
Realistic Realizability: Specifying ABIs You Can Count On

ANDREWWAGNER, Northeastern University, USA
ZACHARY EISBACH, Northeastern University, USA
AMAL AHMED, Northeastern University, USA

TheApplication Binary Interface (ABI) for a language defines the interoperability rules for its target platforms,
including data layout and calling conventions, such that compliance with the rules ensures “safe” execution
and perhaps certain resource usage guarantees.These rules are relied upon by compilers, libraries, and foreign-
function interfaces. Unfortunately, ABIs are typically specified in prose, and while type systems for source
languages have evolved, ABIs have comparatively stalled, lacking advancements in expressivity and safety.

We propose a vision for richer, semantic ABIs to improve interoperability and library integration, sup-
ported by a methodology for formally specifying ABIs using realizability models. These semantic ABIs con-
nect abstract, high-level types to unwieldy, but well-behaved, low-level code. We illustrate our approach
with a case study formalizing the ABI of a functional source language in terms of a reference-counting im-
plementation in a C-like target language. A key contribution supporting this case study is a graph-based
model of separation logic that captures the ownership and accessibility of reference-counted resources using
modalities inspired by hybrid logic. To highlight the flexibility of our methodology, we show how various de-
sign decisions can be interpreted into the semantic ABI. Finally, we provide the first formalization of library
evolution, a distinguishing feature of Swift’s ABI.

CCS Concepts: • Theory of computation → Semantics and reasoning; Separation logic; • Software
and its engineering→ Semantics; General programming languages.

Additional KeyWords and Phrases: application binary interfaces, type soundness, semantics, logical relations,
separation logic, reference counting, program logics

ACM Reference Format:
Andrew Wagner, Zachary Eisbach, and Amal Ahmed. 2024. Realistic Realizability: Specifying ABIs You Can
Count On. Proc. ACM Program. Lang. 8, OOPSLA2, Article 315 (October 2024), 30 pages. https://doi.org/10.
1145/3689755

1 Introduction
What is an ABI?The Swift Library EvolutionManifesto defines it as “the run-time contract for using
a particular API (or for an entire library), including things like symbol names, calling conventions,
and type layout information” [Apple 2015]. Adherence to this contract ensures safe execution and,
for certain ABIs, may even ensure stronger guarantees such as memory safety. It is a promise
between components about what each component assumes and what it guarantees.

Authors’ Contact Information: Andrew Wagner, Northeastern University, Boston, USA, ahwagner@ccs.neu.edu; Zachary
Eisbach, Northeastern University, Boston, USA, eisbach.z@northeastern.edu; Amal Ahmed, Northeastern University,
Boston, USA, amal@ccs.neu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/10-ART315
https://doi.org/10.1145/3689755

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

HTTPS://ORCID.ORG/0000-0002-9434-0780
HTTPS://ORCID.ORG/0009-0005-3028-7211
HTTPS://ORCID.ORG/0000-0001-7424-572X
https://doi.org/10.1145/3689755
https://doi.org/10.1145/3689755
https://orcid.org/0000-0002-9434-0780
https://orcid.org/0009-0005-3028-7211
https://orcid.org/0009-0005-3028-7211
https://orcid.org/0000-0001-7424-572X
https://doi.org/10.1145/3689755

315:2 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Current ABI Landscape. Not every language publicizes an ABI, but internally, every compiler
maintains its own invariants which may be thought of as an internal or undocumented ABI. Sta-
bilization of an ABI is a big commitment since a stable ABI means that future versions of the com-
piler will not be at liberty to vary any of the promises made by the ABI. Therefore, the big design
question is what exactly those promises are. For instance, promising rigid layouts, as C does, af-
fords opportunities for optimization, yielding better performance but sacrificing extensibility. On
the other hand, promising flexible but dynamic layouts, as Swift does [Apple 2015, 2017], permits
evolvability at the cost of performance overhead. This tradeoff has been more carefully examined
in recent years by the Swift designers. In particular, the Swift ABI is designed to support library
evolution by default, which affords library developers the flexibility to make certain changes to
their API without breaking ABI compatibility. At the same time, it allows libraries to explicitly opt
into a rigid layout in the interest of performance.

Because this tradeoff is difficult to resolve, most languages decide not to adopt a stable ABI.
Thus, internally, they can have the best of both worlds: they can optimize while also evolving over
time. The downside, however, is that this closes the language off from the rest of the world, as no
other language or library can interoperate with it, not even older or newer versions of the same
language. Instead, all interoperability must be routed through a different ABI that is stable, which
in practice is typically the C ABI. This indirect interaction is often lossy, which means that if the
language has an advanced type system, say like Rust’s, it cannot expect the world to uphold its
invariants—it can only expect what the much more impoverished C ABI requires.

While it would be nice to have richer ABIs—e.g., for languages like Rust, whose type system
guarantees invariants involving ownership and borrowing—a limiting factor is that ABIs are spec-
ified in prose. Hence, including richer invariants would make them harder to understand and abide
by. The lack of formal specification also makes it impossible to formally verify that a compiler or
library is ABI compliant, which may undermine the very benefits that a richer ABI was intended
to provide.

Realizability to the Rescue. In this paper we propose a methodology, based on realistic realizabil-
ity models [Benton 2006], for specifying ABIs. The main idea is to specify the meaning of source
language types as sets of target-level configurations. As originally employed by Benton [Benton
and Tabareau 2009; Benton and Zarfaty 2007], such models were used to prove that compilers en-
sure type soundness. Our key observation is that these models must specify all required invariants
on data layout, calling conventions, and potentially richer properties such as ownership, aliasing
restrictions, or garbage freedom, so they have all the right ingredients for specifying ABIs.

In fact, realizability models are just an instance of logical relations, except that the types that
index the relations and the terms that inhabit them are drawn from different languages. We draw
the following analogy between standard logical relations and our “realizable” semantic ABIs.

ABI-Compliant Code Typically, we say that a term that inhabits a logical relation is semanti-
cally well typed. From the perspective of an ABI, this means that the target code that inhabits
the relation is ABI compliant with the source type indexing the relation.

ABI-Compliant Compiler The Fundamental Property of a logical relation says that all syn-
tactically well typed terms are semantically well typed. From the perspective of an ABI, this
corresponds to compiler compliance, i.e., that the compiler maps syntactically well typed
source terms to ABI-compliant target terms.

Safe Linking In a standard logical relation, we can show that code that is not syntactically
well typed is still semantically well typed, and this means that it can be composed with other
semantically well typed code. From the perspective of an ABI, this means that any target
code that is ABI compliant can safely be linked with code expecting that type, regardless of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

Realistic Realizability: Specifying ABIs You Can Count On 315:3

whether the compliant code came from the same or a different compiler for the source, was
compiled from a different source language, or was written directly in the target.

Library Evolution In a standard logical relation, one type may semantically refine another
(semantic subset). From the perspective of an ABI, this corresponds to library evolution; i.e.,
if the new type of a library refines its old type, then the new library may be used by any
client in place of the old one.

The idea of using realizability models to relate high-level types to low-level code is hardly
new [Benton and Tabareau 2009; Benton and Zarfaty 2007], but here we are treating the model
itself as an independent artifact, not just a proof device.

Case Study: ABI for Quick. We demonstrate our realizability approach by formalizing the ABI
of a functional source language, Quick. Like Swift, Quick is automatically reference-counted
(ARC) [Apple 2024b] and its ABI (as presented in § 5) supports library evolution as advocated by
Swift’s ABI designers [Apple 2015, 2017]. Our realizability model is specified using a separation
logic extended with a novel modality that supports reasoning about the ownership of shares of a
reference-counted resource. The main challenge in designing the model was in defining this new
modality and specifying the composition of these shares so that the reference counts “add up”
correctly.

Quick is implemented in an untyped C-like target language with a memory model similar to
CompCert’s [Leroy et al. 2014]. Our realizability model is thus indexed by Quick types and inhab-
ited by configurations of the target language. The target is clearly not “binary”, so in what sense
are we constructing an application binary interface? In the strictest sense, “the” ABI for a language
is more commonly a family of ABIs, one for each supported platform. Nonetheless, a practical al-
ternative to building an ABI from scratch in this way is to build atop an existing ABI family, ideally
one that already supports a number of platforms (e.g., C). In choosing this approach, one would
sacrifice some control—we cannot specify which registers are saved on every platform—for some
convenience—we need not specify which registers are saved on every platform. There is precedent
for defining an ABI on top of an existing language’s ABI (e.g., the proposed Rust ABI, crABI [RFCs
2023]). In this paper, we adopt this approach by specifying an ABI for our typed functional lan-
guage at the level of a C-like target, though in practice one can refine another language’s ABI
without actually compiling to it, as we do.

Contributions. This paper proposes the use of realizability logical relations for a semantic specifi-
cation of ABIs that supports both the analysis of ABI design and the verification of ABI compliance.
We justify our novel methodology for ABIs by applying the technique to a case study and demon-
strating that it indeed captures expected properties of an ABI. Concretely, we make the following
contributions.
• We propose a vision for rich, semantic specifications of ABIs using realizability logical re-

lations specified in separation logic. We demonstrate our approach by applying it to a core
functional language, Quick, with an automatic reference counting (ARC) compiler into a
C-like target (§ 2).
• We develop a novel graph-based model of separation logic for reference counting with two

distinguishing modalities: the jump modality @ℓ 𝑃 , which expresses the shared ownership
of a reference counter at ℓ guarding a resource satisfying 𝑃 ; and the reachability modality
⋄𝑃 , which expresses the accessibility of a resource satisfying 𝑃 through a chain of references
(§ 3.1).
• We use our domain-specific separation logic to specify a semantic ABI for Quick (§ 3.2) and

prove that our compiler is ABI compliant (§ 3.3).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

315:4 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

• Since the specification of an ABI is fundamentally a design problem, we treat a number of
potential variations on the semantic ABI and show that the technique would scale in the
presence of various practical considerations (§ 4).
• We give the first formalization of a Swift-style ABI with library evolution (§ 5).

Definitions and proofs elided from this paper are included in our supplementary material [Wag-
ner et al. 2024].

2 The Language Stack
In this section, we present our functional source language, Quick, and C-like target language, along
with our automatic reference counting (ARC) compiler. For now, we only compile closed, non-
recursive functions, to avoid too much complexity in the first ABI we present in §3. We will extend
the Quick compiler and ABI with recursion and closures in § 4.1.

2.1 Source Language

Type ∋ T ::= Z | T1 → T2 | X
Expr ∋ e ::= x | let x = e1; e2 | n | e1 ⊕ e2 | fn f x{e} | e1 e2 | {s : e} | e.s | s e | case e1 {s x⇒ e2 }

Sig ∋ Σ ::= ∅ | Σ, k X {s : T} Kind ∋ k ::= struct | enum Ctx ∋ Γ ::= ∅ | Γ, x : T
Σ; Γ ⊢ e : T “Under signature Σ and context Γ, expression e has type T”

Γ1 ⊢ e1 : T1 Γ2, x : T1 ⊢ e2 : T2 Γ2 ∌ x
Γ1, Γ2 ⊢ let x = e1; e2 : T2

(let)
x : T ⊢ x : T (vaR) ∅ ⊢ n : Z (Z-I)

Γ ∋ x : T′ Γ, x : T′ ⊢ e : T
Γ ⊢ e : T

(dup)
Γ ⊢ e : T

Γ, x : T′ ⊢ e : T
(dRop)

Γ1 ⊢ e1 : Z Γ2 ⊢ e2 : Z

Γ1, Γ2 ⊢ e1 ⊕ e2 : Z
(Z-⊕)

Γ, f : T1 → T2, x : T1 ⊢ e : T2 Γ ∌ f, x distinct

Γ ⊢ fn f x{e} : T1 → T2

(→I)
Γ1 ⊢ e1 : T1 Γ2 ⊢ e2 : T1 → T2

Γ1 , Γ2 ⊢ e2 e1 : T2
(→E)

Σ ∋ struct X {s : T} Σ; Γ ⊢ e : T
Σ; Γ ⊢ {s : e} : X

(struct-I)
Σ ∋ struct X {si : Ti

𝑖<𝑛} Σ; Γ ⊢ e : X 𝑗 < 𝑛

Σ; Γ ⊢ e.sj : Tj
(struct-E)

Σ ∋ enum X {si : Ti
𝑖<𝑛}

Σ; Γ ⊢ e : Tj 𝑗 < 𝑛

Σ; Γ ⊢ sj e : X
(enum-I)

Σ ∋ enum X {s : T1 }
Σ; Γ1 ⊢ e1 : X Σ; Γ2, x : T1 ⊢ e2 : T2 Γ2 ∌ x

Σ; Γ1, Γ2 ⊢ case e1 {s x⇒ e2 } : T2
(enum-E)

Fig. 1. The source language, Quick, styled in blue sans serif . Σ is fixed and elided when unused.

The source, Quick, summarized in Fig. 1, is a functional language with first-class recursive func-
tions and mutually recursive algebraic data type definitions. ADTs are nominal rather than struc-
tural in order to support library evolution, which we describe in § 5.

Internally, the type system looks substructural: typing contexts Γ are split between multiple
subexpressions (as in, e.g., let) and leaves in the typing derivation do not admit superfluous en-
tries in the context (as in, e.g., vaR). However, this substructurality is completely hidden from the
programmer by the dup and dRop rules, which recover the usual contraction and weakening prop-
erties, respectively. This means that a binding x : T can appear multiple times in a typing context,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

Realistic Realizability: Specifying ABIs You Can Count On 315:5

and it is these occurrences that are split across subexpressions. Therefore, unlike a more standard
substructural type system in which Γ, x : T tacitly implies Γ ∌ x, we require side conditions on
binding forms to ensure that every variable in scope has a unique type. Note that shadowing of
names can still be achieved by first applying dRops before the shadowed binder, though we do not
allow parameters of the same function to shadow each other.

Importantly, even though dup and dRop are applied implicitly—insofar as there is no program
syntax for them—they appear explicitly in the typing derivation. Inspired by the Perceus reference
counting scheme [Reinking et al. 2021], these explicit rules provide a handle for our type-directed
compiler (§ 2.3) to insert dup and drop instructions for automatic reference counting. In the exam-
ple below, the program on the left—which would be rejected by a standard linear type system—is
type-checked by the derivation on the right, which makes it clear when dup and drop should be
inserted.

fn double x{x + x}

vaR
x : Z ⊢ x : Z

vaR
x : Z ⊢ x : Z

Z-⊕
x : Z , x : Z ⊢ x + x

dup x, dRop double
double : Z→ Z , x : Z ⊢ x + x

→I
∅ ⊢ fn double x{x + x}

The type system is parameterized by a signature (Σ) of data type definitions, which we leave
implicit when unused because it never changes during type-checking. A data type definition
k X {s : T} includes the data kind k (struct or enum), the type name X, and a map from selector
names s to types T (i.e., the fields of a struct or the cases of an enum). For simplicity, we assume
that all type and selector names are distinct in the signature. Signatures, types, and contexts must
be well-formed insofar as they can only refer to type names that are defined in the signature, but
there are otherwise no restrictions (e.g., strict positivity) on the positions in which type names
can appear recursively. Data type definitions cannot be directly nested, but must use intermediate
names. For example,

struct Node {left : Tree, right : Tree}, enum Tree {leaf : Z, node : Node}

2.2 Target Language
The target, summarized in Fig. 2, is an untyped imperative language intended to approximate a
small subset of C. It uses a block-based memory model similar to CompCert’s [Leroy et al. 2014],
and does not distinguish between the stack and the heap. The language is syntactically restricted
to be in single-assignment form (as indicated by const) and therefore models local variables with
substitution (as in, e.g., [Birkedal et al. 2006; Jung et al. 2017]).

