Realistic Realizability: Specifying ABIs You Can Count On
Technical Appendix
ANDREW WAGNER, Northeastern University, USA

ZACHARY EISBACH, Northeastern University, USA
AMAL AHMED, Northeastern University, USA

CONTENTS
Contents 1
List of Figures 1
A Source 3
Al Syntax 3
A2 Statics 4
B Target 5
B.1 Syntax 5
B.2 Dynamics 6
C Compiler 7
D Logic 9
E ABI 15
F Proofs 16
F.1 Domains 16
F2 Logic 27
F3 Properties of the ABI 59
F4 Compiler Compliance 61
F.5 Library Evolution 82
LisT oF FIGURES
A.1 Syntax for source. 3
A.2 Statics for source. 4
B.1 Syntax, structures, and desugaring for target. 5
B.2 Dynamics for target. 6
C.1 Core compiler for expressions. 7
C.2 Core compiler for programs. 8
C.3 Macros for the core compiler. 8
D.1 Semantic domains. 9
D.2 Operators and relations on semantic objects. 10
D.3 Semantic predicates. 11
D.4 Standard intuitionistic logic rules. 12
D.5 Standard separation logic rules. 12
D.6 Unrestricted modality rules. 12

Authors’ Contact Information: Andrew Wagner, Northeastern University, Boston, USA, ahwagner@ccs.neu.edu; Zachary
Eisbach, Northeastern University, Boston, USA, eisbach.z@northeastern.edu; Amal Ahmed, Northeastern University,
Boston, USA, amal@ccs.neu.edu.

HTTPS://ORCID.ORG/0000-0002-9434-0780
HTTPS://ORCID.ORG/0009-0005-3028-7211
HTTPS://ORCID.ORG/0000-0001-7424-572X
https://orcid.org/0000-0002-9434-0780
https://orcid.org/0009-0005-3028-7211
https://orcid.org/0009-0005-3028-7211
https://orcid.org/0000-0001-7424-572X

2 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

D.7 Later modality rules. 13
D.8 Non-standard entailments. 13
D.9 Weakest preconditions. 14
E.1 Top-level interpretations. 15

E.2 Value interpretations. 15

Realistic Realizability: Specifying ABIs You Can Count On

A Source
A.1 Syntax

Type 3T u=Z|T, - T, | X

Expr 2e uz=x|letx=e;;es|n|e; ®e |fnfx{e}|e & |{5:€}|es]|se]|casee; {sx= e}
Ctx T == |I,x:T

Sig 3% u=0|SmkX{s: T}

Mode 3 m ::= rigid | flex

Kind 3 k = struct | enum

Fig. A.1. Syntax for source.

4 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

A.2 Statics

(SRC-STAT-LET) (SRC-STAT-DUP)

ke : Ty Lox:Tike: T, LLBx (SRC-STAT-VAR)

I'ox: T Z;,x:T're:T

ILLrletx =e;;e: Ty ix: Tex:T
(SRC-STAT-DROP)
>;T're:T
S Ox:T're:T

(SRC-STAT-®-7)

(SRC-STAT-I-Z) I'Fe:Z DLire:Z

>;T're:T

Drn:Z I,Lre ®e:Z
(SRC-STA’I_‘-I—)) _ (srRc-sTAT-E—)
T,z :fKn — T,x: T-‘Kn Fe:T I # z;, X" distinct Tike: TiK" Iy ke :fKu - T
Tkfnzei<n{e}: T, " —T T T reg<:T
(src-sTAT-I-struct) _ _ (SRc-STAT-E-struct)
¥ origidstruct X {s;: T, } ZiLre:T; Yo mstructX{s: T, '} SiTre:X j<n
Z;Eil- {57e="}:X ST res: T,

(SrRc-sTAT-I-enum)
> 3 menum X {s; :T‘-Kn} T ke T, j<n
T ksie:X

(srRc-STAT-E-enum)

% 3 rigid enum X {s; :T-‘Kn} ke X Z0,x:Tike: T

T, 3 X'<"

T, kcasee{six = e} : T

ST
(SRC-TY-WF-FUN) (SRC-TY-WF-STRUCT)
(SRC-TY-WF-INT) 2rTy 2+ T %3 mstruct X {—}
TR SETi - T SFX

(SRC-SIG-WF)

(SRC-TY-WF-ENUM)
Y 3> menum X {-}

YEX

rigidstructX{s: T} e X =3 F T rigidenumX{s:T} €S =3F T

)

Fig. A.2. Statics for source.

Realistic Realizability: Specifying ABIs You Can Count On 5

B Target
B.1 Syntax

Word 5 w = n|null |[£]|®

Expr > e = x|f|w|constx=e;; e, e (&)]|e De,
| if (e,) {e,} else {e;} | malloc (e) | xe
| *€; = €y, €3 | free(e,); e, I ++e | ——¢€

Funs 5 F = @|Ff(X){e}

Ctx > K = constx=K; e|K(e)|w (W3,K,€)
|K®e|wdK|if (K){e,} else {e,} | malloc (K)
| K | *K = e;; e, | *w = K; e | free (K); e | ++K | ——K

t € Loc £ (id: (N + code), off : N)

¥ € Sizes 2 Loy = N¥

J7i € Mem 2 N*xN 2 yord

Locy £ {¢:Loc]|tid e X}
inj
(—)e : dom(F) — LocCcode
span(y) = [(b,i) | bedom(y) Ai < y(b)]
okr(e) 2 VY,) e .Fr(2,0e) —k W e)»=e€ZAY =0
null £ (0,0)
e e, 2 {const % =e,;; e, (xdoesnotappear freein e,)
e;[e;] = x(e; tey)
havoc £ malloc(-1)
[+](n,n,) € Z 2 ni+ny

13

_ 1 (n=ny)

{(b, ivn) (€= (b i)

II>

[+](t,n) € Loc

Fig. B.1. Syntax, structures, and desugaring for target.

6 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

B.2 Dynamics

Fr (Y, pe) = (W, 1,e)| Presupposes dom(p) C span(y)

(TRG-DYN-LET) (TRG-DYN-FUNPTR) (TRG-DYN-APP)
F>f(X){e} F>f(X){e}
const x =w; e -y e[w/x] Frf oy () Fr(£)s (W) —=p e[u/x]
(TRG-DYN-BOP) (TRG-DYN-IF-TRUTHY) (TRG-DYN-IF-FALSY)
w = [@] (wy, w,) w ¢ {null,0, &} w € {null, 0}
W, ®wW, Dp W if (w) {e,} else {e,} —p e, if (w){e,} else {e,} —p e,

(TRG-DYN-MALLOC)

n>0 ¢ =y[b—n] g =p[bi)r>%]|i<n] £=(b0) beN*'\dom(y)
(Y, pmalloc (n)) —p (Y, 4, 0)

(TRG-DYN-LOAD) (TRG-DYN-STORE)
p(e) =w tedom(p) ' =plt— v
(p,) —p (p,w) (=t =w; e) —=p (', e)

(TRG-DYN-FREE)

£=(b,0) yY(b)=n span(b> n) Cdom(y) p' =p\span(b n)
(. p. free (€): e) =4 (Y4, e)

(TRG-DYN-INCR) (TRG-DYN-DECR)
u)=n n'=n+1 p =plt—n'] p)=n n=n-1 g =yu[t—n]
(I’l> ++[) —h (l’l,a 1'1,) (,U, 77[) —h (H,’ 1’1/)

(TRG-DYN-CTX)

Fr(ope)—n (), e)
Fr (Y pmKle]) = (1 K[e])

Fig. B.2. Dynamics for target.

Realistic Realizability: Specifying ABIs You Can Count On

C Compiler

i Tke:Tw edF

(comP-LET)
lNirep:Timw e Dyx:Tikrey:Tomw eg [dx e=constx=e;; e (COMP—VAR)
ILhkletx=e;ep: Torw e Mix:TEx:Tw x
(comp-pUP) (comp-DROP)
I'sx:T' S0x:T're:Tw e Wlkre: T e
T ke: T~ dupyr (x)se T, T re:T drop%, (x);e
(comp-®-7)
(comp-1-7) Nrer:Zw ey Drey:Zw ey e=e;dey
@rn:Z~ n I,Lhrer®@exy:Z~~ e
(comp-I—)
—i<n —i<n
T,ze: T; - T,x: T, Fe: T »w edF
[—i< j<m
e) cally (Zf,Xil ") constyj =#(zf +3+j); dup T, (v5) e
P=y 17" T %2, %" distinct F 2 -

j<m

destry (zf) [const yj =#(ze +3+3); droij (v5) sfree (z¢); O}

e —
ef = const zg =malloc (3 +m); *z¢ = 1; *(2¢ + 1) = cally; *(zf + 2) =destry; *(z¢ +3+ j) = yj;j me

Irfnzexi<t{e} :Ti " — T ef 4F

(comp-E—)

Like:Tiw eiK" T+ er :fKn — T~ ef e=constxs =es; (¥(xf +1)) (Xf,e_ii<n)

i<n —i
I; ,FfF—EfeiK":Twe

(comp-I-struct)
i<n

3 3 rigid struct X {s; : T <n} Wilike T w ey " e=constx =malloc(n+1); *xx=1; *(x+1i+ 1) =ej;; x

ST F{5TE") i X e

(comp-E-struct)

<n
33 mstruct X {5 T; }
.
%LTre:Xw e j<n ej=constx=e;constxj =+ X*%;,X * 1); dup; (Xj):drﬂi (x) %5

Ll kesp: Ty e

(comp-I-enum)
i<n

SomenumX{si: T; }
.
%Tre:Tjm ej j<n e=constx=malloc(3); *x=1; x(x+1) = selix; #(x+2) =ej; x

Z;Fl—sjej:Xw e

(comp-E-enum)

> > rigidenum X {s; :Tii<"} Sihike: X e Sihx:Tike:T w ei-<" I, 3 x<n
i<n

e’ =constx=e; consty =x*(x+1); if (y=1) {const xi =*(x +2); dup, (1) ;dropf< (%) ;ei} else {havoc}

ST, kcasee{Six > e): T w e

Fig. C.1. Core compiler for expressions.

Andrew Wagner, Zachary Eisbach, and Amal Ahmed

> 4F

(comp-Y)

———i<n

VmkX{s: T, "} eZ. m=rigid AF2 {destrx (r) {destri (r)},sel; 0 {ﬂ;x} }

> 4F

Fig. C.2. Core compiler for programs.

