we are to
show that

3HY, Hi, VH, : MHeap. 3H, W/, H) ).

Hio = Hi, W H] Wy, AH] H WA

W E (dom(Hy).dom(Has)),rchgcloes( WL UFL (cod (H1s)),L;UFL (cod(Hgy))) W' A
(W', (H},v1), (H),v2)) € V[cap s @ 1], A
(Hag+ W Hy W Hyy,

let xp = y7(y?(e2*)) inlet _ = y2(y?(e1)) in let x, = Ix, in let _ = (xp := y7(y?(es+))) in (), xv)) 5,
(Hég W H, W Hyp,vy) »

given arbitrary p, y1, yr, W, Ly, Ly, Higs, Hage + W, vy, Hy, Hy, Hiy - MHeap, Hy., such that
pL3 (S Z)[[A]],pF € Z)[[A]], (W, }/I‘) € Q[[F]]p, (W, Hl: Hz, }/L) € g[[Fl V] rz V] Fi]]p
and
(ng+ W Hl @ H1+:

let x, =y (y'(ez")) inlet _ = yﬂ(yJ (e1)) inlet xy =!xp inlet _ = (x, := yﬂ(y\1(e3+))) in ((),xv)) i>L1
(His, vy) L

Then, by applying Lemma 4.13 twice, there exist y1.,, y1.5, Y13, Hias H1b, Hie, H2a, Hap, Hae such
that yi.I' =y, WyL, Wyrs, Hi = Hig W Hyp W Hye, Hy = Hyg W Hyp W Hy,
(W, H1g, Hoa, y1) € G[I1],
(W, Hup, Hap, v1,) € G20,
(W, Hie, Hae,yi3) € GI3],
and for all j € {1, 2}, o o
1 (i (er") =y (vl (er™)
7 (vl () = yif(rl(e)
7 (vl (es) = yif(rl (es™)
Then, by instantiating the second induction hypothesis with p, yr, y1.,, W, Hyp, Hap, we find
(W, (Hip, yia (v (e25), (Hap, v 5 (YE(e25)) € Elpir I,
Thus, by Lemma 4.3, we have

(Hige WH1a ® Hip W Hie W Hip yip (v (€2%))) =L 0m i (v (o) UFLGd () (e4))
(H{g WHig WHie WH WHY vip) »

and, for any Hay,

(Hag+ W Hag W Hap W Hae W Hay, yi5(vE(e2"))) = LUFL(y2 (y2(e*))) UFL(y1. 2 (v (e5*)))
(Hj, ¥ Hag W Hae W Hpy W HI, vap) —+

where H{g, Hgg : W’ for some

w E (dom(H1a9H1cWH ), dom(HzaWHze WH2)),
rchgelocs(W,FL(cod(H1q))UFL(cod (H1c) JUFL(cod(H14) ) UFL(y11 (vf (e1)))UFL(yL3 (vi (e37))) ULy,
FL(cod(Hzq))UFL(cod (Hzc) JUFL(cod(Hz4+) JUFL(y1.2 (2 (e1)))UFL(y15 (v2 (e5%)))ULz) w’
and
(W', (H},, vib), (Hy,, vap)) € Vptr (],
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Expanding the value relation, we find that H}, = H}, = () and there exist locations £, £, such that

p-L3({) = (b1, &) = (Vib, Vap)-
Then, since G[I'],, G[I'1 W T, W T3], are closed under world extension by Lemma 4.7, we can
instantiate the first induction hypothesis with p, yr, y.;, W, Hig, Haqa:

(W', (Hia yi1 (v1 (1)), (Haa 115 (yE (1)) € E[cap ],
Thus, by Lemma 4.3, we have

(Hiy WHia WHic W Hi v (1)) = L0minl i er)
(H;’g V] ch V] H1+ ] H* Vla) e

la’

and, for any H,,,
(H;g W Hyq W Hye W Hay, YL%(YIZ*(61+))) _)LZUFL(YI_g(yg(eH)))
(Hélg (V] Hzc (V] H2+ (V] H;a’ V2a) g

where H{’g , H;; : W” for some

W’ T (dom(HycHy.).dom(HaeHy.)),
rehgelocs( W.FL(cod (Hie)) UFL (cod (1)) UFL (y1 (1 (e57))) ULy FL (cod (Hyc) UFL (cod (o) UFL (112 (vE (es ")) uLy) W
and
(W, (Hig Via), (Hag, v2a)) € V[cap { ni],
Expanding the value relation, we find that vi, = vo, = () and there exist values v;, v, such that
H, = Higo W {& ™ vi}, Hj, = Hago ¥ {& 1 v}, and
(W”, (Hia0, V1), (Haao, v2)) € V[r1],