As in the CompCert memory model, a location (ℓ) is a pair of a block identifier—with 0 denoting
the null block and code denoting a distinguished immutable code block—and an offset into that
block. Arithmetic on a location only affects its offset, so it cannot be used to access memory outside
of the location’s block. Variables and block cells may only hold word-sized values (w). The memory
(𝜇) maps locations with positive block identifiers (and any offset) to the word stored at the location.

The operational semantics is specified as a small-step reduction relation that is closed over a
standard set of left-to-right evaluation contexts (K) specified in the supplementary material. It
is parameterized by an immutable function table (F) that contains top-level function definitions.
Dynamic program configurations contain thememory (𝜇) and the size map (𝜓), which tracks which
block identifiers (positive numbers) have been allocated so far (via malloc) and their respective
sizes. The size of the block is tracked because free deallocates the entire block at once. Unlike
in CompCert’s memory model, every top-level function f in F is assigned a unique location ⟨f⟩F
in a single immutable code block, and occurrences of the name f are dynamically replaced by

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

315:6 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Word ∋ w ::= n | null | ℓ | h
Expr ∋ e ::= x | f | w | const x = e1; e2 | e1 (e2) | e1 ⊕ e2 | if (e1) {e2} else {e3}

| malloc (e) | ∗e | ∗e1 = e2; e3 | free (e1) ; e2 | ++e | −−e
Funs ∋ F ::= ∅ | F, f (x) {e}

ℓ ∈ Loc ≜ ⟨id : (N + code), off : N⟩ null ≜ ⟨0, 0⟩
𝜓 ∈ Sizes ≜ N+

fin
⇀ N+ ⟨𝑏, 𝑖⟩ + 𝑛 ≜ ⟨𝑏, 𝑖 + 𝑛⟩

𝜇 ∈ Mem ≜ LocN+
fin
⇀ Word e1; e2 ≜ const _ = e1; e2

Loc𝑋 ≜ {ℓ : Loc | ℓ .id ∈ 𝑋 } e1 [e2] ≜ ∗(e1 + e2)
⟨−⟩F : dom(F)

inj
→ Loccode havoc ≜ malloc (−1)

F ⊢ (𝜓, 𝜇, e) → (𝜓 ′, 𝜇′, e′) Small-step reduction. Presupposes dom(𝜇) ⊆ [(𝑏, 𝑖) | 𝑏 ∈ dom(𝜓) ∧ 𝑖 < 𝑛].

const x = w; e→ e[w/x] (let)
F ∋ f (x) {e}
F ⊢ f→ ⟨f⟩F

(funptr)
F ∋ f (x) {e}

F ⊢ ⟨f⟩F (w) → e[w/x]
(app)

w ∉ {null, 0,h}
if (w) {e1} else {e2} → e1

(if-truthy)
w ∈ {null, 0}

if (w) {e1} else {e2} → e2

(if-falsy)

𝜇 (ℓ) = w

(𝜇, ∗ℓ) → (𝜇, w)
(load)

𝑛 > 0 𝑏 ∈ N+ \ dom(𝜓)
(𝜓, 𝜇, malloc (n)) → (𝜓 [𝑏 ↦→ 𝑛], 𝜇 [⟨𝑏, 𝑖⟩ ↦→ h | 𝑖 < 𝑛], ⟨𝑏, 0⟩)

(malloc)

ℓ ∈ dom(𝜇)
(𝜇, ∗ℓ = w; e) → (𝜇 [ℓ ↦→ w], e)

(store)
𝜇 (ℓ) = n 𝑛′ = 𝑛 + 1

(𝜇, ++ℓ) → (𝜇 [ℓ ↦→ n′], n′)
(incr)

𝜓 (𝑏) = 𝑛

(𝜓, 𝜇 ⊎ [⟨𝑏, 𝑖⟩ ↦→ wi | 𝑖 < 𝑛], free (⟨𝑏, 0⟩) ; e) → (𝜓, 𝜇, e)
(free)

Fig. 2. Target language (excerpts). Surface syntax is styled with red typewriter. Unused and unmodified
components are elided.

its function pointer. Uninitialized memory is populated with poison values (h) [Lee et al. 2017],
on which any operation is undefined behavior. By convention, when part of the configuration is
elided, the reader should assume it is passed along unmodified.

2.3 Compiler
Like all ABIs, our semantic ABI specification is intended to be independent of any particular com-
piler. Nevertheless, an ABI does prescribe and proscribe certain implementation strategies, so to
elucidate those decisions, we first present a candidate compiler for Quick to capture the shape
of implementations that the ABI supports. The compiler is type-directed, and, as in prior work
on type-directed compilers [Morrisett et al. 1999; Tarditi et al. 1996], this formally means that
we compile typing derivations, not syntax. We also adopt existing conventions regarding binders;
namely, that there is a canonical mapping from source names to target names, and that any name
used internally by the compiler does not conflict with a source name. We present excerpts of the
preliminary compiler in Fig. 3. It implements a call-by-value, left-to-right reduction strategy.

In this first version of our compiler, all values are stored in memory and are automatically ref-
erence counted [Apple 2024b], which means that reference counting instructions are inserted at

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

Realistic Realizability: Specifying ABIs You Can Count On 315:7

Σ; Γ ⊢ e : T ⇝ e ⊣ F “Derivation Σ; Γ ⊢ e : T compiles to e using top-level functions in F.”

Γ1 ⊢ e1 : T1 ⇝ e1 Γ2, x : T1 ⊢ e2 : T2 ⇝ e2 Γ2 ∌ x
Γ1, Γ2 ⊢ let x = e1; e2 : T2 ⇝ const x = e1; e2

(let+)
x : T ⊢ x : T ⇝ x (var+)

Γ ∋ x : T′ Γ, x : T′ ⊢ e : T ⇝ e

Γ ⊢ e : T ⇝ dup T′ (x) ; e
(dup+)

Γ ⊢ e : T ⇝ e

Γ, x : T′ ⊢ e : T ⇝ drop Σ
T′ (x) ; e

(drop+)

∅ ⊢ n : Z ⇝ const r = malloc (2); r[0] = 1; r[1] = n; r (Z-I+)

Γ1 ⊢ e1 : Z ⇝ e1 Γ2 ⊢ e2 : Z ⇝ e2

Γ1, Γ2 ⊢ e1 ⊕ e2 : Z
⇝ const r = malloc (2); r[0] = 1; const ri = ei; r[1] = r1 [1] + r2 [1]; drop Z (ri) ; r

(Z-⊕+)

x : T1 ⊢ e : T2 ⇝ e ⊣ F x distinct F ∋ f (x) {e}
∅ ⊢ fn x{e} : T1 → T2 ⇝ const r = malloc (2); r[0] = 1; r[1] = f; r ⊣ F

(→I+)

Γ1 ⊢ e1 : T1 ⇝ e1 Γ2 ⊢ e2 : T1 → T2 ⇝ e2

Γ1 , Γ2 ⊢ e2 e1 : T2 ⇝ const r2 = e2; const f2 = r2 [1]; drop T1→T2
(r2) ; f2 (e1)

(→E+)

Σ ∋ struct X {si : Ti
𝑖<𝑛} Σ; Γ𝑖 ⊢ ei : Ti ⇝ ei

𝑖<𝑛

Σ; Γ𝑖
𝑖<𝑛 ⊢ {si : ei

𝑖<𝑛} : X ⇝ const r = malloc (n + 1); r[0] = 1; r[i + 1] = ei;
𝑖<𝑛

r
(struct-I+)

Σ ∋ struct X {si : Ti
𝑖<𝑛} Σ; Γ ⊢ e : X ⇝ e 𝑗 < 𝑛

Σ; Γ ⊢ e.sj : Tj ⇝ const r = e; const rj = r[j + 1]; dup Tj

(
rj

)
; drop Σ

X (r) ; rj
(struct-E+)

Σ ∋ enum X {si : Ti
𝑖<𝑛} Σ; Γ ⊢ ej : Tj ⇝ ej 𝑗 < 𝑛

Σ; Γ ⊢ sj ej : X ⇝ const r = malloc (3); r[0] = 1; r[1] = j; r[2] = ej; r
(enum-I+)

Σ ∋ enum X {si : Ti
𝑖<𝑛} Σ; Γ ⊢ e : X ⇝ e Σ; Γ′, xi : Ti ⊢ ei : T ⇝ ei

𝑖<𝑛
Γ2 ∌ x

Σ; Γ, Γ′ ⊢ case e {si xi ⇒ ei } : T

⇝ const r = e; if (r[1] = i)
{
const xi = r[2]; dup Ti (xi) ; drop Σ

X (x) ; ei

}𝑖<𝑛
else {havoc}

(enum-E+)

Fig. 3. Candidate Quick compiler with ARC.

compile-time. The dup (variously called “retain” or “increment”) instruction increases the refer-
ence count, and the drop (variously called “release” or “decrement”) instruction decreases the
reference count. While the reference count is non-zero, the reference is live and should not be
deallocated. Conversely, once the reference count hits zero after a drop, the reference is dead and
should be deallocated. One weakness of reference counting compared to garbage collection is that
reference cycles can create deadlocks or memory leaks, which necessitates the use of some exter-
nal mechanism, like weak references. However, our functional source language has no means to
create reference cycles—data types may be recursive, but their inhabitants cannot be cyclic.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

315:8 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Data Layout. Every introduction form allocates and stores type-directed data into memory,
along with a word at the head of the block to hold the reference count, a non-negative integer. In-
tegers require only a single additional word for storage when compiled. For now, we only compile
closed, non-recursive functions, which need just one word to store the function pointer; we revisit
recursion and closures in § 4.1. Keeping in mind that all values are word-sized (just locations, for
now), a struct needs as many additional words as it has fields, which are stored in declaration order.
An enum needs two additional words, one for the tag—the index of the constructor, in declaration
order—and one for the payload.

dup T (r) ≜ ++r
drop Σ

T (r) ≜ const c = −−r; if (c) {c} else
{
destr Σ

T (r)
}

destr T (r) ≜ free (r) ; 0 (T = Z or T = • → •)
destr Σ

X (r) ≜ const ri = r[i + 1]; drop Σ
Ti
(ri) ;

𝑖<𝑛
free (r) ; 0 (Σ ∋ struct X {si : Ti

𝑖<𝑛})

destr Σ
X (r) ≜

if (r[1] = i) {
const ri = r[2]; drop Σ

Ti
(ri) ; free (r) ; 0

𝑖<𝑛

} else {havoc}
(Σ ∋ enum X {si : Ti

𝑖<𝑛})

Fig. 4. Compiler macros.

Dup and Drop. Before moving to the elimination forms, we consider the structural rules dup
and drop. Unsurprisingly, the compiler dups and drops in these cases, but in our target these are
not atomic instructions—we must implement them first. In Fig. 4, they are defined as type-indexed
macros, dup T and drop T. For now, dup T simply increments its argument since all values are boxed.
Likewise, drop T can always decrement since its argument will be boxed, but it must consider two
cases. If the count is still non-zero, the reference is live and the new count is returned. Otherwise,
the reference is dead and must be deallocated, which is done with the type-indexed destr T macro,
which drops all references held by its argument and then frees it. Note that in the case of enums,
one must case on the tag to find out the type of payload to drop, and it is undefined behavior if
the tag is not declared.

Calling Convention. Now that we have dup T and drop T, we can move on to the elimination
forms. An integer operator loads the data from its operand references, boxes the result in a new
reference, and—importantly—drops the operands. A function call loads the function pointer, drops
the function reference, and then calls the function with its input references. A struct projection
loads the component reference from the appropriate offset, dups it, and then drops the struct ref-
erence. It is essential to dup the component before dropping the struct, since dropping the struct
first might deallocate the component, but duping it first ensures that it remains live. To case on an
enum, we compare the tag against its position in declaration order, and it is undefined behavior if
the tag is not declared. When a comparison succeeds, the payload reference is bound and dup’d,
and the enum reference is dropped last.

3 A First ABI
Stepping back from our particular compiler, let us extrapolate some high-level design goals for our
Quick ABI, which we will use as guiding principles in its specification. In practice, ABI proposals
(e.g., for Rust [RFCs 2023], Swift [Apple 2017], or Python [Foundation 2023]) often begin with a
list of objectives like ours, even if the exact aims are different (e.g., Rust strives for memory safety
but not garbage freedom).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

Realistic Realizability: Specifying ABIs You Can Count On 315:9

Safety. Every program must be safe, in the sense that it does not get stuck, though it may
diverge.

GaRbage FReedom. Every program must be garbage-free, in the sense that if it terminates
with a value, then any newly allocated memory that remains must be associated with that
value (in a manner specified by its type).

RCV Layout. Every reference-counted value (RCV) is represented in memory as a positive
integer reference counter followed by data suitable for its type.

RCV OwneRsHip. Owning a RCV means having exclusive rights to a single share of its ref-
erence count. While a RCV is owned, it must not be deallocated and its data must not be
modified.

RCV Release. An owned RCV must be either be moved to another owner or released, and
any releasing contextmust assume ownership of the underlyingmemory if the count reaches
zero.

RCV Retain. Any RCV reachable from an owned RCV may be retained.
Calling Convention. The calling convention is that functions and operators take owner-
ship of input RCVs (i.e., they are moved in [Rust 2023b] or stolen [Foundation 2023]).

3.1 Semantic Structures
Resources. Physical memories do not have enough structure to support the reasoning princi-

ples stipulated in our design goals. For one thing, memories are global, but we want to be able to
reason about ownership locally. Also, memories cannot distinguish between a reference-counted
block and any other block that happens to have the same layout. In order to reason about refer-
ence counting, we instrument memories (Fig. 6) with additional ghost state that tracks whether a
location is a unique pointer to “plain old data” (unq) or a shared reference counter (shr). In the
latter case, we also track its local share of the reference count and what sub-resource it holds a
share of, which we call its object. This means that, while physical memories are linear, these logi-
cal resources form graphs, where the root node contains all the root locations bound to variables
and the reachable nodes correspond to reachable objects. For example, consider the following code
snippet.

struct Point {x : Z, y : Z}
let p = Point {x : 20, y : 24}; 5a; 5b; 5c; let _ = {let x = p.x; 5d; epx}; ep

(where epx uses p and x, and ep uses p)

In the target, we cannot create the Point p atomically. Instead, we must allocate and initialize
its memory, stored at some location ℓ , leading to Fig. 5a. However, this view does not capture the
logical structure intended for Point, so we shift our perspective and analyze the resource in Fig. 5b
instead. Under this view, plain old data (like 20 and 24) is tagged with a unq cell, which means that
its location will only appear once in the resource graph. On the other hand, a reference counter is
tagged with a share of the count in a shr cell, and it points to its object—the sub-resource it is man-
aging. Since p is used in multiple sub-expressions, the type system (and therefore, the compiler)
will insert a dup, and then split the context to type-check epx and ep independently. We want to
mirror this reasoning principle with resources: after incrementing ℓ’s count to 2 at the root (which
corresponds to dup’ing p), we can decompose the resource into two identical resources, each with 1
share of ℓ’s counter (Fig. 5c). Notice that, in accordance with RCV OwneRship, this decomposition
(or its converse, the composition •) does not change the contents of any reachable objects, only
the root. In particular, there must be agreement on the reachable objects, but composition does not
descend down the graph and compose the reachable objects themselves, which ensures that the
reference counts are not inflated and that unique cells do not conflict. Having split the resource,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

315:10 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

one half may pass to p.x, which dups the x component’s reference counter at ℓ𝑥 , a reachable but
non-root location. RCV Retain permits this, and doing so confers one share of the count to the
root (Fig. 5d), but leaves the original share intact, as required by RCV OwneRship.