. -1 (T=2)
dup T (x) = .
— ++x (otherwise)
-1 T=Z
drop? (x) 5 (T=2)
— consty = ——x; if (y) {y} else {destr? (x)} (otherwise)
destr, (x) £ havoc
destr o (x) £ x(x+2)(x) » _
S . constx; =x[i + 1]; drop? (x;) " free (x); 0 (= > rigidstruct X {s; : TiKn})
destry (x) e T
destry (x) (2 > flexstruct X {---})
if (x[1] =1){
N . const x; = x[2]; dropZ (x;); free (x); 0" (2 > rigidenum X {s; : TiKn})
destry (x) = — i
} else {havoc}
destry (x) (2 > flexenum X {---})
5 s (2 5rigidk X {s : T, "} Aj<n),
seldy 2 . SRR
: sely () (ZaflexkX{s: T "} Aj<n),

Fig. C.3. Macros for the core compiler.

Realistic Realizability: Specifying ABIs You Can Count On

D Logic
P,O,R € Prd 2 {P:WId > Res 5> P |V¥p,0 C " P(w,p) = P(w¥,p)}
A predicate on worlds and resources that is closed under world extension.
P,O,RepPrd(X) =2X— Prd
1) € Wid £ (step : N, sizes : Sizes)
p € Res £ Loy ™ Cell
A logical memory with two kinds of cells, which forms a tree.
X € Cell £ unq(Word) | shr(N*, Res)

Either a unique, owned word, or a shared, reference-counted resource.
Y € CtxSub 2 Var = yord
€ SigSub = TypeName ™ DataSub
§ e DataSub {5 : <kind : Kind, sel : Sel ™ (off : N, semty : Word — Prd)> |

Vs, #s,. d.sel(s,).off # 5.sel(52).off}

11>

Fig. D.1. Semantic domains.

10 Andrew Wagner, Zachary Eisbach, and Amal Ahmed
w1 Cwy = wi.step > wy.step A w1.sizes C wz.sizes
World extension: step index can go down and new locations can be allocated.
[0) 2 {w[step =k] (wstep=k+1)
Later: decrement the step index if possible.
rifr 2 Ar.rpery=rAvr
Two resources are compatible if their composition is defined and valid.
rn <ry 2 drg.roeri=ro
A sub-resource is one that can be extended to the other resource.
vy = T
pexs E {shr(nitnap) (uo=shr(n,p) A o = shr(n, p))
Only shared cells can be composed; they must agree on the resource and add counts.
erase(y) = @y = unq(v)
n, y=shr(n-)
Erasure of a unique logical cell to a physical one only keeps the word, while shared
logical cells keep the reference count; resource erasure handles the rest.
v p 2 V(& p1) € objs(p).
p Hish p1
AV (&, p2) € objs(p). (b1 =82 Ap1=p2) V (& # b A py flsh p2)
For a resource to be valid, any reachable object must be compatible with the root,
as well as with any other reachable object.
[£+ X € p1|¢¢dom(py)]
preps = W [£ x€p2|t¢dom(pr)] (p1 ish p2)
W[xie xz | pi(6) = y1 A p2(l) = xel
Disjoint locations are included unchanged.
Overlapping locations must have composable cells.
erase(p) = {[erserase(i) [€0 x€pe (®pcabismpr)] (p)
First, flatten the logical heap by composing the root and all objects, getting the
total counts. Then erase the flat heap (without recurring).
objs(p) = [(&pe) | p—+ € shr(— pp)]
Collects the reachable objects (shared resources).
pillsh p2 = Ve dom(pr) ndom(pz). p1(f) § p2(£)

Shallow or weak compatibility; doesn’t check recursively. Used to define validity above.

p can reach p’ via jumps or discarding cells.

(—+-suB) (—+-TRANS)
(30w pzp prape peps
¢ shr(-,p) 4 p p1 4 p2 p1—4p3

Fig. D.2. Operators and relations on semantic objects.

Realistic Realizability: Specifying ABIs You Can Count On 11

1

t—w (w, p) p =1{— unq(w)
Points-to predicate only identifies unique cells.
p=0A3Tb. £ =(b,0) A w.sizes(b) =n

Asserts ¢ is a head pointer to a block of size n, without any ownership.

Il>

size (£, n) (w, p)

P (w,p) = p=a@AP
Lifts propositions from the meta-logic.
@¢ P (w,p) = 3App.p=1tshr(l,pp) AP(w,pp)
Jump modality: asserts ¢ shares a res. satisfying P, and confers 1 share of the count.
OP (w,p) = 3pp.p—pp AP(w,pp)
Reachable modality: asserts a res. satisfying P is reachable from the current res.
'p (w,p) = p=0AP(w,2)
Persistence modality: P but without owning anything.
> P (w,p) = w.step=0V (w.step>0AP(»w,p))

Later modality: out of steps or P holds one step later.
Vo Jo,prfpk <o step,y’ i e,
¥ = w*sizes, o’ = (step : w*.step — k, sizes :).
F (Y, erase(p o pp),e) =F (¥, 1 ¢))
= 3p" tpy.
V2

A erase(p’ e pr) =4/

A e €Word

A O p")
Weakest precondition modality: e is safe to run with the current res.,

and if it halts within the given step budget, it preserves arbitrary frames,
respects the world order, and terminates at a state and value satisfying O.

1>

wpe (e) {0} (@, p)

emp (w,p) = p=0

PxQ (w,p) = 3pp,pg-p=pp ® pgAPlw,pp) AO(w, pg)
P—=*Q (0,p) = Vo' Jwpptppgpepp=pg= Pl pp) = 0w pq)
T (w,p) = T

€L (w,p) = L

PAQ (0,p) = Plw,p) AQ(w,p)

PVvQ (0,p) = Plw,p)VQO(wp)

P=Q (w,p) = VYo' ZJo. P(ot,p) = 0(wt,p)

v P (0,p) £ Vo'rJox Px) (o)p)

3p (0,p) = 3Ax.P(x)(w,p)

{PYe (O} £ 1 (P wpe () (0}

P=0Q 2 I (P=%xQ)*x!(Q—=P)

PEQ 2 Vpw. v p=Plwp) = 0(wp)

Entailment is only required to hold on valid resources.

Fig. D.3. Semantic predicates.

12 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

(TRANS) (V-R) (V-L) (A-R)
(REFL) PEQ QER PEQ; PER QER PEQ PER (A-L)
PEP PER PEQ, VO, PVOQOER PEQAR Py APy EP;
(A-MONO) -R) (-1 E-R E-L)
PLEQ: PEQ, Vx.PEQ(x) Ax. P(x) EQ dx. P e O(x) Vx.P(x)EQ
PLAP,EQ AQ, PEV O VPEQ PE3Q 3PEQ

Fig. D.4. Standard intuitionistic logic rules.

(I’_'I_R) F_'I_L)
(emp-LR) P P=0FR (x-com) (x-AsC)
PaE P x emp E"P" "P"*QER PxQaQxP Px (Q*R)3 (P*xQ)*R

(*x-MONO) (—*-R) (—*-MONO)

PreQr PEQ; PxQER (—x-L) QP PrEQ

Py x Py E Q1 % QO PEQ—*R Px(P—=+*Q)EQ Py —% Py E Q1 —x Q;
(—*-emp) (—*-SELF) (—*-CURRY) (x-3)

Pacemp—+xP EP—*xP (PxQ) *xR4EP—*(Q—+*R Px30ak3Ix PxOx)

(=-TRANS)
(=-REFL) (=-sym) FP=0Q FO=R (=1)
EP=P P=Q=#Q=P EP=R Px(P=Q)EQ

Fig. D.5. Standard separation logic rules.

(!-mono)
(! -UNR) ('-A-emp) ('-L) (! -prop) (! -1DEM) PEQ
'Pa4!P%x!P 'PH4r emp AP 'PEP 'PEemp 'Pap!!lP 'PE!Q
(1-emp) (1= (1-size (=, -)) S
emp Elemp TPTE!ITPT size (¢, n) E ! size (£, n) {P}e{Q} E!{P}e {0}
(1-2)) (t-1))
P=QEe!(P=0Q) '(PxQ)Ae!Px!Q '(PAQ)=E!PA!IQ IPAQHE! (P AQ)
(*-¥)
(=A%) P e Prd(X) X is inhabited () -1
I(PAQ)aE! (P % Q) IV PaevIP IbPE>!P empAD>!PE!DP

Fig. D.6. Unrestricted modality rules.

Realistic Realizability: Specifying ABIs You Can Count On

(> -IND) (> -MONO)
(> -R) PA>QEQ PEQ (> -A)
PeE>P PEQ >PE>Q > (PAQ)dED>PA>Q
(> -%) (> -—)
> (PxQ)a>Pxr>Q > (P—*Q)E>P—1>Q

Fig. D.7. Later modality rules.

(@ -moNo)
PrQ (@-1) (@-v)
@¢PE@;0Q @¢P*x!Q4ak @, (P*!Q) @¢ (PVQ)aE @ PV @, Q
(¢ -moNo0)

(@-3) (@) (@-1) (©-R) ProQ
@3 PHed @ P @¢>PED>@pP @p LEL PEOP OPECQ
(¢ -BIND) ©-"
PEOGQ (© -IDEM) (©-@) (¢ -DRrROP) PEOIQ
OPESGQ OOPEOP @¢PEOP O (PxQ)EOP PEPx!Q

Fig. D.8. Non-standard entailments.