Then, since G[I'],, G[I'1 W T, WIs], are closed under world extension by Lemma 4.7, we can
instantiate the third induction hypothesis with p, yr, y1.5, W”, Hic, Hae:

(W', (Hie yu3(rf (e5M), (Hae, 15 (vE(e5M)))) € &[],
Thus, by Lemma 4.3, we have

m *
(Hy WHig W{fi = vi} WHc WHy, yi3(rr(es)) —u,
m *
(Hi,g’ W Higo W {6 — vi} W Hiy WHI, vi) +
and, for any Hy,,
m *
(HZ; W Hago W {f > vo} W Hye W Hyy, YLg(Yﬁ(e;))) L
(Hzy & Haay @ {£ 5 va} © Hyy & Hy vae)

where H{;’, H;;’ : W for some

W” E(dom(HmuwH1+),dom(H2m,L*JH2+)),rchgclocs( W . L1UFL(cod(H14))UFL(cod(H144))UFL(v1),LaUFL(cod(H24 ) )UFL(cod(Hzay))UFL(V3))

and
(WN/, (HTC’ V]C)» (H;c’ VZC)) € (VHT3]]P
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Thus, the original configuration steps as follows:
(Hig+ WHig WHp WHi W Hp,

let xp = ¥ (y'(e2%)) in let _ =y (y'(e1)) in let x, = Ixy in let _ = (xp := y{ (' (e34))) in (), xv)) S
(H{g WH, WHe WH,

let x, = £ inlet _ =y (y!(e1)) inlet xy = xp inlet _ = (x, = y] (y'(es+))) in (O, xv) =1,
(H{g WHig WHie WHp,

let =y (y)(e1)) inlet xy =161 inlet _= (& = y] (y'(es+))) in (), xv) =1,
(H} & Higo {6 ¥ v1} & Hie W Hy,

let _=()inletxy, =!inlet = (£ := yﬂ(y‘l(eg+))) in ((),xy)) :)Ll

(H{’g W Hig W {6 o vi} WHe WHy,

let o =16y inlet _ = (& := ] (v'(es+)) in (0, x)) =1,

(H1; ¥ Hig W {fy 5 vi} W Hie W Hys,

let x, = viinlet _= (£ = yﬂ()&1 (e3+))) in (), xv)) l>L1
(H7, 8 Higo ® {6 > vi} & Hie 8 Hoy let _ = (£ = 1] (v! (e54))) in (0, v1) 51,
(H} & Higo © {f1 5 vi} W H W Hiy let = (6 1= vic) in (0),v1)) =1,
(H7 6 Higo W {8 = vich W Hi W Hy, let _ = () in (0,v1)) =1,
(H}Y & Higo ® {f1 5 vic} & H W Hiy, (0, v1)

and similarly, on the other side, the configuration steps to:

m *
(H;/g, ¥ Hago W {f > vac} W Hy, ® Hay, ((),v2))

Then, choose Hyr = HigoW{f > vic}WH},, Hy = Hago® {f 15 vacbwH;,, W/ = W'/, Hi = H{Y,

1c’ 2c’
and Hj, = H;7. First, notice that W' C (dom(Hy.),dom(Ha.)).rchgelocs (W, Ly UFL (cod (H14)),LaUFL(cod(Hz))) W'
by Lemma 4.6. Then, to finish the proof, we must show that

(W, (H1ao © {8 5 vic} W Hi,, (0, V1)), (Haao W {8 ™ vac} W H3,, (0, v2)) € V[cap{ s @ 1],

First, we have (W"”, (H1go, V1), (H240, v2)) € V[71], by Lemma 4.7. Thus, it suffices to show:
(W, ({t ¥ vic} W Hi,, ), ({2 5 vac} W H3,, v2)) € V[eap £ 1],

This follows from the fact that p.L3({) = (#, &) and that (W, (H}., vic), (H. vac)) € V[z3],,

1c?

which suffices to finish the proof. O
LEMMA 4.45 (CompPAT Al.e). If ;T A (T e <e: 7, then
AT AT FAe < Ale: VT