ℓ [0] ↦→ 1 ℓ [1] ↦→ ℓ𝑥 ℓ [2] ↦→ ℓ𝑦 ℓ𝑥 [0] ↦→ 1 ℓ𝑥 [1] ↦→ 20 ℓ𝑦 [0] ↦→ 1 ℓ𝑦 [1] ↦→ 24

(a) Physical layout.

ℓ [0] ↦→ shr(1, •)
Root

ℓ [1] ↦→ unq(ℓ𝑥) ℓ [2] ↦→ unq(ℓ𝑦)

ℓ𝑥 [0] ↦→ shr(1, •) ℓ𝑦 [0] ↦→ shr(1, •)

ℓ’s Object

ℓ𝑥 [1] ↦→ unq(20)

ℓ𝑥 ’s Object

ℓ𝑦 [1] ↦→ unq(24)

ℓ𝑦 ’s Object

(b) Logical layout.

ℓ [0] ↦→ shr(1, •)ℓ𝑥 [0] ↦→ shr(1, •)
Root

ℓ [1] ↦→ unq(ℓ𝑥) ℓ [2] ↦→ unq(ℓ𝑦)

ℓ𝑥 [0] ↦→ shr(1, •) ℓ𝑦 [0] ↦→ shr(1, •)

ℓ’s Object

ℓ𝑥 [1] ↦→ unq(20)

ℓ𝑥 ’s Object

ℓ𝑦 [1] ↦→ unq(24)

ℓ𝑦 ’s Object

(d) After dup’ing the x component.

ℓ [0] ↦→ shr(2, •)
Root

ℓ [1] ↦→ unq(ℓ𝑥) ℓ [2] ↦→ unq(ℓ𝑦)

ℓ𝑥 [0] ↦→ shr(1, •) ℓ𝑦 [0] ↦→ shr(1, •)

ℓ’s Object

ℓ𝑥 [1] ↦→ unq(20)

ℓ𝑥 ’s Object

ℓ𝑦 [1] ↦→ unq(24)

ℓ𝑦 ’s Object

=

ℓ [0] ↦→ shr(1, •)
Root

ℓ [1] ↦→ unq(ℓ𝑥) ℓ [2] ↦→ unq(ℓ𝑦)

ℓ𝑥 [0] ↦→ shr(1, •) ℓ𝑦 [0] ↦→ shr(1, •)

ℓ’s Object

ℓ𝑥 [1] ↦→ unq(20)

ℓ𝑥 ’s Object

ℓ𝑦 [1] ↦→ unq(24)

ℓ𝑦 ’s Object

•

ℓ [0] ↦→ shr(1, •)
Root

ℓ [1] ↦→ unq(ℓ𝑥) ℓ [2] ↦→ unq(ℓ𝑦)

ℓ𝑥 [0] ↦→ shr(1, •) ℓ𝑦 [0] ↦→ shr(1, •)

ℓ’s Object

ℓ𝑥 [1] ↦→ unq(20)

ℓ𝑥 ’s Object

ℓ𝑦 [1] ↦→ unq(24)

ℓ𝑦 ’s Object

(c) After dup’ing and splitting the Point.

Fig. 5. Manipulating a struct Point {x : Z, y : Z} at ℓ .

The formalization of this visual intuition is given in Fig. 6. A resource 𝜌 ∈ Res is a tree with
unq(w) leaves and shr(𝑛 + 1, 𝜌) nodes, but as motivated in Fig. 5d, we will restrict ourselves to the
resources that we can view logically as DAGs. Moreover, we must ensure that unq locations really
are unique within the DAG, and that there is internal agreement on which shr locations manage
which objects. These three properties are captured by the validity predicate ✓ 𝜌 , which ensures
that any two reachable nodes in the tree—either the root 𝜌 or a reachable object in objs(𝜌)—are
either shallowly compatible (♯sh) or else should be collapsible into a single node (i.e., they are objects
associated with the same shr location). As the name suggests, shallow compatibility only compares
the root node of two resources, where it enforces disjointness on unique locations and agreement
on shared locations. The objects map objs(𝜌) associates reachable shr locations with their objects
and is defined using the reachability relation —♦, which includes “jumps” from shr nodes to their
associated objects and decompositions of resources into smaller sub-resources.

Shallow compatibility is also a prerequisite for the composition operator (•) from Fig. 5c. As we
saw there, composition only affects the root node of the composed resources: it unions disjoint en-
tries and sums the reference counts of overlapping, shared entries. A pair of shallowly compatible
resources whose composition is valid is said to be simply compatible.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

Realistic Realizability: Specifying ABIs You Can Count On 315:11

𝜌 ∈ Res ≜ LocN+
fin
⇀ unq(Word) + shr(count : N+, obj : Res)

✓ 𝜌 ≜ ∀ (ℓ1, 𝜌1), (ℓ2, 𝜌2) ∈ objs(𝜌). 𝜌 ♯sh 𝜌1 ∧
(
(ℓ1 ≠ ℓ2 ∧ 𝜌1 ♯sh 𝜌2) ∨ (ℓ1 = ℓ2 ∧ 𝜌1 = 𝜌2)

)
objs(𝜌) ≜

[
(ℓ, 𝜌ℓ) | 𝜌 —♦ [ℓ ↦→ shr(−, 𝜌ℓ)]

]
𝜌1 ♯sh 𝜌2 ≜ ∀ ℓ ∈ dom(𝜌1) ∩ dom(𝜌2), ∃ 𝜌. 𝜌1 (ℓ) = shr(−, 𝜌) ∧ 𝜌2 (ℓ) = shr(−, 𝜌)

𝜌1 • 𝜌2 ≜


[ℓ ↦→ 𝜌1 (ℓ) | ℓ ∈ dom(𝜌1) \ dom(𝜌2)]
⊎ [ℓ ↦→ 𝜌2 (ℓ) | ℓ ∈ dom(𝜌2) \ dom(𝜌1)]
⊎ [ℓ ↦→ shr(𝑛1 + 𝑛2, 𝜌) | 𝜌1 (ℓ) = shr(𝑛1, 𝜌) ∧ 𝜌2 (ℓ) = shr(𝑛2, 𝜌)]

if 𝜌1 ♯sh 𝜌2

𝜌1 ♯ 𝜌2 ≜ 𝜌1 ♯sh 𝜌2 ∧✓ (𝜌1 • 𝜌2)

erase(𝜌) ≜

{
[ℓ ↦→ w | 𝜌flat (ℓ) = unq(w)]
⊎ [ℓ ↦→ n | 𝜌flat (ℓ) = shr(𝑛,−)]

if ✓ 𝜌 and 𝜌flat = 𝜌 •
(•(ℓ,𝜌ℓ) ∈objs(𝜌)𝜌ℓ

)
𝜌 —♦ 𝜌′ 𝜌 can reach 𝜌′ via jumps and decompositions.

(—♦-jump)
ℓ ↦→ shr(−, 𝜌) —♦ 𝜌

(—♦-sub)
𝜌1 • 𝜌2 —♦ 𝜌1

𝜌1 —♦ 𝜌2 𝜌2 —♦ 𝜌3
𝜌1 —♦ 𝜌3

(—♦-tRans)

Fig. 6. Memories instrumented as logical resources.

Next, the erasure of resources into physical memories proceeds in two steps. First, the root is
composed with all of its reachable objects, which effectively moves all unique locations to the root
and sums up all the shares for each reference counter. Visually, working with a DAG is crucial
for this step: a naive recursive descent over the tree interpretation might duplicate counts from
identical objects, but with the DAG interpretation we can simply talk about the set of reachable
objects, which naturally has no duplicates. Note that this flattening composition is always defined
for valid resources, by design. After moving all objects to the root, these root cells are erased into
plain values—a unique cell keeps its value, and a shared cell only keeps its reference count, since,
having been moved during the first step, its object already exists elsewhere in the root.

Separation logic. Having defined a suitable resource and composition operator, we can now over-
lay a separation logic [Appel 2014; Dinsdale-Young et al. 2013; Jung et al. 2018; Ley-Wild and
Nanevski 2013] on top, which we will use to specify and reason about the ABI. As defined in Fig. 7,
a proposition of separation logic is a predicate on resources. The quintessential separation logic
connective, the separation conjunction 𝑃 ★𝑄 , holds for all resources that can be decomposed into
a resource satisfying 𝑃 and a resource satisfying𝑄 . We use all of the usual intuitionistic and linear
separation logic connectives; i.e., resources may not be freely discarded.

In order to reason about recursive functions and recursive types, our separation logic uses step-
indexing [Ahmed 2006, 2004; Appel and McAllester 2001], which is a technique that breaks the cir-
cularity of inherently circular language features by approximating a proposition using the number
of program steps on which it is true. Just as separation logic abstracts away particular resources,
the later modality [Appel et al. 2007; Jung et al. 2018; Nakano 2000] ▷ 𝑃 abstracts away particular
step-indices—it holds whenever 𝑃 holds after taking one more step (assuming there are steps left
to take). Importantly, the later modality supports a general induction principle and allows one to
construct well-founded recursive definitions so long as recursive occurrences occur below a later.

To tie step-indices to physical program steps, we use the weakest precondition modality
wpF (e) {𝑄̂}, which characterizes when e is safe to run in order to satisfy the post condition 𝑄̂ ,
using top-level functions in F. The first part of the weakest precondition decides which physical
configuration to run with. Physical configurations require block sizes, so we add the block sizes as

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

315:12 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

𝑃,𝑄, 𝑅 ∈ Prd ≜ {𝑃 : Wld→ Res→ P | ∀ 𝜌,𝜔 ⊑ 𝜔+ . 𝑃 (𝜔, 𝜌) ⇒ 𝑃 (𝜔+, 𝜌)}
𝑃̂, 𝑄̂, 𝑅̂ ∈ Prd (𝑋) ≜ 𝑋 → Prd
𝜔 ∈ Wld ≜ ⟨step : N, sizes : Sizes⟩

𝜔1 ⊑ 𝜔2 ≜ 𝜔1 .step ≥ 𝜔2 .step ∧ 𝜔1 .sizes ⊆ 𝜔2 .sizes
ℓ ↦→ w (𝜔, 𝜌) ≜ 𝜌 = [ℓ ↦→ unq(w)]
𝑃 ★𝑄 (𝜔, 𝜌) ≜ ∃ 𝜌𝑝 , 𝜌𝑞 . 𝜌 = 𝜌𝑝 • 𝜌𝑞 ∧ 𝑃 (𝜔, 𝜌𝑝) ∧𝑄 (𝜔, 𝜌𝑞)
𝑃 —★𝑄 (𝜔, 𝜌) ≜ ∀𝜔+ ⊒ 𝜔, 𝜌𝑝 ♯ 𝜌, 𝜌𝑞 . 𝜌 • 𝜌𝑝 = 𝜌𝑞 ⇒ 𝑃 (𝜔+, 𝜌𝑝) ⇒ 𝑄 (𝜔+, 𝜌𝑞)
▷ 𝑃 (𝜔, 𝜌) ≜ 𝜔.step = 0 ∨ (𝜔.step > 0 ∧ 𝑃 (𝜔 [step := 𝜔.step − 1], 𝜌))
! 𝑃 (𝜔, 𝜌) ≜ 𝜌 = ∅ ∧ 𝑃 (𝜔,∅)
⌜𝑃⌝ (𝜔, 𝜌) ≜ 𝜌 = ∅ ∧ 𝑃

wpF (e) {𝑄̂} (𝜔, 𝜌) ≜


∀𝜔+ ⊒ 𝜔, 𝜌 𝑓 ♯ 𝜌, 𝑘 < 𝜔+ .step,𝜓 ′, 𝜇′, e′, 𝜔 ′ .

F ⊢ (𝜔+ .sizes, erase(𝜌 • 𝜌 𝑓), e) →𝑘 (𝜓 ′, 𝜇′, e′) ↛
⇒ 𝜔 ′ =

〈
step : 𝜔+ .step − 𝑘, sizes : 𝜓 ′

〉
⇒∃ 𝜌′ ♯ 𝜌 𝑓 . erase(𝜌′ • 𝜌 𝑓) = 𝜇′ ∧ e′ ∈ Word ∧ 𝑄̂ (e′) (𝜔 ′, 𝜌′)

{𝑃} e {𝑄̂}F ≜ !
(
𝑃 —★ wpF (e) {𝑄̂}

)
@ℓ 𝑃 (𝜔, 𝜌) ≜ ∃ 𝜌𝑝 . 𝜌 = [ℓ ↦→ shr(1, 𝜌𝑝)] ∧ 𝑃 (𝜔, 𝜌𝑝)
⋄𝑃 (𝜔, 𝜌) ≜ ∃ 𝜌𝑝 . 𝜌 —♦ 𝜌𝑝 ∧ 𝑃 (𝜔, 𝜌𝑝)
size (ℓ, 𝑛) (𝜔, 𝜌) ≜ 𝜌 = ∅ ∧ ∃𝑏. ℓ = ⟨𝑏, 0⟩ ∧ 𝜔.sizes(𝑏) = 𝑛

Fig. 7. Separation logic predicates (excerpts), styled with emerald italic.

a parameter to our logical predicates. Predicates must be monotone with respect to both the step
index and the block sizes, and both are shared rather than split by separating conjunction, so we
group them together into a Kripke world whose accessibility relation admits smaller step-indices
and larger block size maps. Now, we can run e with the block sizes and the erasure of its resource
composed with an arbitrary framing resource, which prevents e from acting beyond its means.
If the program terminates within the given step-index bound, the resulting configuration must
satisfy three conditions: the framing resource must be preserved, the program must be a value,
and the postcondition must hold for that value given the new logical configuration (which uses
a potentially smaller step-index). Similar to Iris [Jung et al. 2018], the more familiar Hoare triple
{𝑃} e {𝑄̂}F is defined in terms of wp and the unrestricted modality ! 𝑃 , which, in our case, is true
when 𝑃 holds and the resource is empty.1

Extensions. Whereas unique locations are characterized by the familiar points-to connective
ℓ ↦→ w from separation logic, shared locations are characterized by the jump modality @ℓ 𝑃 , where
ℓ is the location holding the reference count and 𝑃 characterizes its object. The name and notation
for themodality is inspired by hybrid logic [Braüner and de Paiva 2006], inwhich the jumpmodality
relativizes the truth of a proposition to a named Kripke world. As in other adaptations of this
concept to programming languages [Balzer et al. 2019; Caires et al. 2019], the set of possible jumps
is restricted by an accessibility relation, which, in our case, is the set of reference-counted objects
reachable from the root using one edge. Returning to the earlier visualization of resources as DAGs,
the jump modality lets us “jump over” an ℓ-edge in the graph to reach a resource satisfying 𝑃 , as
in the example in Fig. 8.