14 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

(WP-RAMIFY)

A) R . (WP-FRAME)
(v w. P(w) — Q(w)) * wp (e) {P} £ wp (e) {Q} P x wp (e) {Q} E wp (e) {w. P % Q(w)}
(WP-MONP) R
V. P(w) E Q(w) (WP-VAL) (WP-BIND)

wp (e) {P} F wp (e) {0} QW) k wp (w) {Q} wp (e) {w. wp (K[w]) {Q}} & wp (K[e]) {Q}

(WP-LET) (WP-SEQ)
> wp (e[a/x]) Q) F wp (constx =) {0} wp (ex) (& wp (e2) {Q}) F wp (es522) {Q)
(Wp-APP)
(wp-BOP) (WP-FUNPTR) a
w =[] (w,, w,) F>f(X){e} F>f£(x){e}

O Fwp (i 350 (0) > OUD) Fwpp (010} & wpe (L5751 1) F wpe (e (7)) (Q)

(WP-1F-T) (WP-IF-F)
w ¢ {null, 0, %} w € {null, 0}

> wp (e:) {O) F wp (if (w) {e;} else {e,}) {Q} > wp (e2) {O} F wp (if (W) {e,} else {e,}) {O}

(WP-MALLOC)
n>0

> (V Locy+. (*i<n([+ i) — @) —* size (£, n) —x Q({’)) E wp (malloc (n)) Oy

(WP-FREE)

(*i<n(t’+ i) — wi) * size (£, n) * > wp (e) {OyE wp (free (£); e) {0y

(WP-LOAD)
PEOtLH W (WP-STORE)
P (Px O()) & wp (+0) (0} £ =k (00w wp (&) (O}) k wp (+€ = ws €) (0}
(WP-INCR-OWN) (WP-DECR-OWN)
n=n+1 n=n-1
L0 %> (t’ N — Q(n’)) £ wp (++€) {O} L0 %> (f > —k Q(n’)) Ewp (——¢) {0}

(WP-INCR-SHARE)

PEOC@rQ
Pxb (Vn>1.P—*@gQ—kf€(n)) Ewp (++8) {R}

(WP-DECR-SHARE)
@¢P > (v n (Tn>07V (Tn=0"% £ 0% P)) — Q(n)) Ewp (——£) {0}

(WP-SHARE) (HT-APP)

£ 1% Px (@ P — wp(e) {O}) F wp (e) {0} P x {P}e{Q} F wp (e) {Q}

Fig. D.9. Weakest preconditions.

Realistic Realizability: Specifying ABIs You Can Count On
E ABI
T kre: T2 VE 2F,6y. S[¥]:(¢) x CIIT5 (v) ¢ E[TIE (elyD)
"dom(g) 2 dom(Z)"I
*V mkX{s : T, }EZ let § = ¢(X) in
"d.kind = k™
X *"dom(S.sel) 2 {s; | i < n}"
SEJ:(e) = s
Vi<n !wp ((sel)F ()) {w. "w = d.sel(s).off '}
*V i < n,w. S.sel(s).semty(w) = > V[T] (w)
*V €. {f — 0% 5.0bj(£+ 1)} (destrx)s (£) {emp}r
*"m =rigid = dom(S.sel) C {s | i < n} AVi< n. d.sel(s).off =i
CITIE() 2 dom(y) 2 dom(1)" % sy VITIE (1)
EMTIES) £ wp (o) (VITI)
size (£, 1+ |dom(8.sel)|)
ok 3 £+1+8.sel(s).off —> w.| (8.kind = struct)
Ws.
sedom(8.sel)= s * 8.sel(s).semty (w.)
d.obj(t+1) = size (£, 3)
£+ 1+ b.sel(s).off (.kind = enum)
*\/Sedom((glse”aws *{+ 21— g
*d.sel(s).semty(w.)
Fig. E.1. Top-level interpretations.
TIE () (T=2)
T S [[
VITE) { w € Loc\ null™ » R[[T]]g(w) (otherwise)
RITI(0) 2 @ O[TIE(t+1)
’L([[Z]]g(w) 2TyweZ”
3 call, destr, Env. let Self = £+ 1+ (call)p x £+ 2+ (destr)r *x Envin
0 |:|:Ti<n ([+ 1) Sez] o]
VT kianVITIE) * @¢ Self } (call)e (£.77<") (o V[TIE())e
*{f — 0 % Self} (destr)p £ {emp}r
O[X]a(e+1) £ (X).obj(£+1)

Fig. E.2. Value interpretations.

16 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

F Proofs
F.1 Domains

LemMA F.1 (Cell ComrosiTioN COMMUTATIVE). Composition of Cell is commutative:
X1®xz2=x20xn
PrROOF. Suppose we have yi, y» such that y; e y» is defined, meaning y; = shr(ny, p) and

x2 = shr(ny, p). Then y, e y; is defined as well, and y; e y, = shr(n; + ny, p) = y2 ® y1 by the
commutativity of addition. O

LeEMMA F.2 (Res ComposiTiION COMMUTATIVE). Composition of Res is commutative:

P1®p2=p2®pP1

ProoF. Suppose we have py, ps such that p; e p, is defined, meaning p; #sn p2 (HY),

By unfolding e and observing the symmetry of the definition, it remains to show:

® P2 ﬁsh pl(Gl)
o [t 1o xalpi(0) = i Apa(l) = ol = [€ 1)2 @ 1 | p2(€) = Yo A p1(€) = x1]
Unfolding #s, and using H1, it suffices to prove ps(£) § p1(£) & p1(£) § p2(£). Since p; (£) and
p2(£) are both Cell, we can use Cell ComposiTion CoMMUTATIVE alongside the definition of § to
prove G1, meaning p, e p; is defined.
The two maps in G2 have the same domain, so again applying Cell ComPosiTION COMMUTATIVE
solves G2. O

(G2)

LemmMa F.3 (Cell ComposiTION AssOCIATIVE). Composition of Cell is associative:
(x1exz) e xs=x1®(x2exs)

Proor. Suppose we have yi, yz, x3 such that the relevant compositions are defined. This means
x1 = shr(ny, p), x2 = shr(ny, p), and y3 = shr(ns, p), for some p € Res and ny, ny, n3 € N*.

By definition, we have (y; ® y2) ® y3 = shr(n; + n + ns,p) = y1 ® (x2 ® x3), using the
associativity of addition. O

LEMMA F.4 (Res ComPosITION AsSOCIATIVE). Composition of Res is associative:
(p1 @ p2) ® ps=p1 e (pz @ ps3)

ProoF. Suppose we have py, p,, p3 such that the relevant compositions are defined. By the defini-
tion of e, the domain of the resulting map in both cases is exactly D = dom(p;)Udom(p;)Udom(ps).
We proceed by cases, analyzing which domains each each ¢ — y € D came from, using the fact
that disjoint locations are included unchanged when resources are composed:

(1) Consider a location in the domain of exactly one of the three resources; with almost no
loss of generality suppose £ — y; € dom(p;) and is in the the domain of neither p, nor
ps. In that case, £ — y; € p; ® p; as well as (p; ® p;) e ps, by definition. Similarly,
= y1 € p1 ® (py ® p3) after first composing p, and ps (neither of which contain ¢), so
the two maps agree on ¢

(2) Consider a location in the domain of exactly two of the three resources; with almost no
loss of generality suppose £ € dom(p;) A dom(p,) with p;(£) = y; and p,(£) = y2. When
we compose p; ® p,, we have £ — y; ® y, in the resulting map, which is left unchanged
when we compose it with ps;. Similarly, when we compose p, ® ps, £ is left unchanged;
when we then compose p; ® (p; ® p3) once again get £ +— y; ® 2, so the two maps agree
onf.

Realistic Realizability: Specifying ABIs You Can Count On 17

(3) Finally, consider a location ¢ in the domain of all three resources, with:
o pi(0) = ;™
o p2(0) = u ™
o p3(0) = 3™
When we compose p; ® p; first, we get £ — y; ® x3, and composing ps givesus £ — (y; ®
X2) ® x3. Similarly, when we compose p; ® ps first, then p;, we get £ +— y; ® (y2 ® x3). By
Cell ComPOSITION ASSOCIATIVE, these are the same and the maps agree with each other on

L.
Since each location in D is in one, two, or all three of the composite domains, and the two composed
maps agree with each other in every case, the two maps are in fact equal. O

LemMa F.5 (Res ComposiTioN UNIT). The empty map is a unit for Res composition:
ped=p
Proor. Let p be an arbitrary resource. Since dom(p) N dom(@) is empty, p #sn @ holds vacu-
ously.
Unfolding the definition of @ and using the fact that nothing is in dom(@), we have
o [t yep|t¢dom(d)] =p(H1)
e [t yeo|t¢dom(p)] =2
o [t yiexalp(t)=x1AD(0) = xo]
The disjoint union of these three smaller maps make up p ® @, which therefore is exactly p. O

— o)

LEMMA F.6 (REACHABLE EXTENSION INVARIANCE).
PL AP =SP1L=p2=p2—4p
Proor. Suppose we have p, p;, and p, such that p; — p and p; < p;. By —-suB, we have
p2 —+ p1 from p; < p;. When paired with p; — p, we conclude p; —+ p using —4-TRANS. O
LeEMMA F.7 (UNIQUE EXTENSION INVARIANCE).
p1(€) = unq(w) = p1 < p2 = p2(£) = unq(w)

ProoF. Suppose we have p;(£) = unq(w), denoted y;. Unfolding <, there exists a py such that
po ® p1 = ps. Let us denote py(£) = yo.

If £ ¢ dom(py), then p, will map £ +— unq(w) by e, and the proof is complete.

If ¢ € dom(py), we derive a contradiction. Note that py e p; is defined, meaning py #s p;. Since
¢ € dom(pp) N dom(p,) in this case, unfolding g, tells us y, #f y1. However, this requires y, ® x1
to be defined, which cannot be the case since y; = unq(w). O

LEMMA F.8 (SHARED EXTENSION MONOTONICITY).
p1(€) =shr(ny, pp) = p1 < p2 = Iny > ny. p2(£) = shr(ny, py)

Proor. Suppose we have p;(£) = shr(ny, p¢), denoted y;. Unfolding <, there exists a py such
that py ® p; = p,. Let us denote po(£) = yo.

If ¢ ¢ dom(py), then p, will map £ +— shr(ny, pg) by e, and the proof is complete with n, = n;.

If ¢ € dom(py), then p, will map £ +— y, e x; by e, which is defined since py #sn p1 (as
po ® pi is defined). Since y; = shr(ny, py), unfolding e for Cell tells us yo = shr(no, p¢). Therefore,
Xo ® x1 =shr(ng + ni, pr), and there exists ny = ny + n;. Since ng € N*, ny > n; as required.]

LEMMA F.9 (COMPATABILITY EXTENSION ANTITONICITY).

P2 sh p= p1 < p2 = p1feh p

18 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Proor. Suppose we have p, p;, and p; such that p; s p and p; < p,. Unfolding fsn, we must
show that for some ¢ € dom(p;) N dom(p), we have p;(¢) # p({’)(Gl).