Proor. Expanding the conclusion, we must show that given

VYp,yr, v, W, Hy, Ha.

p.FeD[A] A pL3 e DIA] A (W,yr) € G[T'], A (W,Hy, Ho i .T) € G,

A VLA = Yioes(p.L3)
it holds that:

(W, (Hy, Axgyi (v (€M), (Hz, Axgyf (v (D)) € 8[V¢ ],

By Lemma 4.12, it suffices to show that:

(W, (Hy, Axgyg (v (€9)), (Hz, Axgyf (v7(e)))) € V[VE e,
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By expanding the value relation, for any locations #;, £,, we must show

(W, (H1, 71 (v (€M), (Hz, v (vE(e9)))) € E[r]ppisrm a1
Let p’ be a record such that p’.F = p.F and p’.L3 = p.L3[{ > (£1,£)]. It is easy to see p’.L3 €
DIA, (], given that p.L3 € D[A]. Thus, we can instantiate the first induction hypothesis with
p’,yrs YL, W, Hy, Hz, which suffices to show the above statement. m]

LEMMA 4.46 (CompaT e [{']). IfA;T; AT ke <e:V{ .t and (' € A, then
AT ATre [ 2e [ [0 r

Proor. Expanding the definition of <, -*, E[]. and pushing substitutions in the goal, we are to
show that

3H;, H, VHy, : MHeap.3Hj, W', Hj v,
Hy. = Hi, W H] W Hy A Hj H WA
W C (dom(Hy).dom(Ha)).rehgelocs( W, Ly UFL (cod (Hiy)),L,UFL(cod (Hzy))) W' A
(W', (H,v1), (Hy, v2)) € V[[L = 7]y A
(Hzge W Ho W Hau v (v1(e%)) O) =1,
(Hég W H) W Hyy,vy) -+
given arbitrary p, y1, yr, W, Ly, Ly, Higs, Hagr + W, vy, Hy, Ha, Hiy - MHeap, Hy., such that
p.L3 € D[A], p.F € DIA]L (W, yr) € G[I']p, (W, Hy, Ha, yi.1) € G, yi-A = Yioes(p.L3)
and i
(Hige & Hi W Hip, 1 (17(e9) ) =1, (Hive) 1,
First, we can instantiate the first induction hypothesis with p, yr, y1, Hi, H to find that:
(W, (Hy, vt (1 (), (Ha v (47 (€9)))) € E[VE ],
Thus, we find
(Hige & Hy W Hi y (12 (e%) D1, (Hi, WHT 8 Huv) g,
and .
(Hag+ W Hy W Hyy, ¥ (ri(e)) —u, (Hég W H; W Hay, vy) 1,
where Hi , H)  : W’ for some W' L (dom(Hy,),dom(Hs,)) rehgelocs (W, L UFL(cod(H1y)),L2UFL(cod (Hz,))) W' and
(W', (H},v}), (H3,v3)) € V[V{.7],
By expanding the value relation, we find vj = 1_.e; and v} = A_‘eg where
(W', (Hi.ep), (Hyel)) € E[t]pisopm e (54)
Ergo, the original configuration steps as follows:
(Higs & Hi & Hi r (r}(e9) 0) =,
(Hig (V] Hxl( (V] H1+, /1_.6; ()) —)Ll
(Hi, wH] W Hi, ep)
and .
(Hzge ¥ Ha W Hau v (v2(e)) O) -1,
(Hj, & H; & Hay, e)

Next, by the fact that the configuration on the left-hand side terminates, we have

*
(Hig V] HT V] H1+, e;;) —>L1 (Hl*, V1) _HLI
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Then, by applying (54), we find that
(Hys,vp) = (Hi; WH" W Hyy, Vﬁ)
and .
(Hy, & Hy & Hapef) =1, (Hy, & H3™ W Hay, vh)

where H{j, H7 - W for some W’ C(dom(Hy,) dom(Hs.)).rehgelocs(W,L UFL(cod(Hy.)), L,UFL(cod (Hy.))) W
and