1Iris’ Hoare triple is defined in terms of their persistence modality □𝑃 , which is similar in spirit to our unrestricted modality
but it does not exactly require the resource to be empty.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

Realistic Realizability: Specifying ABIs You Can Count On 315:13

ℓ1 ↦→ shr(1, •)
Root

ℓ2 ↦→ unq(w2) ℓ3 ↦→ shr(1, •)

ℓ1’s Object

ℓ4 ↦→ unq(w4)

ℓ3’s Object

Fig. 8. Resource that satisfies@ℓ1
(
ℓ2 ↦→ w2 ★@ℓ3 (ℓ4 ↦→ w4)

)
, as well as⋄ (ℓ2 ↦→ w2) and⋄ (ℓ4 ↦→ w4) and

⋄ (∃ ℓ, w. ℓ ↦→ w).

The rules for manipulating jumps are given in Fig. 9. Each occurrence of @ℓ 𝑃 confers a sin-
gle share of the reference counter at ℓ , so that, e.g., one can ht-@-dup ℓ to move from @ℓ 𝑃 to
@ℓ 𝑃 ★ @ℓ 𝑃 and vice versa with ht-@-dRop. In accordance with RCV Release, dropping may
return ownership of ℓ and the underlying object satisfying 𝑃 if the count hits zero, so the logical
continuation in ht-@-dRop has a disjunct for this case. To create a jump with ht-@-shaRe, the
location of the new reference counter must point to 1 and its new object must be owned. Note that
creating a jump is a logical view shift—it does not need to take a physical step, since the memory
is already in the correct shape physically.

(ht-@-dup)
𝑃 ⊨⋄@ℓ 𝑄

{𝑃} ++ℓ {n. ⌜𝑛 > 1⌝ ★ 𝑃 ★@ℓ 𝑄}
(ht-@-dRop)
{@ℓ 𝑃} −−ℓ {n. ⌜𝑛 > 0⌝ ∨ (⌜𝑛 = 0⌝ ★ ℓ ↦→ 0 ★ 𝑃)}

(ht-@-shaRe)
{@ℓ 𝑃 ★𝑄} e {𝑅̂}

{ℓ ↦→ 1 ★ 𝑃 ★𝑄} e {𝑅̂}
(ht-malloc)
{emp} malloc (n) {ℓ .★𝑖<𝑛ℓ + 𝑖 ↦→ h ★ size (ℓ, 𝑛)}

(ht-fRee)
{𝑃} e {𝑄̂}

{𝑃 ★★𝑖<𝑛ℓ + 𝑖 ↦→ wi ★ size (ℓ, 𝑛)} free (ℓ) ; e {𝑄̂}

(ht-load)
𝑃 ⊨⋄ (ℓ ↦→ w)

{𝑃} ∗ℓ {w′ .⌜w = w′⌝ ★ 𝑃}

(⋄ -jump)
@ℓ 𝑃 ⊨⋄𝑃

(⋄ -Refl)
𝑃 ⊨⋄𝑃

(⋄ -sub)
⋄ (𝑃 ★𝑄) ⊨⋄𝑃

(⋄ -tRans)
⋄⋄𝑃 ⊨⋄𝑃

(@ -mono)
𝑃 ⊨ 𝑄

@ℓ 𝑃 ⊨ @ℓ 𝑄

(⋄ -mono)
𝑃 ⊨ 𝑄

⋄𝑃 ⊨⋄𝑄

Fig. 9. An excerpt of valid Hoare triples and entailments.

The reachability modality ⋄𝑃 internalizes the reachability relation —♦, characterizing resources
that can reach some sub-resource satisfying 𝑃 anywhere in the graph (⋄ -tRans), using an arbi-
trary number of jumps (⋄ -jump) and decompositions (⋄ -Refl,⋄ -sub), as demonstrated in Fig. 8.
Reachability is only used in non-destructive operations like reading (ht-load) or dup’ing (ht-@-
dup); it may not be used to write, drop, or deallocate. It is a monad-style modality (⋄ -Refl and
⋄ -tRans may be used to derive a familiar monadic bind rule), which prevents memory from be-
ing leaked by⋄ -sub. As is characteristic of modal operators, both @ and⋄ are monotone with
respect to entailment (@ -mono,⋄ -mono).

The size predicate size (ℓ, 𝑛) says that the block size map has an entry rooted at ℓ (i.e., its offset is
zero) with size 𝑛 (as introduced in ht-malloc). It is used to safely deallocate entire blocks at once:
in order to free (ℓ), one must have size (ℓ, 𝑛) and own the 𝑛 locations offset from ℓ (as in ht-fRee).
Since size only talks about the block sizes and not the resource, it is an unrestricted predicate and
may be freely duplicated and discarded.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

315:14 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

To get a sense for how these predicates and proof rules are used in context, Fig. 10 shows how
they can be used to verify the manipulation of integer references, as done in our compiler in Figs. 3
and 4.

Creating an integer reference
{emp}
const r = malloc (2); r[0] = 1; r[1] = n; r
{ℓ . ℓ ↦→ 1 ★ ℓ + 1 ↦→ n ★ size (ℓ, 2)} using ht-malloc
{ℓ . @ℓ (ℓ + 1 ↦→ n) ★ size (ℓ, 2)} using ht-@-shaRe

Duplicating an integer reference
{@ℓ (ℓ + 1 ↦→ n)}
++ℓ
{n′ . ⌜𝑛′ > 1⌝ ★@ℓ (ℓ + 1 ↦→ n) ★@ℓ (ℓ + 1 ↦→ n)} using ht-@-dup

Dropping an integer reference
{@ℓ (ℓ + 1 ↦→ n) ★ size (ℓ, 2)}
const c = −−ℓ ;
{⌜𝑐 > 0⌝ ∨ (⌜𝑐 = 0⌝ ★ ℓ ↦→ 0 ★ ℓ + 1 ↦→ n) ★ size (ℓ, 2)} using ht-@-dRop
if (c) {
{⌜𝑐 > 0⌝ ★ size (ℓ, 2)} c {n′ . ⌜𝑛′ ≥ 0⌝}
} else {
{⌜𝑐 = 0⌝ ★ ℓ ↦→ 0 ★ ℓ + 1 ↦→ n ★ size (ℓ, 2)} free (ℓ) ; 0 {n′ . ⌜𝑛′ ≥ 0⌝} using ht-fRee
}
{n′ . ⌜𝑛′ ≥ 0⌝}

Fig. 10. Proof sketches for manipulating integer references, eliding standard rules.

Note that while we use inference notation, as in prior work [Appel et al. 2007; Dreyer et al.
2011], we do not fix a syntax and set of inference rules—instead, we work with predicates directly
in the meta-language, and the “inference rules” are actually just lemmas about their relationship
as mathematical objects.

3.2 Preliminary Definition
We now have all the structure needed to define a preliminary semantic ABI for Quick, shown in
Fig. 11. The ABI must characterize when a target program realizes (or behaves like) a source type,
and it must do so in away that respects the logical structure of source types (e.g., composing a T1 →
T2 program with a T1 program should result in a T2 program). The expression predicate EJTK(e)
uses the weakest precondition to characterize when a closed expression e realizes a type T by
using the value predicateVJTK as the postcondition. Using the weakest precondition immediately
achieves our Safety goal exactly because the definition of wp was designed to require safety.

For now, values of all types are boxed, so the value predicate simply requires the value to be a
non-null location and passes it to the reference predicate RJTK. In accordance with RCV Layout,
RJTK(ℓ) characterizes ℓ as a RCV for T if there is jump over ℓ to a suitable object OJTK(ℓ + 1)
in adjacent memory. By using a jump, the desiderata RCV OwneRship, RCV Release, and RCV
Retain will follow from ht-@-dup and ht-@-dRop. The indirection between VJTK and OJTK
may seem superfluous now, but it will be useful when we look at ABI variations in § 4.

Whereas the reference predicate RJTK is uniform for all T, the object predicate OJTK varies by
T, making it the heart of the ABI. The object relation is responsible for specifying size and layout,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

Realistic Realizability: Specifying ABIs You Can Count On 315:15

EJTKF (e) ≜ wpF (e) {VJTKF}
VJTKF (w) ≜ ⌜w ∈ Loc \ null⌝ ★ RJTKF (w)
RJTKF (ℓ) ≜ @ℓ OJTKF (ℓ + 1)
OJZKF (ℓ + 1) ≜ ∃ n. ℓ + 1 ↦→ n ★ size (ℓ, 2)

OJXKF (ℓ + 1) ≜


★𝑖<𝑛∃ wi . ℓ + 1 + 𝑖 ↦→ wi ★ ▷VJTiKF (wi) ★ size (ℓ, 𝑛 + 1)

if Σ ∋ struct X {si : Ti
𝑖<𝑛}∨

𝑖<𝑛ℓ + 1 ↦→ i ★ ∃ wi . ℓ + 2 ↦→ wi ★ ▷VJTiKF (wi) ★ size (ℓ, 3)
if Σ ∋ enum X {si : Ti

𝑖<𝑛}
O

r
Ti

𝑖<𝑛 → T
z

F
(ℓ + 1) ≜ ∃ call. ℓ + 1 ↦→ ⟨call⟩F ★ size (ℓ, 2)

★ ∀ wi
𝑖<𝑛 . {★𝑖<𝑛VJTiKF (wi)} ⟨call⟩F

(
wi

𝑖<𝑛
)
{VJTKF}F

CJΓKF (𝛾) ≜ ★x:T∈ΓVJTKF (𝛾 (x))
Γ ⊨F e : T ≜ ∀F′ ⊇ F, 𝛾 . CJΓKF′ (𝛾) ⊨ EJTKF′ (e[𝛾])

Fig. 11. Preliminary semantic ABI, parameterized over a signature Σ.

but also for expressing semantic requirements on the data, as we will see. The simplest object is
an integer, which uniquely holds an integer at the first offset and, importantly, nothing else. This
means that if a program runs to a location ℓ satisfying RJTK(ℓ), we can be sure it does not hold
any superfluous memory, in accordance with GaRbage FReedom.

Objects for nominal data types require consulting the signature Σ for their definition. For a
struct, its fields are laid out in declaration order. More interestingly, the semantic ABI captures
ownership in addition to layout, so a struct object holds more memory logically than it does phys-
ically. We already saw an example of this in Fig. 5b—physically, a Point object simply holds two
pointers, but logically, it also has shared ownership of its component references. Perhaps more
subtly, the ABI also validates a Point whose components alias, in which case the Point owns two
shares of the component’s count, as shown in the example in Fig. 12. In the semantic ABI, owner-
ship of fields is conferred by the recursive use of the value predicate on a struct’s members, which
must be guarded by the later modality since data types can be recursive.

ℓ [0] ↦→ shr(1, •)
Root

ℓ [1] ↦→ unq(ℓ𝑦𝑥) ℓ [2] ↦→ unq(ℓ𝑦𝑥)

ℓ
𝑦
𝑥 [0] ↦→ shr(2, •)

ℓ’s Object

ℓ
𝑦
𝑥 [1] ↦→ unq(20)

ℓ
𝑦
𝑥 ’s Object

(a) Logical view.

ℓ
𝑦
𝑥 [0] ↦→ 2 ℓ

𝑦
𝑥 [1] ↦→ 20

ℓ [0] ↦→ 1 ℓ [1] ↦→ ℓ
𝑦
𝑥 ℓ [2] ↦→ ℓ

𝑦
𝑥

(b) Physical view.

Fig. 12. Logical and physical representations of struct Point {x : Z, y : Z} whose fields alias.

An enum is laid out with its tag in the second position and its payload in the third position.
The tag is simply an index into the list of selectors in declaration order. As with structs, its logical
memory footprint may be larger because it owns the RCV associated with its payload. Just as the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

315:16 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

tag determines what physical data will appear in the payload, it also determines what logical re-
sources will be owned by the payload.Whereas the size of a struct depends on the number of fields,
every enum has a size of 3, and the use of a disjunction (∨) instead of a separating conjunction (★)
ensures that only one variant is exhibited at a time.

Physically, a function object contains a function pointer, but logically it comes with a proof that
the function obeys the Calling Convention, which is specified using a Hoare triple. Recall that
Hoare triples are unrestricted, so the calling convention only talks about behavior ; it does not own
any resource of its own. Notice that the convention requires callers to move in ownership of the
inputs, and it moves out ownership of the output, only.

Finally, the top-level judgment Γ ⊨F e : T characterizes when an open program behaves like a
T under Γ using top-level functions in F. It quantifies over larger function tables F′ ⊇ F, since the
context—which can be thought to approximate a library—might require additional functions, but
these must not conflict with the functions e expects to be available. It also quantifies over seman-
tic substitutions CJΓK(𝛾) that confer ownership of aVJTK(𝛾 (x)) for every x : T in Γ. Recall that
bindings can appear multiple times in a typing context, so, e.g., CJx : T, x : TK(𝛾) = VJTK(𝛾 (x)) ★
VJTK(𝛾 (x)). As a technical subtlety, this means that, unlike in other logical relations for substruc-
tural types (e.g., [Ahmed et al. 2007]), splitting contexts in the source does not correspond to
splitting substitutions in the model, only resources.

Just as for standard logical relations, we prove that ABI compliance is adequate to establish
Safety and GaRbage FReedom for whole programs of base type, Z. For this version of the ABI,
where even integers are reference counted, termination requires the production of an integer ref-
erence, which refers to the only block remaining in memory.

TheoRem 3.1 (ABI Adeacy). If Σ;∅ ⊨F e : Z and F ⊢ (∅,∅, e) →∗ (𝜓 ′, 𝜇′, e′) ↛, then there
is n, ℓ such that 𝜇′ = [ℓ ↦→ 1, ℓ + 1 ↦→ n] and e′ = ℓ .

3.3 Compiler Compliance
Nowwe can show that our candidate Quick compiler from § 2.3 is compliant with the semantic ABI.
When an ABI is specified in prose, compliance can be difficult to establish, which can lead to subtle
bugs (e.g., [Álvarez 2018; Desires 2023]). Here, since the semantic ABI is really just a logical relation,
compiler compliance corresponds to what is usually called the fundamental property, which says
that (the compilation of) any syntactically well-typed term is also semantically well-typed.

Lemma 3.2 (Compliant Compilation). If Σ; Γ ⊢ e : T ⇝ e ⊣ F, then Σ; Γ ⊨F e : T.
As usual, this is proved by induction on the typing derivation—or in this case, the compilation
derivation—and the proof is factored out into so-called “compatibility lemmas”, one per compi-
lation rule. Adequacy of the type system can then be established as a corollary of Compliant
Compilation and ABI Adeacy.

TheoRem 3.3 (CompileR Adeacy). If Σ;∅ ⊢ e : Z ⇝ e ⊣ F, and F ⊢ (∅,∅, e) →∗
(𝜓 ′, 𝜇′, e′) ↛, then there is n, ℓ such that 𝜇′ = [ℓ ↦→ 1, ℓ + 1 ↦→ n] and e′ = ℓ .