To do so, first observe £ € dom(p,), from p; < p, by unfolding < and subsequently e. This,
along with £ € dom(p) lets us instantiate p; s, p with ¢, giving us p2(£) #f p(£). Since these are
both Cell, unfolding # and subsequently e tells us that for some ny, ny, and p’,

o p2(£) = shr(ny, p')"™)
o p(£) =shr(ny, p/)

To prove G1, unfolding f tells us that we must prove that p; (£) e p(¢) is defined; if it is, it is a Cell
which is trivially valid. Since p(¢) = shr(ny, p’) from H2, we must only prove that p; (£) = shr(n, p)
for some n.

To do so, suppose otherwise. Then, applying either UNIQUE EXTENSION INVARIANCE or SHARED
ExTENSION MonoToNICITY would contradict H1, since p; < p,. Therefore, having p;(£) = shr(n, p’)
is the only way for p,(¢) to be shr(ny, p”), which we know must be the case. This means p;(£) ® p(¢)
is defined, solving G1 and completing the proof. O

LEMMA F.10 (VALID EXTENSION ANTITONICITY).
V= pi<pr =V p

Proor. Suppose we have p; and p, such that v’ p, and p; < p;. Unfolding v, we must show,
for arbitrary (¢, p’), (¢”, p”’") € objs(p1),

® P ﬁsh p,(Gl)

o (=" AP =p")NV (L £ Ap B p)'
In order to use information from v p,, we first must show (¢’, p’), (£, p’’) € objs(p2).
For arbitrary (¢, p) € objs(p;), unfolding objs tells us p; — £ +— shr(—, p). Since p; < p2, we
have p, — £ + shr(—, p) from REACHABLE EXTENSION INVARIANCE, so (£, p) € objs(p,) as well.
Instantiating v p, with (¢, p’), (¢”, p’"), which are both in objs(p,) from above, gives us

o po tisn p’

° ([/:[N/\p/:p//)v([/ + ¢ Apl ﬁshp
H2 immediately solves G2. To solve G1, apply COMPATABILITY EXTENSION ANTITONICITY with
H1 and p; < p;. O

,,)(HZ)

LeEMMA F.11 (Res CROSs-SPLIT).

P1® P2 =p3 @ py = I3, Pra, P23, P24-
P13 ® P14 = P1 N P23 ® Pag = P2 A
P13 ® P23 = P3 N P14 ® Pag = Py

Proor. Suppose we have py, pa, p3, ps such that p; e p; = p; e py, which we denote p. Ob-
serve by unfolding e that dom(p) = dom(p;) U dom(p;) = dom(ps) U dom(ps). To construct
P13, P14, P23, P24, We consider each £ € dom(p) separately and proceed by cases; by observing which
domains the location is in, we determine how each sub-resource should handle that location:

(1) If£isin dom(p;) or dom(p,), or vice-versa, but not in dom(p;) or dom(py), then p; ® p, #
p3 ® py by the definition of e, a contradiction.

(2) Suppose ¢ is in exactly one of dom(p;),dom(p,) and exactly one of dom(ps), dom(p,).
Without loss of generality, say £ € dom(p;), dom(ps) and ¢ ¢ dom(p,), dom(p,). We there-
fore must have ¢ ¢ dom(p14), dom(p23), dom(p24). Since p(¢£) = p1(£) = p3(¢) by unfolding
e, we can set pi13(£) = p(¢). This way, (p13 ® p1a)(£) = p1(£) and (p13 ® p23)(£) = p3(¢).

Realistic Realizability: Specifying ABIs You Can Count On 19

Note that all unq(—) resources must fall into this case, as we cannot compose unique Cells,
but the composition is defined.

(3) Suppose ? is in exactly three of the four possible domains. Without loss of generality, con-
sider £ € dom(p;), dom(p,), dom(ps) but £ ¢ dom(p,). We therefore must have
¢ ¢ dom(p14), dom(pz4). Observe p(£) = (p1 ® p2)(£) = p3(£). Note that this Cell must
be shared, otherwise the composition would be undefined. We can set p13(£) = p;(¢) and
pa3(f) = p2(£). This way, (p13 ® p23)(£) = (p1 ® p2)(£) = ps(¢), as intended. Also, since
¢ ¢ dom(p14), dom(paa), we have (p13 ® p14)(£) = p1(£) and (p23 @ p24)(£) = p2(?).

(4) Finally, consider when ¢ is in all four domains. Unfolding e, it must be the case that p(¢) =
(p1 ® p2)(£) = (ps ® p4)(£) = shr(n, p;), noting that the Cell must be shared for the
composition to be defined. Unfolding e again, we have

o pi(£) =shr(ny, p) ™
o p2(£) = shr(ny, pe)
o p3(£) = shr(ns, p) ™
o pa(f) = shr(ng, p) ¥
where n; + ny = n3 + ng = n, or equivalently ny — n3 = ny — n,. We must find a way to split
these reference counts across p;s, p1a, P23, p24. Without loss of generality, the differences
above are non-negative, since if they were, we can swap their order. In this case, ny > ns
and ng > ny.
Let us set p13(¢f) = shr(ns, p;), p24(£) = shr(ny, p;), and £ ¢ dom(py3). Iif ny — ny = ny — n
is positive, set p14(f) = shr(ny — ny, py) = shr(ny — ns, pg); otherwise, £ ¢ dom(py4) since
the reference count must be in N*. We now confirm each of the four compositions agrees
with the resources above:
o If ny — ns is positive, (p13 (] p14)(f) = shr(n3 + (T’l] - T’lg),pg) = shr(nl,p[) = p1 (f) If
ny —n3 = 0, then n; = n3 and (py3 ® p14)(£) = shr(ns, py) = shr(ny, pr) = p1(£).
® (p23 ® p24)(£) = shr(ny, p) = p2(¢)
® (p13 ® p23) (L) = shr(ns, pe) = p3(¢)
o If ngy — ny is positive, (p14 ® paqa)(£) = shr((ng — ny) + ny, pr) = shr(ng, pr) = pa(£). If
ng—ny; =0, then Ny = Ny and (p14 L] ,024)({) = Shr(flz,p[) = shr(n4, p[) = ‘04([)
[m}

LemmMa F.12 (WId ExTENSION PARTIAL ORDER). WId is partially ordered by C.

Proor. Immediate from the definitions of WId and C, since > partially orders N and C partially
orders Sizes. o

LEMMA F.13 (REACHABILITY OBJECT SUBRESOURCE).
p1 4 p2 = p2 < p1 VI (L p) €objs(pr). po < p

Proor. We proceed by induction on the derivation of —.

Case —-JumpP
(—+-yumpP)
£ > shr(—, p2) — p,
Here, p; = £; > shr(—, pz). This means that (£, p;) € objs(p;), since p; — £, — shr(—, p,)
by reflexivity (since p; > p;). Noting that p; < p; trivially completes the proof.

Case —4-sUB
(—+-suB)

P12 p2
P1—* P2

20 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

p2 < p1 by the rule’s premise.

Case —-TRANS
(—+-TRANS)

P1—*pPo pPo—*pP2
P14 P2

By the inductive hypothesis, either

® pp < po(Hl), or

e 3(,p") € objs(po). p2 < p
If we have H2 by unfolding objs we have py — ¢ + shr(—, p’). This means that (¢’, p’) €
objs(p1), noting p; — po — £’ > shr(—, p’), which, when paired with p, < p’, completes
the proof in this case.
Otherwise, we have H1. We can apply the inductive hypothesis to the other premise to
obtain that either

® py < pl(H3), or

e 3(",p") € objs(p1). po < p
If we have H3, then p; < py < p; and we are done by H1 and the transitivity of <.
Otherwise, we have H4. There therefore exists (£”/, p”’) € objs(p;) with p, < py < p”,
again using H1 and the transitivity of < to complete the proof.

7(H2)

17 (H4)

]

LEMMA F.14 (VALID REACHABILITY MONOTONICITY).
\/Pl:Pl—‘Pzﬂ\/Pz

Proor. Suppose we have p; and p, such that v p; and p; — p,. Unfolding v/, we must show,
for some (¢, p’), (£”, p”") € objs(p2),

1(G1)
® p2lshp
° (f':f’/ /\‘D/Z‘D”)V([/¢[” /\pl ﬂshp
In order to use information from v p;, we first must show (¢’, p’), (£, p’’) € objs(p1).
For arbitrary (¢, p) € objs(p,), unfolding objs tells us p, — £ — shr(—, p). Since p; —+ p;, we
have p; — p2 — £ > shr(—, p) so (¢, p) € objs(p1) as well by transitivity.
Instantiating v’ p; with (¢, p’), (¢”, p”"), which are both in objs(p;) from above, gives us
s (H1)

,,)(GZ)

e p1fshp

° ([/:f///\pl:pl/)v([liflf /\p/ ﬂshp

H2 immediately solves G2. To solve G1, we first invoke REACHABILITY OBJECT SUBRESOURCE
with p; — p, to obtain either

//)(HZ)

o p2 < pi™ or
e 3(t p) €objs(p1). p2 < p
If we have H3, then applying CoMPATABILITY EXTENSION ANTITONICITY wWith H1 and H3 solves
Gl.
Otherwise, let (£, p) € objs(p;) with p, < p. By COMPATABILITY EXTENSION ANTITONICITY, it

suffices to show that p fish p’. Instantiating v p; with (¢, p), (¢, p’) gives us
(Hs)

(H4)

® pilish p
o (b= Ap=p)V(L#L Apihsp)T
If ¢ # ¢/ A p §sn p’, we are done. We prove that this must be the case by deriving a contradiction
frome¢=¢Ap=p.