(W7, (H}", V), (H3", V) € VIrlpps)m ()
Then, by Lemma 4.10, we find
(W, (H{" V), (3" v5) € V][ - 17,
Finally, we can take H} = H}*, H) = Hy", W’ = W”, H;g = H;’g, and H;g = H;’g. Notice that
W' T (dom(Hy),dom(Hay)).rehgelocs (W, Ly UFL (cod (Hys ), LoUFL(cod(Hss))) W'’ by Lemma 4.6. This suffices to
finish the proof. o
LEMMA 4.47 (Compar 7, e7). IfA;T; AT ke <e: [{+ ']t then
AT ATRT en < e 3l r
Proor. Expanding the definition of <, -*, E[-]. and pushing substitutions in the goal, we are to
show that
3H;, Hy, VHy, : MHeap.3Hj, W', Hy v,
Hio = Hy WH{ WwH, AH H) - WA
W E(dom(Hy).dom(Hsy)),rehgelocs (WL UFL(cod (H1s ), LaUFL(cod(Has ) W A
(W', (H},va), (Hy,v2)) € V[T = 7] A
(Hags W Hy W Hyy, YE(Y;(eJr))) -1,
(Hég W H) W Hyy,vy) +
given arbitrary p, yi, yr, W, Ly, Lo, Hig, Hogy * W, vy, Hy, Hy, Hyy : MHeap, Hy,, such that

p.L3 € DAL, p.F € D[A], (W, yr) € G[I'],, (W,Hy, Hay1) € G,
and .
(Hige W Hi W Hiw 1 (y1 (%)) =1, (Hisve) 1,
First, we can instantiate the first induction hypothesis with p, yr, yr, W, Hy, Hy to find that:
(W, (Hy y{ (y(e))). (Ho, P (YR (e"))) € [ - 7],
Thus, by Lemma 4.3, we find
(Hige W Hy W Hi 1 (v (€9))) S, (Hl, W H} W H,v) o,
and
(Hzge W Hy W Hay, vP (y2(e™))) =1, (Hy, W HS W Hay, V) 1,
where H;g’ Hég : W’ for some W |;(dom(HH),dom(Her)),r«:hgclocs(W,L1UFL(cod(HH)),LZUFL(::od(Hm))) W’ and
(W, (HL,v)), (H3,v3)) € V][ = 7],
Then, we can take H] = H}, H) = H}, W’ = W’, H{g = H;g, and Hgg = H;g. Thus, it suffices to
show:
(W', (H1, v7), (H3,v3)) € V[3L 7],
By expanding the value relation, it suffices to show:

(W', (H},v)), (H3,v3)) € V]300
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The above statement must hold by Lemma 4.10 because we have that (W, (H},v}), (H,v})) €
VI[I{ = {']7], from earlier, which suffices to finish the proof. ]

LEMMA 4.48 (CompArT let 7, x7). If AT AT Fey <eq 2 3m,
AT A GTo,x i 11 F ey S ey i1 and FLV (1) C A, then

NT; ATy Wl klet T8, x7=ejiney <let ", x7=ejiney: 1y

Proor. Expanding the definition of <, -*, E[-]. and pushing substitutions in the goal, we are to
show that

3H}, HY VHy, - MHeap.3H), W/, Hj , va.
Hio = Hj W H{ W Hy AHIH) WA

w E(dom(HH),dom(Her)),rchgclocs(W,L1UFL(cod(HH)),LQUFL(COd(H2+))) W’ A
(W', (H,v1), (H},v2)) € V], A

(Hag+ W Hy W Hyy, let x = yf(y?(ef’)) in yf(y?(ef))) —*>L2
(Hég W H) W Hyy,vy) +
given arbitrary p, yi, yr, W, Ly, Lo, Higs, Hagy * W, vy, Hy, Hy, Hyy : MHeap, Hy., such that
p.L3 € DAL, p.F € DAL, (W,yr) € G[I'],, (W,Hy, Hay1) € G W],
and
(Higs W Hy W Hyy let x = 1) (Y (e1%)) in 1! (r) (e2%))) 21, (Hiwve) 1,
Then, by Lemma 4.13, there exist y1.1, y1.5, H1, Hir, Har, Hor such that yr, = y1Wyr,, Hy = HyywHy,,
Hz = Hy W Hyp,
(W, Hy, Hayey) € G0,
(W,Hyp, Hyp,y1,) € g[[FZHp
and for all j € {1, 2},

v (i (e™) =yl (e™)
1 (vl (e2) = vy (vl (e2"))
Then, by instantiating the first induction hypothesis with p, yr, y1.;, W, Hyj, Hay, we find
(W, (Hu, yii (i (e"), (Han v 3 (vE(eM)) € E[3 a1,
Thus, by Lemma 4.3, we have
(Hig+ W Hy WHy WHLL v (rr (e ) = LUy () (Hig @ Hi WHY WH V) -
and, for any Hy,,
(Higs W Hy W Hpr W Hop, y13(¥2(er ™)) = LURL(12(2 () (Hiy ¥ Har W HY W Hay, vy) —»
where H{g, Hgg : W’ for some
w E(clom(leL’fJHH),dom(HZrL’fJH2+)),rchgclocs(W,FL(cocl(le))UFL(cocl(HH))UFL()/LZ}()/11.(ez*')))ULl,