A major benefit of ABI stabilization is that it facilitates cross-compiler linking.
Lemma 3.4 (CRoss-CompileR LinKing). For any two compliant compilers ⇝1 and ⇝2, if

Σ; Γ1 ⊢ e1 : T1 ⇝1 e1 ⊣ F1 and Σ; Γ2, x : T1 ⊢ e2 : T2 ⇝2 e2 ⊣ F2, then Σ; Γ1, Γ2 ⊨F1,F2 const x =
e1; e2 : T2.

In fact, the compilers themselves are not so important—all that matters is that we have ABI-
compatible target programs, no matter how exactly they are produced. Indeed, like any logical
relation, the semantic ABI satisfies a pleasant substitution-like property.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

Realistic Realizability: Specifying ABIs You Can Count On 315:17

Lemma 3.5 (Safe LinKing). If Σ; Γ1 ⊨F1 e1 : T1 and Σ; Γ2, x : T1 ⊨F2 e2 : T2, then
Σ; Γ1, Γ2 ⊨F1,F2 const x = e1; e2 : T2.

CRoss-CompileR LinKing easily follows from thismore general property.This property also allows
one to link compliantly compiled code with compliant libraries implemented directly in the target,
or even compliantly compiled code from a different source language entirely. In the latter case, the
other language would typically provide some compiler directive, like #repr in Rust or foreign in
Haskell, in order to target the ABI of our language.

4 Variations on the ABI
4.1 Calling Convention

Caller vs. callee retain. As seen in Fig. 11, a Hoare triple is a natural mechanism for describing a
calling convention. The convention we have seen so far takes ownership of (or steals [Foundation
2023]) inputs, which means that the caller is responsible for dup’ing any inputs they wish to retain.
It is just as easy to express the convention that returns ownership of (or borrows) inputs, in which
case the callee is responsible for dup’ing inputs. For a function type Ti

𝑖<𝑛 → T, this convention
can be expressed as follows.

∀ wi
𝑖<𝑛 . {★𝑖<𝑛VJTiKF(wi)} ⟨call⟩F

(
wi

𝑖<𝑛
)
{w.★𝑖<𝑛VJTiKF (wi) ★VJTKF (w)}F

As with low-level calling conventions, one could fine-tune the calling convention to behave dif-
ferently on different argument types. Additionally, some languages have explicit program syntax,
either on types or on programs, that indicate different calling conventions, like borrow types &𝑇
in Rust or inout parameters in Swift.

Closures and Recursion. In the preliminary ABI and compiler, we considered neither closures
nor recursion. As before, to build an intuition for the ABI specification of recursive closures, we
give a candidate compilation strategy. Since the target does not have closures, we need to perform
closure conversion and store the closure environment in memory.

yj : Tj
𝑗<𝑚

, f : Ti
𝑖<𝑛 → T, x : Ti

𝑖<𝑛 ⊢ e : T ⇝ e ⊣ F

Γ ∌ f, x distinct F ⊇


callk
(
f, xi

𝑖<𝑛
) {

const yj = f[3 + j]; dup Tj

(
yj

) 𝑗<𝑚
; e

}
destrk (f)

{
const yj = f[3 + j]; drop Tj

(
yj

) 𝑗<𝑚
; free (f) ; 0

} 
yj : Tj

𝑗<𝑚 ⊢ fn f xi
𝑖<𝑛{e} : Ti

𝑖<𝑛 → T
⇝ const f = malloc (3 + m); f[0] = 1; f[1] = callk; f[2] = destrk; f[3 + j] = yj;

𝑗<𝑚
f ⊣ F

(→I+)

Since a closure’s type does not tell us about its environment, as in prior work on type-directed
closure conversion [Ahmed and Blume 2008; Mates et al. 2019; Morrisett et al. 1999], the environ-
mentwill be represented using an existential package. In our ABI (see theO

r
Ti

𝑖<𝑛 → T
z
definition

below), the environment is stored directly in the function object, but it would be just as natural to
specify a version that stores a pointer to a separate environment object instead.

Next, the calling convention must be revised to require the environment as input. Instead of
taking a pointer to the environment directly, the first argument to the function is the function
value itself, which includes the environment in its object. Not only does this ensure the function
has access to the environment, but it also naturally accommodates recursive functions. Note that
in the compatibility lemma for closure introduction, this circular self-reference will require a use
of Löb induction, (▷ 𝑃 ⇒ 𝑃) ⊨ 𝑃 .

Finally, in accordance with RCV Release, owners of a function need to be able to deallocate its
memory upon a final release. Since the type of a function’s environment is not known statically

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

315:18 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

to an arbitrary caller, the function object must also store a dynamic destructor. As with the calling
convention, the function object comes with a Hoare triple specification ensuring that the destruc-
tor correctly cleans up its memory: the precondition matches exactly the postcondition of a drop
that hits zero.

O
r

Ti
𝑖<𝑛 → T

z
F
(ℓ + 1) ≜ ∃ call, destr, Env. let Self = ℓ + 1 ↦→ ⟨call⟩F ★ ℓ + 2 ↦→ ⟨destr⟩F ★ Env in

Self
★ ∀ wi

𝑖<𝑛 .{★𝑖<𝑛VJTiKF (wi) ★@ℓ Self } ⟨call⟩F
(
ℓ, wi

𝑖<𝑛
)
{VJTKF}F

★ {ℓ ↦→ 0 ★ Self } ⟨destr⟩F (ℓ) {emp}F

4.2 Layout
Unboxed types. One may wish to unbox values of small types like Z, or empty structs such as

struct Unit {}. This can be achieved by interposing an unboxed predicateU between the value and
reference predicates, depending on the type.

VJTK(w) ≜ {
UJTK(w) (T is an unboxed type; e.g., Z or struct X {})
⌜w ∈ Loc \ null⌝ ★ RJTK(w) (otherwise)

UJZK(w) ≜ ⌜w ∈ Z⌝
UJXK(w) ≜ ⌜w = null⌝ (Σ ∋ struct X {})

Since an unboxed type is not backed by any dynamic memory, it is characterized by an unre-
stricted predicate that only constrains its value. In practice, one might use distinguished types [Bol-
ingbroke and Peyton Jones 2009; Jones and Launchbury 1991], kinds [Downen et al. 2020], or traits
to mark a type as unboxed. Note that if Z is unboxed, then the statements of ABI Adeacy
and CompileR Adeacy must change slightly—the return value must be an integer instead of a
pointer, and the final memory must be completely empty.

Pointer tagging. It may only be sensible to unbox certain members of a type. For example, func-
tions that do not close over any bindings can be represented directly as top-level function point-
ers, but if we allow this optimization, then a function’s type is not enough to know whether it is
unboxed or reference counted. Instead, we can employ pointer tagging [Chen and Chisnall 2019;
Koparkar 2022; Marlow et al. 2007] to annotate the value itself with whether it is unboxed or a
reference.

Recall that, in our memory model, a location is represented as a pair of a block identifier and
an offset, and that every function has a canonical location ⟨f⟩ that offsets into a distinguished,
immutable code block. To tag the pointer, we partition the offset space: odd offsets represent un-
boxed functions, while even offsets represent reference-counted functions. So that the true offset
𝑖 is recoverable, it is mapped to either 2𝑖 + 1 or 2𝑖 . For unboxed functions, we only have to check
that it really is a function pointer for some f, and that f obeys the usual calling convention.

VJTKF (w) ≜


UJTKF (w) (T is an always-unboxed type)

∃ 𝑏, 𝑖 .
((

⌜w = ⟨𝑏, 2𝑖 + 1⟩⌝ ★UJTKF ⟨𝑏, 𝑖⟩
)

∨
(
⌜w = ⟨𝑏, 2𝑖⟩⌝ ★ RJTKF ⟨𝑏, 𝑖⟩

))
(T is a function type)

RJTKF (w) (otherwise)
U

r
Ti

𝑖<𝑛 → T
z

F
(ℓ) ≜ ∃ f. ⌜ℓ = ⟨f⟩F⌝ ★ ∀ wi

𝑖<𝑛 . {★𝑖<𝑛VJTiKF (wi)} ⟨f⟩F
(
ℓ, wi

𝑖<𝑛
)
{VJTKF}F

In a memory model where pointers are flat integers, the optimization is justified by the observa-
tion that not every integer is a valid pointer; for example, on a 64-bit architecture where pointers
have 8-byte alignment, the lowest three bits will always be zero and may be used as tag space.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

Realistic Realizability: Specifying ABIs You Can Count On 315:19

Type-directed layout optimzations. Rust [Rust 2023c] and Swift [Apple 2017] support a number
of type-directed layout optimizations for aggregate data that can be naturally expressed in the
semantic ABI as well. For example, an enum with only one constructor need not be tagged:

OJXK(ℓ + 1) ≜ ∃ w. ℓ + 1 ↦→ w ★ ▷VJTK(w) ★ size (ℓ, 2) (Σ ∋ enum X {s : T})
“Niche optimizations” [Rust 2023d] are another common optimization that, like pointer tagging

above, take advantage of the fact that certain values—so-called “niches”—are physically consistent
with a type’s layout but are not logically valid for that type.2 In this class, the null pointer optimiza-
tion is arguably the most well-known: a value of a reference type is guaranteed to be non-null, so
null can be used as a one-bit tag. For example, in an Option over a reference type T, the none case
can be represented by null since null would never be a valid payload in the some case:

enum Option {none : Unit, some : T}, struct Unit {}
OJOptionK(ℓ + 1) ≡ ∃ w. ℓ + 1 ↦→ w ★ ▷

(
VJUnitK3 (w) ∨ VJTK(w)) ★ size (ℓ, 2)

⇒ ∃ ℓ′ . ℓ + 1 ↦→ ℓ′ ★ ▷ (⌜ℓ′ = null⌝ ∨ (⌜ℓ′ ≠ null⌝ ★VJTK(ℓ′))) ★ size (ℓ, 2)

The exact mechanism that enables this optimization in Rust is slightly different: variants like
None can take no data or zero-sized data, and these would not store a payload in the first place, but
here, we store null as the payload, using the unboxing of Unit from above. Still, the core principle
is the same—we take advantage of the fact that certain types have the same physical representation
but disjoint logical representations, and therefore can safely share space without ambiguity. Even
if the ABI itself does not adopt these optimizations, one can use the ABI specification and the
specification of an optimization to prove the correctness of marshalling wrappers used at ABI-
public boundaries.

∀ w. {VoptJTK(w)} from_opt (w) {VJTK} ★ {VJTK(w)} to_opt (w) {VoptJTK}
5 Library Evolution
Stabilizing an ABI has clear benefits both for interoperability and backward compatibility. Unfor-
tunately, it can come at the cost of performance and expressivity over time, since committing to a
fixed ABI can hinder opportunities to optimize and add functionality. As a result, library develop-
ers must carefully craft their interface to support forward compatibility. For example, in order to
support updating a 2D Point struct to a 3D Point, a library developer might employ one of the
following designs:

typedef struct _Point Point;
Point* mk_point(int x, int y);
int get_x(Point* p);
int get_y(Point* p);

upd
⇒

. . .
Point* mk_point3d(int x, int y, int z);
int get_z(Point* p);

typedef struct _Point {
int x; int y;
int _reserved[2];
} Point;

upd
⇒

typedef struct _Point {
int x; int y; int z;
int _reserved[1];

} Point;

These examples represent two extremes of the design space. On the top, the implementation of
Point is totally opaque, which means it can change arbitrarily but clients must manipulate Points
entirely by indirection. Not only can this introduce overhead and limit optimization, but also the
way that the library interacts with Point is fundamentally different from the way that the client
interacts with Point, so that even if the implementation is stabilized and made public, clients will
2In other contexts, niches are called trap representations [ANSSI-FR 2022].
3Using the unboxing of Unit as null from above.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

315:20 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

not automatically take advantage of direct access. On the bottom, the implementation of Point is
fully explicit, having reserved space for new fields like z ahead of time. An obvious disadvantage
is that this approach is not as flexible: there is a fixed upper bound on the fields that may be added,
and they may only be appended. A less obvious pitfall is that it would be easy to misuse the extra
space: replacing int _reserved[2];with long z;would actually break compatibility because it
increases the alignment from 4 to 8.4 Additionally, both the library and newer clients would need
to be prepared to handle stale versions from older clients, which is sometimes addressed with a
version or size field in practice.

Both of these designs, and the various that fall somewhere in between them, suffer from two
common weaknesses. First, the library developer must make a conscious and careful decision up
front: if they choose wrong (or forget to make a choice), it may be impossible to preserve compat-
ibility going forward. Second, questions about ABI compatibility affect the API: the most natural
interface is not a forward compatible option. In itsABI Stability Manifesto [Apple 2017] and Library
Evolution Manifesto [Apple 2015], Swift envisions a different world. Instead of forcing providers
to carefully craft their library in a forward compatible way, the ABI itself provides helpful ab-
stractions that enable certain extensibility automatically. By default, most types have a so-called
resilient layout that trades some dynamic overhead for flexibility. Then the example above can be
written in the natural way in each version, while still ensuring compatibility:

flex struct Point {x : Z, y : Z}
upd
⇒ flex struct Point {x : Z, y : Z, , z : Z}

To achieve this level of flexibility, clients may need to access data indirectly. In the example
above, the offsets of the struct’s fields are not necessarily stable, so they need to be looked up dy-
namically in a type metadata table. To mitigate overhead, only clients need to use this indirection—
library code that is compiled together (which Swift calls a resilience domain) is always aware of
the latest data definition and may continue to access data directly. Moreover, a library can opt out
of resilience by marking data as@frozen, which fixes the layout so that clients can access the data
directly.

The Swift ABI provides a list describing supported evolution for each type, dictating which
changes to a library are ABI compatible and which are breaking. In terms of the semantic ABI, a
library supports evolution to a new library if any program that is semantically well-typed against
the old library is still semantically well-typed against the new one. In general, changing a library’s
implementation without changing its type is supported evolution (with certain special exceptions,
like a public @inlinable function). The semantic ABI as defined in § 3.2 already has this property
“baked in” because it quantifies over all semantically well-typed closing substitutions for the con-
text, which we treat as an approximation for “the library”. The more interesting case of library
evolution is when the library’s interface changes.

Definition 5.1 (Supported Evolution). Library interface Σ ⊢ Γ supports evolution to library inter-
face Σ′ ⊢ Γ′ if Σ; Γ ⊨F e : T implies Σ′; Γ′ ⊨F e : T for all e,T, F.

With our existing ABI, we have almost entirely negative evolution results. Some are sensible;
for example, Γ, x : T doesn’t support evolution to Γ, since informally, e is expecting to have access
to that binding. Perhaps surprisingly, the reverse direction also doesn’t hold in general, since e
is not expecting to have access to that binding but it is obligated to use or drop it, (unless VJTK
happens to be an unrestricted, unboxed type). More interesting are the evolution opportunities in
Σ, as we saw in the examples above, and so from now on we will simply ask whether Σ supports

4Assuming that int is 32 bits.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

Realistic Realizability: Specifying ABIs You Can Count On 315:21

evolution to Σ′. As with compiler compliance, the upshot of supported evolution is that it broadens
the viable linking set; in particular, it enables cross-version linking.