Realistic Realizability: Specifying ABIs You Can Count On 21

By H4 and—-suB, p — p». But since (¢, p’) = (£, p) € objs(p,), we have p, — £ + shr(—, p).
By transitivity, this means (¢,p) € objs(p). This is a contradiction, as the relation defined by
containment in another resource’s objs is well-founded, which is evident from its definition. Note
that each element in objs(p) is reached by taking a non-zero number of steps through the resource
graph of p, which must be a finitely constructable tree (since Res is an inductive data type). O

LeEMMA F.15 (UNIQUE REACHABILITY ERASURE).
p2(£) =unq(w) = p; — p2 = Vv p; = erase(p1) () =w

Proor. Suppose we have p; and p, such that
* pa(f) = unq(u)
o p1— ppH
° \/pl(HS)

To prove erase(p;)(¢f) = w, by unfolding erase(—) of Res and Cell, it suffices to prove that

o {>unq(w) €p; @ (.(f’,p,/)eobjS(Pl)pl’)(Gl)~
Applying REACHABILITY OBJECT SUBRESOURCE with H2, we have either
o pr < piM or
o 3(.p’) € objs(pr). pa < p
If p; < p1, then p;(£) = unq(w) by applying UN1QUE EXTENSION INVARIANCE with H1. Equiv-
alently, £ — unq(w) € pl(H6). Since the composition in G1 is defined due to H3, we know that
¢ ¢ dom(pp) for any (¢, py) € objs(py). If it were, then composing the two resources would
require composing unq(w) with another cell, which cannot be done. This means composing the
rest of p;’s objects does not change H6, proving G1.
If we instead have H5, then following the same reasoning from above, we deduce p’(f) = w, or
equivalently £ — unq(w) € p’ 7. Composing p’ with p; and the other (¢, p/) € objs(p1) does
not change H7 like above, again proving G1. O

7 (H5)

LeEMMA F.16 (UNIQUE DOMAIN EXCLUSION).
p Bt unq(—) = £ ¢ dom(p) AV ({1, p1) € objs(p). £ ¢ dom(p;)

Proor. Suppose we have p with p § ¢ — unqg(-). Unfolding §, the composition p e ¢
unq(—) = p’ must be defined and valid. From this, we deduce ¢ ¢ dom(p), since if it were, we
would have to compose unq(—) with another cell, which cannot be done. Therefore, £ ¢ dom(p)

Unfolding objs, we observe that objs(p’) = objs(p). This means for any (£, p;) € objs(p), we
can instantiate v/ p’ to obtain p’ sy, p1 If £ € dom(p;), unfolding s, would require p’ (£) e unq(-),
which like above cannot be done. Therefore, £ ¢ dom(p;) either. o

LeEMMA F.17 (UNIQUE UPDATE COMPATIBILITY).
p e ung(-) = p £ unq(w)

Proor. Suppose we have p with p # £ — unq(—). Let us call their composition p’, which is
defined and valid by #. Applying Unioue Domain Excrusion tells us that

o (¢ dom(p)(Hl)
* V (i, p1) € objs(p). £ ¢ dom(py) ™
From H1, we deduce that p e £ — unq(w) = p, is defined with p, = £ W [£ — unq(w)].

To prove v p’, unfold v/ and let (#1, p1), (£2, p2) € objs(p,,). It suffices to prove that

o p, fish pr 'S

22 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

o (Lh=BApL=p2) V(0 # b APy tsh Pz)(Gz)

To do so, first observe objs(p;;) = objs(p) = objs(p’) by unfolding objs. This means that we can
instantiate v’ p” with (#;, p;) and (£, p2) to solve G2.

To solve G1, we must prove that V¢’ € dom(p,) N dom(p;) we have p, (') § p1(¢'). Applying
H2, ¢ ¢ p; so any such ¢’ must be in dom(p) specifically. By observing p, (£') = p(¢’) in this case,
the proof obligation can be re-folded into p #s pl(}

To solve this, we deduce v’ p by applying VALID ExTENSION ANTITONICITY With p < p” and
V' p’. Instantiating this with (#;, p1) solves G3 and completes the proof. O

LEMMA F.18 (UNIQUE ERASURE SEPARABILITY).
p # £ — unq(w) = erase(p o £ — unq(w)) = erase(p) W [£ > u]

ProoF. Suppose we have p with p #§ £ — unq(w). Unfolding #, the composition p e £ — unq(w)
must be defined and valid; set this to be p’. Applying UN1QUE DomMaIN ExcLusioN tells us that
¢ ¢ dom(p) and V (#1, p1) € objs(p). £ ¢ dom(p;).

With this, and the observation that objs(p’) = objs(p), which follows from unfolding objs, we
can inspect erase(p e £ — unq(w)) = erase(p’) to deduce

erase(p’) = [f —erase(y) | yep' o (.([l,pl)eobjs(p,)pl)]

= e erase(i) [€ x € (p o 01 una() o (@ (. cobistor 1) |

£ erase(x) [£ x € p o (@ () cobisiorpr)| [> erase(una()]
erase(p) W [£ —]

LeMmMmA F.19 (OBJECT COMPOSITION).
p1 # p2 = objs(p1 e pz) = objs(p1) U objs(pz)

Proor. Suppose we have p; and p, with p; § ps. To prove the equality above, we can do so in
two steps:

e objs(p; ® pz) C objs(p1) U objs(pz
* objs(ps @ pz) 2 objs(p1) U objs(p,)

To prove G2, let (£, p;) € objs(p1) U objs(pz). without loss of generality, suppose (£, pr) €
objs(p1). Unfolding objs, this means p; — ¢ +— shr(—, p;). But since p; ® p; — p; by —-sUB,
(¢, pr) € objs(p; ® py) by applying —-TRANS.

To prove G1, let (£, p;) € objs(p; ® p2). Unfolding objs, this means p; ® p; — £ — shr(—, p,). It
suffices to show that at least one of p; — £ > shr(—, p;) or p; — £ > shr(—, p;) must be true.

To do so, we can induct on — with a strengthened inductive hypothesis that will imply the
property above. Specifically, we prove that p; e p, — p implies p; — p, p» —4 p, or p; ® py > p.

)(Gl)

Case —-JjumpP
(—+-JuMP)
p1® pa =t shr(—p) —p
Unfolding e, we have three slightly different cases to consider. Note that ¢ is the only lo-
cation in dom(p;) U dom(p,), since dom(p; ® p;) = {¢}.If £ € dom(p;) and ¢ ¢ dom(p,),
then p; = @ and p; = £ — shr(n, p), so p; = p by —-jump. Similarly, if £ ¢ dom(p;) and
¢ € dom(p,), we have p, — p.

Realistic Realizability: Specifying ABIs You Can Count On 23

Finally, if £ € dom(p;) and ¢ € dom(p,), then shr(n, p) = p1(£) ® p2(£). This composition
is defined, since p; § p,. Therefore p; = £ +— shr(ny, p) and p; = £ > shr(ny, p) for some
ny + ny = n, recalling that no other locations may be in their domains. In this case, both
p1 —+ p and p; — p by —-JumP.
Case —-suB
(—+-suB)
prepz=p
p1®pz—4p
By the premise, p; ® p; > p.
Case —4-TRANS
(—+-TRANS)
prepz—4p p—p
p1®p2—4p
Applying our inductive hypothesis on p; ® p; —+ p’, we have one of
o pp — p/ (H1
o py — pl (H2)
®pirepr2p
If we have H1, then p; — p’ — p and we are done by applying —-TRANS. Similarly, if we
have H2, p, — p’ — p.
If we have H3, then by > there must exist some p’’ such that p; e p; = p” ® p”’. Now, apply
Res Cross-SpLIT to guarantee the existence of p; < p; and p; < p; such that p” = p] e p;.
This allows us to apply our inductive hypothesis on p” = p] @ p, —+ p to obtain one of
o pj—pT
o py—+p™)
o prep,=p
If we have H4, then p; — p] —+ p, recalling that p; > p] and applying —-sus. Similarly, if
we have H5, then p, — p; —+ p. Finally, if we have H6, then combining it with H3 gives us
(p1 ® p2) = p’ = p e p, > p. By transitivity, p; ® p, > p, completing the case.

7(H3)

’

(He)

Since p; ® p; — £ — shr(—, p;), we now have one of

o p1 — £ shr(—, p,)H?

o py — £ shr(—, p,)H®

® p1®py =t shr(— py)
If H7 holds, then (¢, p;) € objs(p;) by definition. Similarly, if H8 holds, then (¢, p;) € objs(p,). If
p1 ® py > £ > shr(—, pg), then there exists some p’ such that p; e p, = ¢+ shr(—, p;) ® p’ by >.
Unfolding e, we observe that £ must be in the domain of at least one of p; or p,. By p; # p, and
unfolding v/, such a location in either domain must be mapped to a cell of the form shr(—, p;). This
is exactly the condition for (¥, p;) to be in objs(p;) or objs(pz), depending on which domains ¢ is
in. It is important to note that objs does not depend on the reference count of the shared cell. O

(H9)

LEMMA F.20 (UNIQUE SHARED CONVERTIBILITY).

pr 8 (€ unq(—) e p) = pr § (£ shr(-,p))

Proor. To prove pr # (£ + shr(-,p)), we must prove that the composition py e (£
shr(—, p)) is both defined and valid.

To prove that the composition is defined, we first rewrite ps # (£ + unq(—) @ p) as pr e p
¢ +— unq(—) by unfolding and re-folding §f (using both Res ComposiTion AssociaTive and Res

24 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

ComposITION COMMUTATIVE). From UNIQUE DoMAIN ExcrLusioN, this means £ ¢ dom(py e p)
and therefore is not in dom(py). Thus, pr e (£ + shr(—, p)) is defined.

To prove v (py ® (£ +— shr(—, p))), we must prove for arbitrary (£, p1), (£2, p2) € objs(ps
¢+ shr(—, p)), that

o pr e (£ shr(=p)) #sh p1
o (L=LApI=py)V (& # b Apytish p2
To do so, we would like to use v’ (ps @ (£ — unq(-) e p)), which we will denote p’. Note first
objs(p’) = objs(ps e £+ unq(-) e p)
= objs(py ®)
Next, observe that objs(¢ — shr(—, p)) = objs(p) U (¢, p). We have (¢, p) € objs(¢ — shr(—, p))

by definition, and all other reachable objects must pass through p itself, so are therefore in objs(p).
Using OBJECT COMPOSITION, we thus have

objs(py e £ > shr(—, p)) = objs(py) U objs(p) U (¢, p)
objs(pr ® p) U (£, p)
objs(p") U (£ p)

We first prove G2. Observe that if (#1, p1), (£2, p2) € objs(p’), then instantiating v p’ solves the
goal. Similarly, if (£, p1) = (&, p2) = (£, p), we are done by definition.

Otherwise, without loss of generality let (¢, p1) = (£, p) and (£, p2) € objs(p’). From UNIQUE
DomAIN ExcrLusion with p’, £ # £, so it remains to prove p fsh p2. To do so, instantiate v/ p” with
(62, p2) to get p’ Hsh p2. Since p < p’, applying COMPATABILITY EXTENSION ANTITONICITY solves
G2.