FL(cod(Har)) UFL(cod () UFL (1 2 (12 () ULo) W'

and
(W', (Hy ), (Hyv3)) € VIEE A,
By expanding the value relation, we find there exist locations #, £, such that, for any i € {1, 2},

(W', (H];vD), (H3,v3)) € V[t ps@)ye e,m)]
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Thus, the original configuration steps as follows:
(Hig+ WHyy WHy WHy let x = Yﬂ()fﬁ(efr)) in yﬂ(y‘l(ef))) i>L1
(H{g W Hy, WH WHY, let x = viin yﬂ(y](ef))) >,
(Hj, WHy WHi W HY, [x o vilyt (yi(e2")))
and similarly

(ng+ (V] Hz[ (V] H2r (V] H2+, let x = )/E()/Z(el+)) in yf(y2(€2+))) i)LZ
(i, & Har & Hay 8 H3, [x 5 V312 (v (e:"))

Let y1y = yr,[x = (v, v3)].
First, one can see that
(W', Hy, WHI Hy WH L yi9) € G x: Tl p[is)m ()]

because (W,, (HL, V?), (H;l’ V;)) € (V[[Tlﬂp[Lg(é’),_)(gbgz)] and (W,, Hy,, Hyp, YLZ) (S g[[rzﬂp (by
Lemma 4.7, and extending p with { does not invalidate any atoms in the substitution).

Thus, since G[I'],, G[I'1 @ I';], are closed under world extension by Lemma 4.7, we can instan-
tiate the second induction hypothesis with p[L3({) + (£1,&)], yr, vy W/, Hip W HY, Hyp @ H;, to
find

(W', (Hyy WHS, [x = vily (1 (e21)), (Hzr W H, [x = V311 (Vi (ea)) € Elnllpiis)m oo
Next, by the assumption that the configuration on the left-hand side terminates, we have o
(Hig & Hie @ Hir @ HY [xos Vi (v () =1, (Hiav) =,
Ergo, by applying (55), we have
(Hiev1) = (HY, ® Hip 0 Hyp, V)

and

(H;g W Hy W HY, W Hyy, [x vl (vE(ex)) =1, (Hé’g W Hyp W Hay, Vg) L,
where H{l, H) - W for some W’ C (dom(Hy,),dom(Hss)),rehgelocs (W,L UFL (cod (H1y)), L2UFL(cod (1)) W/
and

(W, (Hip, V), (Hap V) eVl o0y ()]
Then, by Lemma 4.11, since FLV (1;) C A,
(W”’ (H1f> Vf1.)> (HZf’ Vg)) € (V[[TZ]]p
Finally, we can take H] = Hyp, H) = Hyp, W = W”, H;g = H;’g, and Hgg = H;’g. Notice that

W' E(dom(Hy).dom(Hzs)).rchgclocs( WL UFL (cod(H1y)).L.UFL(cod(Hzy))) W' by Lemma 4.6. This suffices to
finish the proof. o

LEmMaA 4.49 (CompAT (e),). IfA;IT;A;T e <e:randt ~ 7, then
NT; 0Tk (e) < (e)r it

Proor. Expanding the definition of < and -* and pushing substitutions in the goal, we are to
show that

(W, (H1, Coms e (Y2 (11 (€"))), (Ha, Crs e (VR (vE (e9))))) € E[7], (56)
given p, yr,yL, W, Hi, Hz such that
p.F € DIA], p.L3 € D[A], (W, yr) € G[T]p, (W, Hi, Hayy1.T) € G s v = Yioes(p-L3)

Our first induction hypothesis, appropriately instantiated, tells us that:



(W, (Hy, vt (v (€M), (Ha, yE(yE (e9)) € E[7,
Since 7 ~ 7, we have (56) by Theorem 4.4.
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