Example 5.2 (Cross-Version Linking). Suppose a library exports data definitions in Σlib and a func-
tion flib : Tlib. Suppose a client imports these definitions, as in Σlib; flib : Tlib ⊨ ecli : Tcli. Naturally,
it is safe to link the client with any library implementation satisfying the expected interface, as
in Σlib ⊨ elib : Tlib, so the library developer is free to update the implementation in any way that
preserves that interface. But if Σlib supports evolution to Σ′lib, then the library developer has even
more flexibility: they can update the signature to Σ′lib and the implementation to satisfy the new
interface, Σ′lib ⊨ e′lib : Tlib, without breaking compatibility with the client ecli.

Unfortunately, the ABI as defined so far does not support any interesting changes to Σ; not even
the fields in a struct definition may be reordered, since the ABI laid them out in declaration order.
Next, we will show how to revise the ABI to adopt some of the ideas from Swift’s resilient layout.

5.1 Evolvable Types

Mode ∋ m ::= flex | rigid Sig ∋ Σ ::= ∅ | Σ,m k X {s : T}

(rigid struct-I)
Σ ∋ rigid struct X {s : T} Σ; Γ ⊢ e : T

Σ; Γ ⊢ {s : e} : X

(m struct-E)
Σ ∋ m struct X {si : Ti

𝑖<𝑛} Σ; Γ ⊢ e : X 𝑗 < 𝑛

Σ; Γ ⊢ e.sj : Tj

Σ ∋ m enum X {si : Ti
𝑖<𝑛}

Σ; Γ ⊢ e : Tj 𝑗 < 𝑛

Σ; Γ ⊢ sj e : X
(m enum-I)

Σ ∋ rigid enum X {s : T1 } Σ; Γ1 ⊢ e1 : X
Σ; Γ2, x : T1 ⊢ e2 : T2 Γ2 ∌ x

Σ; Γ1, Γ2 ⊢ case e1 {s x⇒ e2 } : T2
(rigid enum-E)

Fig. 13. Changes to the Quick source language.

To support library evolution, we update the Quick type system (Fig. 13) to mitigate the API
pitfalls in the C example above by eliminating such version confusion statically. The first change
is to the syntax of data type definitions, which now require a resilience mode m, either flex or
rigid. rigid is analogous to @frozen in Swift, where flex is the tacit default. flex is similar to
non_exhaustive in Rust [Rust 2024] in terms of its impact on the type system, but Rust does not
compile non_exhaustive types differently, and the default is not quite “rigid” in the same way since
Rust does not currently provide a stable ABI.

With respect to the type system, having a rigid definition in the signature is fully permissive; any
data in this mode can be freely introduced and eliminated as in the original type system (Fig. 1).
flex definitions are potentially less permissive. Since a flex struct may have more fields than do
appear in the signature, one cannot use its constructor directly (just as in Swift [Apple 2024a]),
but must use library functions instead. Likewise, since a flex enum may have more constructors
than do appear in the signature, one cannot case on it exhaustively.The two options for eliminating
flex enums are to require a default case, which is what Swift [Apple 2024c] and Rust [Rust 2024] do,
or to outright forbid it and require clients to use library functions instead, which is the approach
we adopt here. flex structs may be freely eliminated and flex enums may be freely introduced, since
stability (as we will show) ensures a lower bound on the selectors available.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

315:22 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Σ ∋ struct X {si : Ti
𝑖<𝑛} Σ; Γ ⊢ e : X ⇝ e 𝑗 < 𝑛

Σ; Γ ⊢ e.sj : Tj ⇝ const r = e; const rj = r
[
sel sj

Σ.X + 1
]
; dup Tj

(
rj

)
; drop Σ

X (r) ; rj

(m struct-E+)

Σ ∋ enum X {si : Ti
𝑖<𝑛} Σ; Γ ⊢ ej : Tj ⇝ ej 𝑗 < 𝑛

Σ; Γ ⊢ sj ej : X ⇝ const r = malloc (3); r[0] = 1; r[1] = sel sj
Σ.X; r[2] = ej; r

(m enum-I+)

∀ rigid k X {si : Ti
𝑖<𝑛} ∈ Σ. F ⊇

{
destrX (r)

{
destr Σ

X (r)
}
, selsi

X ()
{
sel si

Σ.X

}𝑖<𝑛}
rigid Σ ⊣ F

(rigid Σ+)

sel sj
Σ.X ≜

{
j (Σ ∋ rigid k X {si : Ti

𝑖<𝑛} ∧ 𝑗 < 𝑛)
selsj

X () (Σ ∋ flex k X {si : Ti
𝑖<𝑛} ∧ 𝑗 < 𝑛)

destr Σ
X (r) ≜

{
const ri = r[i + 1]; drop Σ

Ti
(ri) ;

𝑖<𝑛
free (r) ; 0 (Σ ∋ rigid struct X {si : Ti

𝑖<𝑛})
destrX (r) (Σ ∋ flex struct X {· · ·})

destr Σ
X (r) ≜


if (r[1] = i) {
const ri = r[2]; drop Σ

Ti
(ri) ; free (r) ; 0

𝑖<𝑛

} else {havoc}
(Σ ∋ rigid enum X {si : Ti

𝑖<𝑛})

destrX (r) (Σ ∋ flex enum X {· · ·})

Fig. 14. Changes to the Quick compiler.

5.2 Compiler
Once again, we build intuition for the ABI itself by developing a candidate compiler. As mentioned
above, we need to introduce some dynamic indirection in order to support resiliency. First, in
flex struct projection and flex enum injection, we need to dynamically query the concrete value
of the appropriate selector; we may no longer assume it to be its position in declaration order.
Whereas Swift stores this information in a heap table, for simplicity, we make every selector si

for every data definition X available as a top-level, constant function selsi
X returning the selector

value. To minimize changes to the compiler, we introduce a sel si
Σ.X macro that either calls selsi

X
if X is flex in Σ, or else returns the declaration order position if X is rigid in Σ, as before.

Next, in accordance with GaRbage FReedom, we still need to clean up flex data, but a flex client
does not have enough information to statically insert a destructor. One option would be to force
clients to use library functions for dropping, as we did for introducing and eliminating flex structs
and enums, respectively. But unlike those changes to the type system, this one would expose the
underlying substructurality to the user, which we wish to avoid. Instead, we make a top-level
destructor destrX available for every data definition to ensure that flex variables can still be im-
plicitly dropped by clients. Fortunately, we already have a destr Σ

T macro, so this change to the
compiler is minimally invasive: we call destrX if the definition is flex, else we inline its destructor
if the definition is rigid, as before.

5.3 Semantic Type Substitutions
To support library evolution semantically, we synthesize the practical gadget—a type metadata
table—with a classic semantic technique—relational substitutions, devised by Reynolds [Reynolds

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

Realistic Realizability: Specifying ABIs You Can Count On 315:23

1983] to characterize parametricity. The main idea is to parameterize the logical predicates by
a mapping from type names to semantic types. Then the interpretation of a named type simply
looks up the appropriate semantic type in the map. For type abstraction, it looks roughly like this
(adapted from [Ahmed 2006]):

VJ𝛼K𝛿 (𝑣) ≜ 𝛿 (𝛼)(𝑣)
VJ∀𝛼. 𝑇 K𝛿 (𝑣) ≜ ∀𝑃 ∈ SemTy. EJ𝑇 K𝛿 [𝛼 ↦→𝑃] (𝑣 [])
VJ∃𝛼. 𝑇 K𝛿 (𝑣) ≜ ∃ 𝑃 ∈ SemTy, 𝑣 ′ . 𝑣 = pack(𝑣 ′) ∧ VJ𝑇 K𝛿 [𝛼 ↦→𝑃] (𝑣 ′)
DJΔK(𝛿) ≜ 𝛿 ∈ dom(Δ) → SemTy
Δ; Γ ⊨ 𝑒 : 𝑇 ≜ ∀𝛿,𝛾 . DJΔK(𝛿) ⇒ CJΓK𝛿 (𝛾) ⇒ EJ𝑇 K𝛿 (𝑒 [𝛾])

In our case, the type name does not stand for an arbitrary type, but rather it is constrained by
the signature, making it closer to a model of bounded polymorphism. Additionally, a
flex struct X {s : T} has notable similarity to a row polymorphic record ∃ 𝜌. {𝑠 : 𝑇 , 𝜌}, with the
additional constraint that all instances of X share the same 𝜌 .

Before deciding exactly what a semantic signature substitution 𝜍 is (analogous to 𝛿 above), and
how we constrain it with the signature predicate SJΣK(𝜍) (analogous to DJΔK above), let us inte-
grate these pieces into the ABI abstractly and work backward from our goal to a suitable definition.
Following the pattern for type abstraction, we extend all predicates to take a 𝜍 as a parameter, and
the particular 𝜍 is chosen in the top-level judgment:

Σ; Γ ⊨F e : T ≜ ∀F′ ⊇ F, 𝜍, 𝛾 . SJΣKF′ (𝜍) ★ CJΓK𝜍F′ (𝛾) ⊨ EJTK𝜍F′ (e[𝛾])
Returning to the definition of Supported Evolution and unfolding this new definition for ⊨F, in

order to show that Σ supports evolution to Σ′, we would need
∀F′ ⊇ F, 𝜍, 𝛾 . SJΣKF′ (𝜍) ★ CJΓK𝜍F′ (𝛾) ⊨ EJTK𝜍F′ (e[𝛾]) ⇒ SJΣ′KF′ (𝜍) ★ CJΓK𝜍F′ (𝛾) ⊨ EJTK𝜍F′ (e[𝛾])
Then we want to design S to maximize the use of the following lemma, which easily falls out

from the unfolding above.

Lemma 5.3 (PReseRved SignatuRe Evolution). If SJΣ′KF(𝜍) ⊨ SJΣKF (𝜍) for all F, 𝜍 , then Σ
supports evolution to Σ′.

5.4 Evolvable Layout
Our first goal in designing S should be to support evolution of interest, which in our case will
include reordering of selectors, addition of selectors, and marking a definition rigid. Following
the pattern of relational substitutions, we should expect the object predicate for named types to
roughly become

OJXK𝜍 (ℓ + 1) ≈ 𝜍 (X) (ℓ + 1)
When X is rigid in Σ, no further evolution is supported, so intuitively SJΣK(𝜍) should constrain

the predicate at 𝜍 (X) to be equivalent to our preliminary definition of OJXK from Fig. 11, which
morally was specifying rigid types already. On the other hand, when X is flex in Σ, SJΣK(𝜍) should
constrain the predicate at 𝜍 (X) to be equivalent to some evolution of its rigid counterpart. For a
flex struct X {si : Ti

𝑖<𝑛}, this means its interpretation must accommodate any superset of fields. To
achieve this, we add more structure to 𝜍 (X): it maps to a data substitution 𝛿 that in turn associates
each selector s with an offset and a semantic type, which is exactly analogous to the type metadata
table that is employed in practice. From 𝛿 , we have all the information needed to compute the actual
object predicate, which refines the view that the flex definition gives us.

𝛿.obj(ℓ + 1) ≡
(★s∈{si |𝑖<𝑛}∃ ws . ℓ + 1 + 𝛿.sel(s) .off ↦→ ws ★ ▷VJTiK𝜍 (ws)
★ ★s∈dom(𝛿.sel)\{si |𝑖<𝑛}∃ ws . ℓ + 1 + 𝛿.sel(s).off ↦→ ws ★ 𝛿.sel(s).semty(ws)
★ size (ℓ, 1 + |dom(𝛿.sel) |)

)
Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

315:24 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Compared to the rigid definition, there are two notable changes. First, the offset for the selector
si at position 𝑖 in the declaration order is not necessarily at offset 𝑖 physically, so we use the offset
stored in the table 𝛿.sel(si).off instead. Second, 𝛿 may store more fields and resources than are
known based on the flex definition. Note the similarity to the C example from earlier: this definition
effectively applies the padding technique throughout the ABI automatically for flex definitions.

However, this definition is incomplete in two ways. First, even though the data table 𝛿 ensures
that every instance of X will use the same offsets and extension types, the offsets are not yet
bound to dynamically available names. In our candidate compiler, we stored each offset in a top-
level function that could be used to dynamically project out of or inject into a flex struct or enum,
respectively. In fact, these offset definitions should be available even for rigid definitions, since it
will enable compatibility with flex clients (per PReseRved SignatuRe Evolution). We can use the
weakest precondition wp to specify that the offset functions are available and return the correct
offset.

wpF

(〈
selsi

X
〉

F ()
)
{w. ⌜w = 𝜍 (X).sel(si).off⌝}

In a higher-level model, wemight be able to stop here, but since one of our ABI goals is GaRbage
FReedom, we must ensure that deallocation is possible even for flex clients. The difficulty in deallo-
cation comes from the extra selectors in the data substitution, which is not unlike the existentially
quantified environment predicate in the closure ABI (§ 4.1). Just as we did there, the solution is to
provide a dynamically available destr function, and use a Hoare triple to constrain it to actually
deallocate the object.

∀ ℓ . {ℓ ↦→ 0 ★ 𝜍 (X).obj(ℓ + 1)} ⟨destrX⟩F (ℓ) {emp}F

The complete collection of changes is given in Fig. 15. SJΣK ensures that every entry in the
signature Σ has a data table 𝛿 with the appropriate kind k and at least as many selectors s as
appear in the definition. rigid definitions are further constrained so that the indices in the data
table exactly match the declaration order. The data table must also map each declared selector to
its expected semantic type, guarded by a later, as before, in order to support recursive definitions.
These are combined into a single 𝛿.obj predicate, as above, but only after considering the kind k,
though enums are handled in an analogous way using disjunction ∨. S additionally ensures that
every definition has an available destructor and that all selectors are available. Notice that S is an
unrestricted predicate—it does not own any resources of its own.

With the definition of S in place, we can prove the following lemma for use with PReseRved
SignatuRe Evolution. Informally, it says that a flex definition for X is refined by any definition
for X with a superset of its selectors, which includes extensions, reorderings, and making the
definition rigid.

Lemma 5.4 (SignatuRe PReseRvation). If {sj : Tj | 𝑗 < 𝑚} ⊇ {si : Ti | 𝑖 < 𝑛}, then

S
r
Σ,m k X {sj : Tj

𝑗<𝑚}
z

F
(𝜍) ⊨ S

r
Σ, flex k X {si : Ti

𝑖<𝑛}
z

F
(𝜍)

One subtle impact of these changes is that when Σ;∅ ⊢ e : T ⇝ e ⊣ F, e may not be closed if
Σ contains flex definitions—one may think of such a program as a client still waiting to be linked
with a library implementation. This means that the statements of ABI Adeacy and CompileR
Adeacy must additionally restrict Σ to be fully rigid, and the latter will also refer to signature
compilation Σ ⊣ F. As is standard for typing contexts, this is not a significant limitation because one
can always close off an open program, which for signatures would involve using library evolution
to link with a fully rigid implementation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

Realistic Realizability: Specifying ABIs You Can Count On 315:25

𝜍 ∈ SigSub ≜ X fin
⇀ DataSub

𝛿 ∈ DataSub ≜
〈
kind : Kind, sel : Sel fin

⇀ ⟨off : N, semty : Prd (Word)⟩
〉

SJΣKF (𝜍) ≜ !