Next, we prove G1. Like above, we consider the case where (£, p;) € objs(p’) and (¢, p1) =

(¢, p) separately. First, suppose (£, p1) € objs(p’). Unfolding #sh, we must prove

o V&' € dom(ps o € shr(=, p)) N dom(py). (py & £ = shr(=, p))(¢') Hen p1(£)”
Since ¢ ¢ dom(p;) from UNIQUE DOMAIN EXCLUSION, any such ¢’ must be in dom(py) as well. Also,
for such ¢, (py ® £+ shr(—, p))(¢’) = py(¢’). Therefore, the condition above reduces to proving
pr Hsh p1. To prove this, instantiate v/ p” with (£, p1) to obtain p” #s, p1, and use COMPATABILITY
EXTENSION ANTITONICITY with pr < p’.

Finally, if (£, p1) = (£, p), it remains to prove that ps e £ = shr(—, p) #sn p. Following similar
reasoning to above, noting that ¢ ¢ dom(p), this reduces to ps fsn p. Since pr § (£ — unq(-) e p),
we have pr # p as well by unfolding and re-folding §. This implies pr #sn p, since their composition
can only be defined when py(¢’) § p(¢’) for any ¢ in both domains. o

(G1)
)(GZ)

LEmMMA F.21 (SHARED OBJECT ERASURE).
v p = (t, p1) € objs(p) = pi(£) =shr(n, pr) =
(erase(p)(f) =n At ¢ dom(p) A (Y (£, p) € objs(p). (£',p") # (1, p1) = ¢ & dom(p')))
V (erase(p)(£) > n A (¢ € dom(p) vV (3 (', p’) € objs(p). (£', p’) # (&1, p1) A L € dom(p"))))
ProoF. Suppose we have p, p;, and ¢ such that
° Vv p(Hl)
o (f1,p1) € objs(p)™?
o pi(t) =shr(n, pp) ™
To prove the disjunction above, we can unfold erase(p) and study the underlying map:

erase(p) = [ty > erase(x) |ty > x < p o (@ (0. cobisior?)|

Realistic Realizability: Specifying ABIs You Can Count On 25

Specifically, we can study the composition p e (@ (¢) cobjs(p)p’), Wwhich we denote pi¢. Since
we have v p, this composition must be defined. From H2 and H3, we must have py4 (£) of the form
shr(n’, py).

Whenever we have ¢ € dom(p), we must have p(¢) = shr(n,, p;), where n, € N*. Similarly,
for any (¢, p’) € objs(p) we have p(f) = shr(n,, p;) with n,, € N*. Otherwise, the composition
would not be defined.

Note that (#;, p1) € objs(p) by H2. If ¢ is in dom(p) or in dom(p’) for some (¢, p’) # (#1, p1)
from objs(p), then when we compose everything together to get pgat, we have n’ > n, since we
start with shr(n, p,) from p; and add some positive integer when we compose the relevant resource.
This proves the right disjunct, since we get erase(p)(f) =n’ > n when we erase.

Otherwise, £ ¢ dom(p), and the only (¢’, p”) € objs(p) with £ € dom(p’) is exactly (£, p;). This
means that when we compose everything, £ never changes from shr(n, p;). When we erase the
resulting pfiat, we therefore must get erase(p)(¢) = n’ = n, which proves the left disjunct. O

LEMMA F.22 (SHARED SUBRESOURCE ERASURE).

v p=p=piep= pi(l) =shr(np) =
(erase(p)(£) =n At ¢ dom(py) A (Y (£, p") € objs(p). £ ¢ dom(p’)))
V (erase(p)(£) > n A (£ € dom(py) V (I (£, p") € objs(p). £ € dom(p”))))

Proor. The proof proceeds similarly to that of SHARED OBJECT ERASURE above. Suppose we
have p, p1, p2, and ¢ such that

° Vv p(Hl)

®*prep2=p
o pi(t) = shr(n, p) ™
Unfold erase(p) and denote the underlying composition p; e p, ® (@ () cobjs(p)P’) @S Piat.
This composition must be defined, by H1.
Since p;(£) = shr(n, py), we must have pgat(£) of the form shr(n’, py) for some n’ € NN*. If
¢ ¢ dom(p;), and for all (¢, p") € objs(p), ¢ ¢ dom(p’), then composing p; with all of p, e
(. ([',p/)gobjs(p)p/) leaves ¢ untouched, meaning n” = n. In this scenario, left disjunct holds.
Otherwise, we either have £ € dom(p,), or there must be some (', p’) € objs(p) where ¢ €
dom(p’). In that case, n’ > n, since when we compose p; with all of p, (.([f,p')eobjs(p)p/), the
reference count of the shared resource is incremented at least once by some positive integer. In
this scenario, the right disjunct holds. O

(H2)

LeEMMA F.23 (SHARED REACHABILITY ERASURE).
p2(£) =shr(na, pr) = p1 — p2 = v p1 = Iny > ny. erase(py)(£) =4

Proor. By using REACHABILITY OBJECT SUBRESOURCE, we can apply SHARED OBJECT ERASURE
and SHARED SUBRESOURCE ERASURE to characterize the the erasure of reachable objects. This proof
does not use those lemmas to their full strength, as the information provided about domains is not
necessary here.

Suppose we have pq, p, such that

o p2(¢) = shr(ng, pp) ™V
o p1 —+ p,(H2
o/ p)
Instantiate REACHABILITY OBJECT SUBRESOURCE with H2 to give us either
o py < pi D
o p2 < p'™) where (¢, p) € objs(py)

26 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

If we have H4, instantiate SHARED SUBRESOURCE ERASURE using H3, H4, and H1, noting that p, <
p1 guarantees the existence of some ps such that p; = p, @ p; as required. Set n; = erase(p)(¢);
we are done, since in either case, n; > n.

Alternatively, if we have H5, then from p, < p and H1, we note ¢ € dom(p). Unfolding e, p(¢)
is of the form shr(n’, p;) where n’ > n,. Now, we apply SHARED OBjECT ERASURE with H3, H5, and
the prior remark. Set n; = erase(p)(£); we are done, since in either case, n; > n’ > n,. O

LEMMA F.24 (SHARED REACHABILITY INCREMENTABILITY).
pa(£) =shr(=, p;) = p1 = p2 = v p1 = p1 # (£ — shr(n, py))

Proor. Suppose we have pq, p2, and ¢ such that

o pa(f) =shr(= p) ™
LI e A0} (H2)
o/ p,

To prove p; # (£ +— shr(n, p;)), we must prove that their composition is both defined and valid.
First, we prove p; §f (£ +— shr(n, p;)) is defined. If £ ¢ dom(p1), the composition is defined trivially.
Otherwise, by REACHABILITY OBJECT SUBRESOURCE, we either have

e py < py or
e p2 < po™ for some (£, po) € objs(p1)

If we have H4, then applying SHARED EXTENSION MONOTONICITY tells us p;(£) = shr(—, p,).
This form ensures the composition is defined.

Otherwise, we have H4. Apply SHARED EXTENSION MONOTONICITY again to obtain po(f) =
shr(—, p¢). Now, instantiating H3 with (£, po) tells us py #sh p1. Unfolding s, since £ € dom(p;)
and £ (¢) = shr(—, p¢), we have po(¢f) 4 p1(£). This can only be the case when p; () is also of the
form shr(—, py), meaning the composition is defined in this case too.

Now, we prove the composition is valid. To do so, take two arbitrary (¢’, p), (¢, p”’) € objs(p; ®
¢+ shr(n, p¢)). We must prove the following:

o ' flon p1 o € shr(n, p) Y

° (f' :f” /\pl :p//) Vi ([/ + [II /\p/ ﬂsh p//)(GZ)

From OBjecT COMPOSITION, objs(p; e £ — shr(n,p;)) = objs(p;) U objs(¢ +— shr(n, p,)).
Unfolding objs, we observe (¢, p;) € objs(¢f + shr(n, p;)) unsurprisingly. Every other object
reachable from ¢ > shr(n, p;) must necessarily pass through p,.

We now prove objs(p;) U objs(£ +— shr(n, p;)) = objs(p;) by proving objs(¢ +> shr(n, p;)) C
objs(p;). Take some (£, pg) € objs(£ + shr(n, p;)). By the observations above, there are only two
cases to consider:

(1) If (&, po) = (£, pe), then we have p; — p; — £+ shr(—, py) and (£, po) € objs(p1)
(2) If (4, po) € objs(py), then we have similarly have p; — ps — p; — £ — shr(—, py) and
(fo, po) € objs(p1)

This allows us to instantiate v/ p; with (¢, p’), (£, p’’) which solves G2. Furthermore, we learn
P’ Hsh p1 (HG), which we will use to prove G1. To do so, unfold #, and consider an arbitrary location
£; in dom(p’) N dom(p; e £ — shr(n, p;)). If £ € dom(py), then p’(£;) § (p1 ® £ +— shr(n, py))(£1)
follows from Hé, with p; # (£ — shr(n, p;)).

The only remaining location that may not be in dom(p;) is ¢ itself. If £ € dom(p’) but ¢ ¢
dom(p;), it suffices to show p’ (£) § shr(n, p;) to complete the proof. This holds exactly when p’(¢)
is of the form shr(—, p;) Apply REACHABILITY OBJECT SUBRESOURCE with p; — p, again, but note
p2 < piis not possible since £ ¢ dom(p;). This guarantees the existence of some (3, p3) € objs(p;)

Realistic Realizability: Specifying ABIs You Can Count On 27

such that p, < ps;. By SHARED EXTENSION MONOTONICITY, p3(f) = shr(—, p,). Instantiating v' p;
with (¢, p’) and (£, p3) gives us either

o ' =t;Ap =psT® or

o 0% 65 Ap o ps
If we have H8, then p’(£) = p3(f) = shr(—, p;) and p’(¢) is of the proper form. Otherwise, p’ #lsn
ps guarantees p’(f) is of the proper form as well, by unfolding #s, and noting £ € dom(p’) N
dom(ps). O

F.2 Logic
LeEMMA F.25 (PREDICATE MONOTONICITY). For all P defined in Fig. D.3,
P(w,p) = 0 C 0" = P(o”, p)

Proor. Note that the definition of Prd imposes a monotonicity requirement; this lemma ensures
the atomics and connectives defined are in fact predicates. To do so, we prove that each atomic is
monotone, then prove that each connective is monotone, assuming its composite predicates are
already. Most of the atomic cases are trivial, with the monotonicity of most connectives following
either from the monotonicity of the connected predicates, or by definition. We highlight a variety
of cases below:

Case size (£, n) From size (¢, n)(w, p), we have p = @, so it suffices to prove 3b. £ = (b, 0) A
w*.sizes(b) = n. Unfolding size (¢, n), there exists £ = (b,0) with w.sizes(b) = n; by
w.sizes C w™ .sizes, we are done.