©­­­­­­­­­­­­«

⌜dom(𝜍) ⊇ dom(Σ)⌝
★ ∀ m k X {si : Ti

𝑖<𝑛} ∈ Σ. let 𝛿 = 𝜍 (X) in
⌜𝛿.kind = k⌝

★ ⌜dom(𝛿.sel) ⊇ {si | 𝑖 < 𝑛}⌝
★ ∀ 𝑖 < 𝑛. !wpF

(〈
selsi

X

〉
F
()

)
{w. ⌜w = 𝛿.sel(si) .off⌝}

★ ∀ 𝑖 < 𝑛, w. 𝛿 .sel(si) .semty(w) ≡ ▷VJTiK𝜍F (w)
★ ∀ ℓ . {ℓ ↦→ 0 ★ 𝛿.obj(ℓ + 1)} ⟨destrX⟩F (ℓ) {emp}F
★ ⌜m = rigid⇒ dom(𝛿.sel) ⊆ {si | 𝑖 < 𝑛} ∧ ∀ 𝑖 < 𝑛. 𝛿 .sel(si).off = 𝑖⌝

ª®®®®®®®®®®®®¬

𝛿.obj(ℓ + 1) ≜



size (ℓ, 1 + |dom(𝛿.sel) |)

★ ★s∈dom(𝛿.sel)∃ ws .

(
ℓ + 1 + 𝛿.sel(s) .off ↦→ ws

★ 𝛿.sel(s).semty(ws)

)
(𝛿.kind = struct)

size (ℓ, 3)

★
∨

s∈dom(𝛿.sel)∃ ws
©­­«

ℓ + 1 ↦→ 𝛿.sel(s).off
★ ℓ + 2 ↦→ ws

★ 𝛿.sel(s) .semty(ws)

ª®®¬
(𝛿.kind = enum)

OJXK𝜍F (ℓ + 1) ≜ 𝜍 (X) .obj(ℓ + 1)
Σ; Γ ⊨F e : T ≜ ∀F′ ⊇ F, 𝜍, 𝛾 . SJΣKF′ (𝜍) ★ CJΓK𝜍F′ (𝛾) ⊨ EJTK𝜍F′ (e[𝛾])

Fig. 15. Changes to the ABI.

6 Related Work and Discussion
Separation Logic for Low-Level Code. Separation logic [O’Hearn et al. 2001; Reynolds 2002] has

long been employed to verify low-level code; e.g., for C [Tuch et al. 2007] and assembly [Jensen
et al. 2013]. Its continued application has been supported by the development of increasingly
rich notions of ghost state [Appel 2014; Dinsdale-Young et al. 2013; Jung et al. 2018; Ley-Wild
and Nanevski 2013] and the broader adoption of step-indexing [Ahmed 2006, 2004; Appel and
McAllester 2001]. Our use of separation logic to specify logical relations is inspired by Jung et al.
[2017], who use it to model semantic types for Rust, and Timany et al. [2022], who use it to model
semantic types for a concurrent ML-like language. While we have not mechanized our results, we
do believe they would be naturally expressible in a framework like Iris [Jung et al. 2018], except
that, as an affine separation logic, one would need a different mechanism or a different framework
(e.g., [Bizjak et al. 2019; Jacobs et al. 2024]) to show garbage freedom.

“Realistic Realizability”. Benton and collaborators [Benton 2006; Benton and Tabareau 2009; Ben-
ton and Zarfaty 2007] laid the groundwork formodelling high-level typeswith a realizabilitymodel
over target programs, which they employed to prove semantic type soundness of compilers. Pat-
terson and collaborators [Patterson et al. 2022, 2023] recently revived this idea to study static and
dynamic mechanisms for cross-language interoperability, which are proven sound using realiz-
ability models over a common target language. Our work builds on these efforts by making the
simple observation that, if designed appropriately, a realizability model can be more than just a
proof technique—it can be broadly useful for analysis in any context where an ABI specification
would be used in practice.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

315:26 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Dynamic Software Updates. Although library evolution as devised by Swift has not been previ-
ously studied, Hicks and collaborators studied the problem of dynamic software updates [Hicks
et al. 2001; Sewell et al. 2008; Stoyle et al. 2005], which shares a similar goal of updating APIs
without breaking existing clients. Whereas Swift is mostly interested in updating libraries without
recompiling clients, dynamic software updates occur on the fly without even restarting clients. The
mechanism that enables a dynamic software update is a dynamic patch, which is like a wrapper
function interposed between outdated uses of an API. One can theoretically update an API arbi-
trarily given a sufficient patch, but this level of flexibility sometimes necessitates input from the
library developer. On the other hand, library evolution—as formalized in this paper—only supports
a restricted class of API updates, but these are entirely facilitated by the ABI and the compiler. In
particular, as long as the library developer updates their API in a supported way, library evolution
guarantees backwards compatibility “for free”.

Reference Counting. Our use of an internally substructural type system for reference counting is
inspired by Perceus [Reinking et al. 2021], which applies the technique in the Koka language along
with more sophisticated optimizations like borrowing and reuse. To our knowledge, we are the
first to prove semantic type soundness for a compiled language implementation with automatic
reference counting. However, there has been work on verifying reference-counting algorithms
using model checking and separation logic [Emmi et al. 2009; Windsor et al. 2017]. Notably, Doko
and Vafeiadis [2017] define an ARC(ℓ, w) proposition similar to @ℓ (ℓ + 1 ↦→ w), and Mulder et al.
[2022] define a tokenid (𝑃) proposition similar to @ℓ 𝑃 , except that id is a ghost name rather than
a physical location. Both abstractions implement an interface similar to that of our jumps, but
their models track the total reference count using ghost state in a global invariant, which is not
tracked by our model. Additionally, neither of their models use graphs for resources, so they do
not seem to have a clear analog to our reachability modality⋄𝑃 , which supports reasoning about
non-destructive updates to resources that are accessible through a chain of references. Madiot
and Pottier [2022] develop a domain-specific separation logic with a pointed-by assertion ℓ ← [𝐿,
where 𝐿 over-approximates all the locations holding a pointer to ℓ . They show that the pointed-
by assertion supports a style of reasoning called ghost reference counting, which is useful when
working in a garbage collected language. On the other hand, our logic is designed to reason about
physical reference counters, and we implement the mechanism in terms of a target language—it
is not built into the operational semantics, as their garbage collector is. Lorenzen et al. [2023] do
not develop a separation logic for reference counting, but they do define a composition operator
on flat, reference-counted heaps that satisfies the properties of a resource algebra and correctly
populates reference counts.

ABI Formalization. To our knowledge, we are the first to use realizability to study ABIs, but
others have explored alternative formalizations and related concepts. Drossopoulou et al. [1998]
studied binary compatibility in the context of Java, proposing a formalization of safe linking and
execution without recompilation. Whereas our specification employs realizability into a compila-
tion target, theirs uses a type-preserving translation from source Java into an extension of Java
with compiler annotations and run-time constructs like addresses. CompCert [Leroy 2023] aims
to conform with its platforms’ ABIs, though it does not formally specify each ABI and prove this.
CompCertELF [Wang et al. 2020] extends CompCert with a verified translation to ELF object files,
which is a popular format for platform ABIs to use. To reckon with the rigidity of the C/C++ ABI,
Atkinson et al. [2010] use macros to automatically implement some of the idioms for forward
compatibility described in § 5.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

Realistic Realizability: Specifying ABIs You Can Count On 315:27

The Semantic ABI Recipe. The primary purpose of the Quick case study was to motivate the “real-
istic realizability” approach to a semantic ABI specification. However, other than Library Evolution
(§ 5), which has the potential to be adopted by other languages but is presently most relevant to
Swift, the rest of the approach can be readily adapted to suit other typed languages. To construct
a semantic ABI, an important first step is to develop a suitable domain-specific logic over tar-
get terms. For Quick, this included predicates and proof rules tailored to manipulating reference
counts, but for languages that use different dynamic mechanisms or stronger static mechanisms
for memory safety, one would instead choose abstractions better suited for those techniques (e.g.,
for garbage collection [Madiot and Pottier 2022] or borrowing [Jung et al. 2017]). Then to define
the ABI, one interprets each source type as a predicate over target terms. Finally, a logical next
step for compiled languages is to verify compiler compliance by showing that the compiler only
produces terms that satisfy the ABI.

Future Work. Cross-language interoperability is another important application of ABIs, and we
are interested in using our formalization to specify a foreign function interface (FFI) and then verify
the soundness of FFI guidelines (e.g., for Rust FFI [ANSSI-FR 2022]) and a bindings-generation tool
(e.g., rust-bindgen [Rust 2023a]). Though we have approximated some of the important features
and ABI considerations in Swift, we would like to incorporate more of its bespoke features like
its mutable value semantics and object system. Finally, we plan to apply this realistic realizability
technique to specify a Rust ABI, in hopes that using the semantic ABI for analysis will help settle
some of the ongoing debates in Rust’s ABI proposal [RFCs 2023]. For this ABI, we plan to target
WebAssembly [Haas et al. 2017], perhaps leveraging its component model proposal [WebAssembly
2023] or a more richly-typed variant [Fitzgibbons et al. 2024].

Acknowledgments
We thank Daniel Patterson, John Li, and Olek Gierczak for their careful feedback and suggestions.
We also thank the anonymous reviewers for OOPSLA’24 and PriSC’24 for their valuable comments.
This material is based upon work supported by the Defense Advanced Research Projects Agency
(DARPA) under Contract No. N66001-21-C-4023. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the funding agency.

References
Amal Ahmed. 2006. Step-indexed syntactic logical relations for recursive and quantified types. In European Symposium on

Programming. Springer, 69–83. https://doi.org/10.1007/11693024_6
Amal Ahmed and Matthias Blume. 2008. Typed closure conversion preserves observational equivalence. In Proceedings of

the 13th ACM SIGPLAN international conference on Functional programming. 157–168. https://doi.org/10.1145/1411204.
1411227

Amal Ahmed, Matthew Fluet, and Greg Morrisett. 2007. L3: a linear language with locations. Fundamenta Informaticae 77,
4 (2007), 397–449.

Amal Jamil Ahmed. 2004. Semantics of Types for Mutable State. Ph. D. Dissertation. Princeton University.
Emilio Cobos Álvarez. 2018. i128 / u128 are not compatible with C’s definition. GitHub. https://github.com/rust-lang/rust/

issues/54341 GitHub issue #54341.
ANSSI-FR. 2022. Rust Guide: Foreign Function Interface. https://github.com/ANSSI-FR/rust-guide/blob/master/src/en/07_

ffi.md.
Andrew W Appel. 2014. Program logics for certified compilers. Cambridge University Press. https://doi.org/10.1017/

cbo9781107256552
Andrew W Appel and David McAllester. 2001. An indexed model of recursive types for foundational proof-carrying code.

ACM Transactions on Programming Languages and Systems (TOPLAS) 23, 5 (2001), 657–683. https://doi.org/10.1145/
504709.504712

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

https://doi.org/10.1007/11693024_6
https://doi.org/10.1145/1411204.1411227
https://doi.org/10.1145/1411204.1411227
https://github.com/rust-lang/rust/issues/54341
https://github.com/rust-lang/rust/issues/54341
https://github.com/ANSSI-FR/rust-guide/blob/master/src/en/07_ffi.md
https://github.com/ANSSI-FR/rust-guide/blob/master/src/en/07_ffi.md
https://doi.org/10.1017/cbo9781107256552
https://doi.org/10.1017/cbo9781107256552
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712

315:28 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Andrew W Appel, Paul-André Mellies, Christopher D Richards, and Jérôme Vouillon. 2007. A very modal model of a
modern, major, general type system. In Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. 109–122. https://doi.org/10.1145/1190215.1190235

Apple. 2015. Library Evolution. https://github.com/apple/swift/blob/main/docs/LibraryEvolution.rst.
Apple. 2017. ABI Stability Manifesto. https://github.com/apple/swift/blob/main/docs/ABIStabilityManifesto.md.
Apple. 2024a. The Swift Book: Access Control—Default Memberwise Initializers. https://github.com/apple/swift-book/

blob/main/TSPL.docc/LanguageGuide/AccessControl.md#default-memberwise-initializers-for-structure-types.
Apple. 2024b. The Swift Book: Automatic Reference Counting. https://github.com/apple/swift-book/blob/main/TSPL.docc/

LanguageGuide/AutomaticReferenceCounting.md.
Apple. 2024c. The Swift Book: Switch Statement. https://github.com/apple/swift-book/blob/

8b7826c2a1809b5d93651d92555510a9c46502dd/TSPL.docc/ReferenceManual/Statements.md#switch-statement.
Kevin Atkinson, Matthew Flatt, and Gary Lindstrom. 2010. ABI compatibility through a customizable language. In Pro-

ceedings of the ninth international conference on Generative programming and component engineering. 147–156. https:
//doi.org/10.1145/1868294.1868316

Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. 2019. Manifest Deadlock-Freedom for Shared Session Types.
In Programming Languages and Systems - 28th European Symposium on Programming, ESOP 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings (Lecture Notes in Computer Science, Vol. 11423), Luís Caires (Ed.). Springer, 611–639. https://doi.org/10.1007/
978-3-030-17184-1_22

Nick Benton. 2006. Abstracting allocation: The new new thing. In International Workshop on Computer Science Logic.
Springer, 182–196.

Nick Benton and Nicolas Tabareau. 2009. Compiling functional types to relational specifications for low level imperative
code. In Proceedings of the 4th international workshop on Types in language design and implementation. 3–14. https:
//doi.org/10.1145/1481861.1481864

Nick Benton and Uri Zarfaty. 2007. Formalizing and verifying semantic type soundness of a simple compiler. In Proceedings
of the 9th ACM SIGPLAN international conference on Principles and practice of declarative programming. 1–12. https:
//doi.org/10.1145/1273920.1273922

Lars Birkedal, Noah Torp-Smith, and Hongseok Yang. 2006. Semantics of separation-logic typing and higher-order frame
rules for Algol-like languages. Logical Methods in Computer Science 2 (2006). https://doi.org/10.2168/lmcs-2(5:1)2006

Aleš Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. 2019. Iron: Managing obligations in higher-order
concurrent separation logic. Proceedings of the ACM on Programming Languages 3, POPL (2019), 1–30. https:
//doi.org/10.1145/3290378

Maximilian C Bolingbroke and Simon L Peyton Jones. 2009. Types are calling conventions. In Proceedings of the 2nd ACM
SIGPLAN symposium on Haskell. 1–12. https://doi.org/10.1145/1596638.1596640

Torben Braüner and Valeria de Paiva. 2006. Intuitionistic hybrid logic. Journal of Applied Logic 4, 3 (2006), 231–255.
https://doi.org/10.1016/j.jal.2005.06.009

Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. 2019. Domain-Aware Session Types. In 30th In-
ternational Conference on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands (LIPIcs,
Vol. 140), Wan J. Fokkink and Rob van Glabbeek (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 39:1–39:17.
https://doi.org/10.4230/LIPICS.CONCUR.2019.39

Tony Chen and David Chisnall. 2019. Pointer Tagging for Memory Safety.
Aria Desires. 2023. abi-cafe. https://github.com/Gankra/abi-cafe.
Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew Parkinson, and Hongseok Yang. 2013. Views: com-

positional reasoning for concurrent programs. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on
principles of programming languages. 287–300. https://doi.org/10.1145/2480359.2429104

Marko Doko and Viktor Vafeiadis. 2017. Tackling real-life relaxed concurrency with FSL++. In Programming Languages
and Systems: 26th European Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22–29, 2017, Proceedings 26. Springer, 448–475.
https://doi.org/10.1007/978-3-662-54434-1_17

Paul Downen, Zena M Ariola, Simon Peyton Jones, and Richard A Eisenberg. 2020. Kinds are calling conventions. Proceed-
ings of the ACM on Programming Languages 4, ICFP (2020), 1–29. https://doi.org/10.1145/3408986

Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2011. Logical step-indexed logical relations. Logical Methods in Computer
Science 7 (2011). https://doi.org/10.2168/lmcs-7(2:16)2011

Sophia Drossopoulou, David Wragg, and Susan Eisenbach. 1998. What is Java binary compatibility?. In Proceedings of the
13th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications. 341–361. https:
//doi.org/10.1145/286936.286974

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

https://doi.org/10.1145/1190215.1190235
https://github.com/apple/swift/blob/main/docs/LibraryEvolution.rst
https://github.com/apple/swift/blob/main/docs/ABIStabilityManifesto.md
https://github.com/apple/swift-book/blob/main/TSPL.docc/LanguageGuide/AccessControl.md#default-memberwise-initializers-for-structure-types
https://github.com/apple/swift-book/blob/main/TSPL.docc/LanguageGuide/AccessControl.md#default-memberwise-initializers-for-structure-types
https://github.com/apple/swift-book/blob/main/TSPL.docc/LanguageGuide/AutomaticReferenceCounting.md
https://github.com/apple/swift-book/blob/main/TSPL.docc/LanguageGuide/AutomaticReferenceCounting.md
https://github.com/apple/swift-book/blob/8b7826c2a1809b5d93651d92555510a9c46502dd/TSPL.docc/ReferenceManual/Statements.md#switch-statement
https://github.com/apple/swift-book/blob/8b7826c2a1809b5d93651d92555510a9c46502dd/TSPL.docc/ReferenceManual/Statements.md#switch-statement
https://doi.org/10.1145/1868294.1868316
https://doi.org/10.1145/1868294.1868316
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1145/1481861.1481864
https://doi.org/10.1145/1481861.1481864
https://doi.org/10.1145/1273920.1273922
https://doi.org/10.1145/1273920.1273922
https://doi.org/10.2168/lmcs-2(5:1)2006
https://doi.org/10.1145/3290378
https://doi.org/10.1145/3290378
https://doi.org/10.1145/1596638.1596640
https://doi.org/10.1016/j.jal.2005.06.009
https://doi.org/10.4230/LIPICS.CONCUR.2019.39
https://github.com/Gankra/abi-cafe
https://doi.org/10.1145/2480359.2429104
https://doi.org/10.1007/978-3-662-54434-1_17
https://doi.org/10.1145/3408986
https://doi.org/10.2168/lmcs-7(2:16)2011
https://doi.org/10.1145/286936.286974
https://doi.org/10.1145/286936.286974

Realistic Realizability: Specifying ABIs You Can Count On 315:29

Michael Emmi, Ranjit Jhala, Eddie Kohler, and Rupak Majumdar. 2009. Verifying reference counting implementations.
In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 352–367.
https://doi.org/10.1007/978-3-642-00768-2_30

Michael Fitzgibbons, Zoe Paraskevopoulou, NobleMushtak, MichelleThalakottur, Jose SulaimanManzur, and Amal Ahmed.
2024. RichWasm: Bringing Safe, Fine-Grained, Shared-Memory Interoperability Down to WebAssembly. Proceedings of
the ACM on Programming Languages 8, PLDI (2024), 1656–1679. https://doi.org/10.1145/3656444

Python Software Foundation. 2023. Python/CAPI ReferenceManual. https://docs.python.org/3/c-api/intro.html#reference-
counts.

Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai,
and JF Bastien. 2017. Bringing the web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 185–200. https://doi.org/10.1145/3140587.3062363

Michael Hicks, Jonathan T Moore, and Scott Nettles. 2001. Dynamic software updating. ACM SIGPLAN Notices 36, 5 (2001),
13–23. https://doi.org/10.1145/381694.378798

Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. 2024. Deadlock-Free Separation Logic: Linearity Yields
Progress for Dependent Higher-Order Message Passing. Proceedings of the ACM on Programming Languages 8, POPL
(2024), 1385–1417. https://doi.org/10.1145/3632889

Jonas B Jensen, Nick Benton, and Andrew Kennedy. 2013. High-level separation logic for low-level code. In Proceedings of
the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 301–314. https://doi.org/
10.1145/2480359.2429105

Simon L Peyton Jones and John Launchbury. 1991. Unboxed values as first class citizens in a non-strict functional language.
In Functional Programming Languages and Computer Architecture: 5th ACM Conference Cambridge, MA, USA, August 26–
30, 1991 Proceedings 5. Springer, 636–666. https://doi.org/10.1007/3540543961_30

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt: Securing the foundations of the
Rust programming language. Proceedings of the ACM on Programming Languages 2, POPL (2017), 1–34. https://doi.org/
10.1145/3158154

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the
ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28
(2018), e20. https://doi.org/10.1017/s0956796818000151

Chaitanya Koparkar. 2022. A primer on pointer tagging. XRDS: Crossroads, The ACM Magazine for Students 29, 1 (2022),
66–68. https://doi.org/10.1145/3558200

Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David Majnemer, John Regehr, and Nuno P
Lopes. 2017. Taming undefined behavior in LLVM. ACM SIGPLAN Notices 52, 6 (2017), 633–647. https://doi.org/10.
1145/3062341.3062343

Xavier Leroy. 2023. The CompCert C verified compiler: Documentation and user’s manual. Ph. D. Dissertation. Inria.
Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. 2014. The CompCert memory model. In Program

Logics for Certified Compilers, Andrew W. Appel (Ed.). Cambridge University Press. http://vst.cs.princeton.edu/
Ruy Ley-Wild and Aleksandar Nanevski. 2013. Subjective auxiliary state for coarse-grained concurrency. In Proceedings of

the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 561–574. https://doi.org/
10.1145/2480359.2429134

Anton Lorenzen, Daan Leijen, andWouter Swierstra. 2023. FP2: Fully in-Place Functional Programming. Proc. ACMProgram.
Lang. 7, ICFP (2023), 275–304. https://doi.org/10.1145/3607840

Jean-Marie Madiot and François Pottier. 2022. A separation logic for heap space under garbage collection. Proceedings of
the ACM on Programming Languages 6, POPL (2022), 1–28. https://doi.org/10.1145/3498672

Simon Marlow, Alexey Rodriguez Yakushev, and Simon Peyton Jones. 2007. Faster laziness using dynamic pointer tagging.
Acm sigplan notices 42, 9 (2007), 277–288. https://doi.org/10.1145/1291151.1291194

Phillip Mates, Jamie Perconti, and Amal Ahmed. 2019. Under control: Compositionally correct closure conversion with
mutable state. In Proceedings of the 21st International Symposium on Principles and Practice of Declarative Programming.
1–15. https://doi.org/10.1145/3354166.3354181

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. 1999. From System F to typed assembly language. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 21, 3 (1999), 527–568. https://doi.org/10.1145/319301.319345

Ike Mulder, Robbert Krebbers, and Herman Geuvers. 2022. Diaframe: automated verification of fine-grained concur-
rent programs in Iris. In PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 809–824. https:
//doi.org/10.1145/3519939.3523432

Hiroshi Nakano. 2000. A modality for recursion. In Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer
Science (Cat. No. 99CB36332). IEEE, 255–266.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

https://doi.org/10.1007/978-3-642-00768-2_30
https://doi.org/10.1145/3656444
https://docs.python.org/3/c-api/intro.html#reference-counts
https://docs.python.org/3/c-api/intro.html#reference-counts
https://doi.org/10.1145/3140587.3062363
https://doi.org/10.1145/381694.378798
https://doi.org/10.1145/3632889
https://doi.org/10.1145/2480359.2429105
https://doi.org/10.1145/2480359.2429105
https://doi.org/10.1007/3540543961_30
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1017/s0956796818000151
https://doi.org/10.1145/3558200
https://doi.org/10.1145/3062341.3062343
https://doi.org/10.1145/3062341.3062343
http://vst.cs.princeton.edu/
https://doi.org/10.1145/2480359.2429134
https://doi.org/10.1145/2480359.2429134
https://doi.org/10.1145/3607840
https://doi.org/10.1145/3498672
https://doi.org/10.1145/1291151.1291194
https://doi.org/10.1145/3354166.3354181
https://doi.org/10.1145/319301.319345
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1145/3519939.3523432

315:30 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Peter O’Hearn, John Reynolds, and Hongseok Yang. 2001. Local reasoning about programs that alter data structures.
In Computer Science Logic: 15th International Workshop, CSL 2001 10th Annual Conference of the EACSL Paris, France,
September 10–13, 2001, Proceedings 15. Springer, 1–19. https://doi.org/10.1007/3-540-44802-0_1

Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed. 2022. Semantic soundness for language interoper-
ability. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Imple-
mentation. 609–624. https://doi.org/10.1145/3519939.3523703

Daniel Patterson, Andrew Wagner, and Amal Ahmed. 2023. Semantic Encapsulation using Linking Types. In Proceedings
of the 8th ACM SIGPLAN International Workshop on Type-Driven Development. 14–28. https://doi.org/10.1145/3609027.
3609405

Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen. 2021. Perceus: Garbage free reference counting with
reuse. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Imple-
mentation. 96–111. https://doi.org/10.1145/3453483.3454032

John C Reynolds. 1983. Types, abstraction and parametric polymorphism. In Information Processing 83, Proceedings of the
IFIP 9th World Computer Congres. 513–523.

John C Reynolds. 2002. Separation logic: A logic for shared mutable data structures. In Proceedings 17th Annual IEEE
Symposium on Logic in Computer Science. IEEE, 55–74.

Rust Language RFCs. 2023. #3470: crABI v1. https://github.com/rust-lang/rfcs/pull/3470.
Rust. 2023a. rust-bindgen. https://github.com/rust-lang/rust-bindgen.
Rust. 2023b. The Rust Book: Variables and Data Interacting with Move. https://github.com/rust-lang/book/blob/main/src/

ch04-01-what-is-ownership.md#variables-and-data-interacting-with-move.
Rust. 2023c. Unsafe Code Guidelines: Data Layout—Enums. https://github.com/rust-lang/unsafe-code-guidelines/blob/

master/reference/src/layout/enums.md.
Rust. 2023d. Unsafe Code Guidelines: Glossary—Niche. https://github.com/rust-lang/unsafe-code-guidelines/blob/master/

reference/src/glossary.md#niche.
Rust. 2024. The Rust Reference: The non_exhaustive Attribute. https://github.com/rust-lang/reference/blob/master/src/

attributes/type_system.md#the-non_exhaustive-attribute.
Peter Sewell, Gareth Stoyle, Michael Hicks, Gavin Bierman, and Keith Wansbrough. 2008. Dynamic rebinding for mar-

shalling and update, via redex-time and destruct-time reduction. Journal of Functional Programming 18, 4 (2008), 437–
502.

Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell, and Iulian Neamtiu. 2005. Mutatis mutandis: safe and pre-
dictable dynamic software updating. ACM SIGPLAN Notices 40, 1 (2005), 183–194. https://doi.org/10.1145/1040305.
1040321

David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper, and Peter Lee. 1996. TIL: A type-directed optimiz-
ing compiler for ML. ACM Sigplan Notices 31, 5 (1996), 181–192. https://doi.org/10.21236/ada306265

Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2022. A Logical Approach to Type Soundness. Reported
under submission on https://iris-project. org/(2022). https://iris-project. org/pdfs/2022-submitted-logical-type-soundness. pdf
(2022). https://doi.org/10.1145/3676954

Harvey Tuch, Gerwin Klein, andMichael Norrish. 2007. Types, bytes, and separation logic. In Proceedings of the 34th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 97–108. https://doi.org/10.1145/1190215.
1190234

Andrew Wagner, Zachary Eisbach, and Amal Ahmed. 2024. Realistic Realizability: Specifying ABIs You Can Count On
(Supplementary Material). Proc. ACM Program. Lang. 8, OOPSLA2, Article 315 (Oct. 2024). https://doi.org/10.1145/
3689755

Yuting Wang, Xiangzhe Xu, Pierre Wilke, and Zhong Shao. 2020. CompCertELF: verified separate compilation of C pro-
grams into ELF object files. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–28. https:
//doi.org/10.1145/3428265

WebAssembly. 2023. Component Model. https://github.com/WebAssembly/component-model.
Matt Windsor, Mike Dodds, Ben Simner, and Matthew J. Parkinson. 2017. Starling: Lightweight Concurrency Verification

with Views. In Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10426), Rupak Majumdar and Viktor Kuncak (Eds.).
Springer, 544–569. https://doi.org/10.1007/978-3-319-63387-9_27

Received 2024-04-06; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 315. Publication date: October 2024.

https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1145/3519939.3523703
https://doi.org/10.1145/3609027.3609405
https://doi.org/10.1145/3609027.3609405
https://doi.org/10.1145/3453483.3454032
https://github.com/rust-lang/rfcs/pull/3470
https://github.com/rust-lang/rust-bindgen
https://github.com/rust-lang/book/blob/main/src/ch04-01-what-is-ownership.md#variables-and-data-interacting-with-move
https://github.com/rust-lang/book/blob/main/src/ch04-01-what-is-ownership.md#variables-and-data-interacting-with-move
https://github.com/rust-lang/unsafe-code-guidelines/blob/master/reference/src/layout/enums.md
https://github.com/rust-lang/unsafe-code-guidelines/blob/master/reference/src/layout/enums.md
https://github.com/rust-lang/unsafe-code-guidelines/blob/master/reference/src/glossary.md#niche
https://github.com/rust-lang/unsafe-code-guidelines/blob/master/reference/src/glossary.md#niche
https://github.com/rust-lang/reference/blob/master/src/attributes/type_system.md#the-non_exhaustive-attribute
https://github.com/rust-lang/reference/blob/master/src/attributes/type_system.md#the-non_exhaustive-attribute
https://doi.org/10.1145/1040305.1040321
https://doi.org/10.1145/1040305.1040321
https://doi.org/10.21236/ada306265
https://doi.org/10.1145/3676954
https://doi.org/10.1145/1190215.1190234
https://doi.org/10.1145/1190215.1190234
https://doi.org/10.1145/3689755
https://doi.org/10.1145/3689755
https://doi.org/10.1145/3428265
https://doi.org/10.1145/3428265
https://github.com/WebAssembly/component-model
https://doi.org/10.1007/978-3-319-63387-9_27

	Abstract
	1 Introduction
	2 The Language Stack
	2.1 Source Language
	2.2 Target Language
	2.3 Compiler

	3 A First ABI
	3.1 Semantic Structures
	3.2 Preliminary Definition
	3.3 Compiler Compliance

	4 Variations on the ABI
	4.1 Calling Convention
	4.2 Layout

	5 Library Evolution
	5.1 Evolvable Types
	5.2 Compiler
	5.3 Semantic Type Substitutions
	5.4 Evolvable Layout

	6 Related Work and Discussion
	Acknowledgments
	References