Case © P From ¢ P, we have 3 p,. p —+ p,, so it suffices to prove P(w™, py). Unfolding <,
we have P(w, pp); P’s monotonicity completes the proof.

Case ! P Unfolding !, we have p = @ A P(w,@). To prove ! P(w*, p), it suffices to prove
P(w*, @), since p = @. This follows immediately from the monotonicity of P.

Case > P Unfolding >, we have w.step = 0 V (w.step > 0 A P(»w, p)). If w*.step = 0, we
are done. Otherwise, it suffices to prove P(»w™, p).

Note that if w*.step > 0, then w.step > 0 as well, since w.step > w*.step > 0. This means
we know P(»w, p). P(»w™, p) follows from the monotonicity of P after observing that
»w C »w* by definition alongside w E w*.

Case P x O Similarly to ¢ P, unfolding * tells us that 3 p,, pq. p = pp ® pg, so it suffices
to prove P(w™, pp) and O(w*, pp), which follow from the monotonicity of P and O respec-
tively.

Case P — O Unfolding — in the goal, take arbitrary w**, p, # p, and p; where 0** 3 w*
and p e p, = pg. Since ™" I ©* I w, by WId EXTENSION PARTIAL ORDER, we can
instantiate (P —* Q) (w, p) with ©**, p,,, and p,4 to complete the proof.

Case wp (e) {0} We proceed similarly to the — case, since the definition of wp (-) {-}
involves a similar universal quantification over future worlds. It is worth noting that the
weakest precondition is only defined when v p; the ps # p constraint implicitly gives us
this needed validity, by the definition of # paired with VALID EXTENSION ANTITONICITY.
Instantiating wp (e) {OW(w, p) with all relevant values will therefore suffice.

O
F.2.1 Selected Separation Logic Rules.

LEMMA F.26 (=-REFL).
=-REFL)
FP=P

28

Proor. Immediate after unfolding = and ! with —*-SELF.

LEMMA F.27 (=-sym).
=-com)

P=Qa4 Q=P
Proor. Immediate after unfolding = with x-com.

LEMMA F.28 (=-TRANS).

=-TRANS)
EP=0 EO=R
FEP=R

Proor. Immediate after unfolding = using the premises and ! -Drop.

LEmMmA F.29 (=-1).
(=-1)
Px(P=Q)EQ

Proor. Unfolding = and applying ! -Drop, it suffices if
Px!(P—+xQ)EQ
which, after applying ! -L, is exactly —*-L.
F.2.2 Unrestricted Modality Rules.

LemMmA F.30 (! -UNR).
(' -UNR)
!Pa4r!P%x!P

Andrew Wagner, Zachary Eisbach, and Amal Ahmed

]

Proor. Unfolding F, suppose we have w and p such that v/ p. We must prove ! P(w, p) &

(!P % ! P) (w, p). Unfolding ! and *, this is

p=2AP(w,0)

Sp=ppepgA(pp=2AP(w,2)A(pg=2AP(w,2))

where p, ® p; = @ = p. This holds by inspection.

LemMa F.31 (! -A-emp).
(' -A-emp)
!P 4 emp A P

Proor. Immediate after unfolding !, emp, and A.

Lemma F.32 (! -L).

(‘-L)
'PEP
Proor. Immediate from ! -A-emp and A-L.
Lemma F.33 (! -DrOP).
(' -pDrOP)
'PEemp

Proor. Immediate from ! -A-emp and A-L.

Realistic Realizability: Specifying ABIs You Can Count On 29

LEMMA F.34 (! -IDEM).
(! -IDEM)

'Pap!!P
Proor. Using !-A-emp, the following sequence of 4k completes the proof:

'Paremp AP aremp AN emp AP dremp NP A:!!P

LemMA F.35 (! -MoNO).
(! -MoNO)

PEQ
IPEIQ

Proor. Unfolding F and !, suppose we have w, p such that
o p=o
e P(w, @)(Hz)

and assume P £ Q™) Unfolding ! in the goal, it suffices to prove p = @ A O(w, @). This follows

from H1 and H3, instantiated with H2 since v' @ holds trivially. m]
LemmMa F.36 (! -emp).
(t-emp)
emp k! emp

Proor. Using ! -A-emp, it suffices to prove emp £ emp A emp, which holds by unfolding A. O

LEmma F.37 (I-7=7).
(y _r_"

I—P—I E !I—P—I
Proor. Unfolding k, suppose we have w, p such that v/ p(Hl) and "P7(w, p)(HZ). 1"P(w, p)
follows immediately from unfolding ! and ", as H2 tells us that p = @ and P holds. O

LemmaA F.38 (! -size (=, —)).
(! -size (—, —))

size (£, n) E ! size (£, n)

Proor. Unfolding F, suppose we have w, p such that v p(Hl) and size (¢, n)(a),p)(Hz). Then,

I'size (¢, n)(w, p) follows immediately from unfolding ! and size (—, —), since p = @ necessarily.
O
LEmma F39 (1-{—-} — {=}).
-y -1
{Pte{Q} ! {P}e{0}
Proor. Immediate from unfolding {-} — {-}, ! -1DEMm, and refolding {—} — {-}. m}
LeEmmA F.40 (! -=).
(t-=)
P=QE! (P=0Q)
Proor. Immediate from unfolding =, ! -*, ! -iDEM, and refolding =. O
LEMMA F.41 (! -%).
(t-*)

'(PxQ)a!Px!Q

30 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Proor. Unfolding k, suppose we have w, p such that v/ p(Hl). Unfolding ! and x, we must prove
p=2APw,2)AQ(w,D)
Sp=ppepgA(pp=2AP(w,2)A(pg=2AP(w,2))
where p,, ® p; = @ = p. This holds by inspection. O

LEMMA F.42 (1 -A).
(t-N)
'(PAQ)a!PA!IQ

Proor. Using !-A-emp, the following sequence of 4k completes the proof
'(PAQ)aremp APAQaremp AP Aemp ANQHE!PA!IQ
since emp 4k emp A emp by definition. O

LEMMA F.43 (!-A).
(t-(=n =)
IPAQHE! (P AQ)

Proor. Follows from ! -A-emp using the associativity of A. O

LEmMMA F.44 (! -A /%).
(t-n /%)
'(PAQ)=E! (PxQ)

Proor. Unfolding k, suppose we have o, p such that v/ p(Hl). Unfolding !, %, and A, we must
prove
p=0AP(w,2)ANO(w,2) © p=02AP(w,2) A Q(w, D)
since ! ensures that p = @ on both sides, meaning p, and p, must be exactly @ as well. This holds
trivially. O

LEmmA F.45 (1-VY).
(t-v)
PePrd(X) X isinhabited

'V PV IP

Proor. Unfolding k, suppose we have w, p such that v/ p(Hl). Also, assume X is inhabited. We
must prove !V P(w, p) & V ! P(w, p). Unfolding ! and V , this is

pP=DA (Vx € X. P(x) (o, @)) o VxeX. (p =2 A P(x)(w, @))

Selecting arbitrary elements on each side and instantiating as appropriate completes the proof.
Crucially, since X is inhabited, we can take arbitrary x € X to get p = @, which is necessary for
the backward direction. O

LEmMA F.46 (! ->).

(t->)
'>PEB>!P
Proor. Unfolding F and !, suppose we have w, p such that
° Vv p(Hl)
° p = ®(H2)

o > P(w, @) (H3)

Realistic Realizability: Specifying ABIs You Can Count On 31

Unfolding > in the goal, we must either prove
e w.step =0 or
e wstep>0A!P(rw, p)(Gz)
If w.step = 0, then G1 is satisfied trivially. Otherwise, w.step > 0 and by unfolding ! in G2 it
remains to prove
o p=0@
o P(»w, @)(64)

G3 follows from H2. Since w.step > 0, unfolding > in H3 must give us exactly P(»w, @), which
proves G4. O

LEmMA F.47 (> -!).
(t->)
emp AN>!PE!D>P
Proor. Unfolding k, A, and emp, suppose we have w, p such that
o v/ p(Hl)
e p= ®(H2)
o > !P(w,d)
Unfolding ! and > in the goal, it suffices to prove
e p= ®(Gl)
e w.step=0V (w.step > 0 A > P(w,2))
H2 solves G1. Unfolding > and ! in H3, we either have

(H3)

e w.step = 0, which would solve G2, or
e w.step > 0HY and P(»w, @)
In the latter case, to prove G2 it suffices to show > P(w, @), or equivalently P(»w, @) with H4.
This is solved by H5 exactly, completing the proof. O

F.2.3 Later Modality Rules.

LeEmmA F.48 (> -R).
(> -R)
Prp>P

Proor. Unfolding F, suppose we have «, p such that v/ pH and P(w, p)(HZ). If w.step = 0, the
claim holds trivially. Otherwise, unfolding > , we must prove that P(»w, p) holds, which immedi-
ately follows from the definition of Prd, since w E »w. O

LEmMA F.49 (> -IND).
(> -IND)
PA>QEQ
PrO
Proor. Unfolding F, suppose we have
° Vv p(Hl)
o P(w,p)™™
By the premise and H1, to prove Q(w, p) it suffices to prove (P A > Q) (w, p), or equivalently
o P(w,p)Y
o > 0(w,p)'

32 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Clearly G1 holds by H2. Let us first restate the premise for convenience, unfolding A to ob-
tainVp,w. v p = P(w, p) A> O(w, p) = O(w, p)(H3). This is a meta-level statement that always
holds.

Now, to prove G2, we will use induction. Specifically, let w; = (step : k, sizes : w.sizes); we will
prove > O(wg, p) for all k < w.step. When k = w.step, then wi = w and the proof will be complete.

Case: k = 0 The proof of > Q(wy, p) holding follows immediately from the definition of > .
Case: k = n+ 1 The inductive hypothesisis > O(wp, p)(H4), and we must prove > Q(wu+1, p)s
where n+ 1 < w.step™). Unfolding > , it suffices to prove Q(» w41, p) = O(wn, p). To do
so, we instantiate H3 with w, and p. With H1, H2 (invoking the monotonicity of Prd, since

® £ wy using H5), and H4, the proof is complete.
O

LeEMmmA F.50 (> -MONO).
(> -MoNO)

PrO
>PE>Q

Proor. Unfolding k, suppose we have w, p such that
o« /pHD
o > P(w, p)(Hz)
and assume P E Q(HS). If w.step = 0, the claim holds trivially. Otherwise, unfolding >, we have
P(»ow, p)(H4) and must prove Q(»w, p)(Gl). This follows by instantiating H3 with H1 and H4. O

LemMa F.51 (> -A).
(>-N)
> (PAQ)aED>PAD>Q

Proor. Unfolding k, suppose we have w, p such that v' p. Unfolding A, we must prove that
> (P AQ)(w,p) &> Plo,p) N> O(w, p)

Begin by unfolding &> . If w.step = 0, the claim holds trivially. Otherwise, w.step > 0 and we rewrite
as
(PAQ)(»w,p) & P(rw,p) ANQ(»w,p)

which is immediate with the definition of A. m]

LEMMA F.52 (> -x).
(> -*)
> (P*xQ)a4>P*>Q

Proor. Unfolding k in the goal, suppose we have w, p such that v p. We must prove that
> (P % 0) (w,p) © (> P x> 0) (w, p). We prove each direction separately.

For the forward direction, begin by unfolding > . If w.step = 0, the claim holds trivially. Other-
wise, we may assume (P x Q) (»w, p)(HI) and must prove the existence of p, and p, such that

° ppepg=p Y
o > P(w,pp)'
e > O(o, pq)(G3)

Realistic Realizability: Specifying ABIs You Can Count On 33

Unfolding * in H1, there must exist p,, and p, with p,, ® p, = p such that P(»w, p,) and Q(»w, pq)
hold, which solves all three goals after unfolding > in G2 and G3.

For the backward direction, we similarly begin by unfolding * and > (handling the trivial
w.step = 0 case, as above) to obtain P(»w, p,) and Q(»w, py) for some p, ® p; = p. Unfold-
ing > and * in the goal as above, these are exactly the p, and p, that must exist. O

LEMMA F.53 (> -—).
(> -*)
> (P *xQ)E>P —*x1>Q

Proor. By —-R, it suffices to prove that
> (P—=*xQ)*x>PE>Q
By > -* and > -MoNo, it suffices if
(P—=*Q)*xPEQ
which is exactly —-L. O

F.2.4 Non-Standard Entailments.

LEmMA F.54 (@ -MONO).
(@ -MoNo)

PEQ
@¢PE@;Q

Proor. Unfolding F in the goal, suppose we have w, p such that
o v plHD
o @ P(w,p)H?

Unfolding @, in the goal, we must prove the existence of some p, such that
e p=1{ shr(l, pq)(Gl)

o O(w,pg)

Unfolding @, in H2, there exists some p, with
e p =+t shr(l, pp)(H3)
e P(w, pp)(H4)

Choose p, to be p,. H3 therefore solves G1.

Applying —-jump, we have p — p,,, so we can apply VALID REACHABILITY MONOTONICITY With
H1 to obtain v’ p,. Now, we instantiate the premise P £ Q with v p, and H4 to derive Q(w, pp),
solving G2. O

LEmMA F.55 (@ -!).

(@-)
@¢P*x!Qa @, (P*x!0Q)

Proor. Unfolding =F in the goal, suppose we have w, p such that v p. We must prove that
(@¢Px!0)(w,p) © @¢ (P x!0) (w, p). Unfolding @, *, and !, we must prove

(3pp. p =t shr(1,pp) A P(w,pp)) AQ(w, @)
& Jpp. p =1L shr(l, pp) A (P(w, pp) A Q(w,2))

after noting that separating a resource into one that satisfies an unrestricted predicate means the
separation must be trivial. These are both equivalent to I p,. p = £ + shr(1,p,) A P(w, pp) A
Q(w*, @). Note that if there exists no such p,, both equivalent statements do not hold. O

34 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

LEmMA F.56 (@ -V).
(@-v)
@; (PVQ)aE@PV @0

Proor. Unfolding 4k in the goal, suppose we have w, p such that v/ p. We must prove that
@¢ (PV Q) (w,p) © @ PV @ O(w, p). Unfolding @, and V, we must prove

3 ppg- p = € shr(L ppg) A (P, ppg) V O, ppg)

= (EI pp-p =1 shr(1,pp) A P(x)(w, pp)) \% (EI pq- p =t > shr(1,pg) A O(x)(w, pq))

We prove each direction of the implication separately. For the forward direction, suppose we
have p = ¢ + shr(1, ppg). If P(x)(w, Ppq) holds, then I p,. p = £ shr(1,p,) A P(x)(w, Ppq)s
where p;, = ppq. Otherwise, O(x)(w, Ppg) holds, and thus 3 pg. p = £ + shr(1, pg) A O(x) (o, Ppq)
does as well where p; = pyq.

For the backward direction, we proceed similarly. If the left disjunct holds, and we assert p,q =
pp; otherwise, the right disjunct must hold and we assert p,q = p,, to complete the proof. O

LemMma F.57 (@ -3).
@-3))
@, PaAeEd @p P

Proor. Unfolding 4k in the goal, suppose we have w, p such that v p. We must prove that
@¢3 P(w, p) & 3 @, P(w, p). Unfolding @, and 3 , we must prove

3pp. p =1L shr(l,py) A (Elx. P(x)(w, pp))
< Jx. (Elpp. p =1L shr(1,p,) A P(x) (o, pp))

These are both equivalent to 3 pp, x. p = £ = shr(1, pp) A P(x) (o, pp), noting that reordering of
the existential quantifiers makes no difference, and the resource p, is dependent on the structure
of p only. If the domain of either existential is uninhabited, the statements are still equivalent,
since would both be false. O

LEmMA F.58 (@ ->).
(@)
@¢>PED>@p P

Proor. Unfolding F in the goal, suppose we have w, p, and ¢ such that
o v/ plHD
o @ > P(w,p)™
Unfolding @, and > in the goal, we must prove either
e w.step = 0D or
e wstep > 0Adp,. p=1£shr(l,p,) A P(w,pp)(Gz)
Unfolding @, and > in H2, there exists some p’ with
e p=+{mshr(l, p’)(Hg)
e w.step =0V (w.step >0 A P(w, p'))
We proceed by cases on H4. If w.step = 0, then G1 holds and we are done. Otherwise, we have
(w.step > 0AP(w, p’)), which proves G2 after asserting p’ is the resource p, which must exist. O

Realistic Realizability: Specifying ABIs You Can Count On 35

LEMmA F.59 (@ -L).
(@-1)
@¢ L EL

Proor. Unfolding F in the goal, suppose we have w, p such that v/ p(Hl) and (@, L) (w, p)(Hz).
Unfolding @, and L, we must prove
Jpp.p=tshr(l,pp)) A L= 1
which follows using standard intuitionistic logic rules. O
LeEMmMA F.60 (& -R).

(©-R)
PEOP

Proor. Unfolding E in the goal, suppose we have w, p such that v p™ and P(w, p)(Hz). Since
p —+ p (as p < p), the result immediately follows after unfolding < . O

LemMa F.61 (¢ -MONO).
(© -MONO)
PO
OPESCQ
Proor. Unfolding F in the goal, suppose we have w, p such that
o v/ pHD
. 0P(w,p)™
Unfolding <, we must prove the existence of some p, such that
o p—pg(O)
o Q0. pg) @
Unfolding < in H2, there exists some p, with
o p—p, ™
o P(o,pp) ™
We claim that the p; is exactly the p, that we are searching for. H3 therefore solves G1.
Applying VALID REACHABILITY MoNoToNICITY with H1 and H3 yields v p,,. Now, we instantiate

the premise P £ Q with v’ p, and H4 to derive Q(w, p,), solving G2. O
LemmMa F.62 (¢ -BIND).
(© -BIND)
PEOO
OPECOQ

Proor. Unfolding F in the goal, suppose we have w, p such that
o v pHD
° 0P(0,p) ™

Unfolding <, we must prove the existence of some p, such that
o p—4p, Y
o 0w, pg)' ™

Unfolding ¢ in H2, there exists some p, with

o p—+ pP(H3)

36 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

o Plw, pp)(H4)
Applying VALID REACHABILITY MoNoTONICITY With H1 and H3 gives us v/ p,; instantiating
P £ © Q with this and H4 gives us & O(w, p,). Unfolding ¢, there must exist some p’ with
* pp N p/(HS)
¢ Ow,p")™
p’ is the p, that we are searching for. H6 instantly solves G2. G1 is solved by applying —-TRANS
with H3 and H5. o

LeEMMA F.63 (¢ -IDEM).
(© -1DEM)
OSOPEOP
Proor. Unfolding F, suppose we have w, p such that
° Vv p(Hl)
¢ 00 P(w,p) ™
Unfolding <, we must prove the existence of some p,, such that
o p—4p,
o Plw, pp)(Gz)
Unfolding ¢ in H2, there exists some p; with
LA — P1 (H3)
o OP(w,p) ™
Unfolding ¢ in H4, there exists some p, with
LA W A0} (H5)
o P(e,p2)™
p2 is the p,, that we are searching for. H6 instantly solves G2. G1 is solved by applying —-TRANS
with H3 and H5. O

LEmMA F.64 (O -@).
©-@)
@ PEOP
Proor. Unfolding F, suppose we have w, p such that
° \/p(Hl)
o @¢P(w,p)™
Unfolding <, we must prove the existence of some p,, such that
o p—+ Pp (G1)
o P(w, pp)(Gz)
Unfolding @, in H2, there exists some p’ with
o p=1t>shr(1,p)H)
o P(a.p)
p’ is the p, that we are searching for. H4 instantly solves G2. G1 is solved by applying —-jump
with H3. O

LemMMa F.65 (¢ -DROP).
(¢ -prROP)
O P*xQ)EOP

Realistic Realizability: Specifying ABIs You Can Count On 37

Proor. Unfolding F, suppose we have w, p such that
o v/ plHD
O (P 0Q)(a,p) ™

Unfolding < in the goal, we must prove the existence of some p, such that
o p—+ pp(Gl)
e P(w, Pp)(Gz)

Unfolding ¢ in H2, there exists some p’ with
® p—+ p'(H3)
o (Px0)(0p)™

Unfolding * in H4, there exist p;, and p;, such that

° p’:pl’)op('](Hs)

o P(a,pp) ™
. O(w,p)) ™
p, is the p, that we are searching for. H6 instantly solves G2.
Now, note that p, < p’ from H5, meaning p’ — p;, by —-sus. Applying —+-TRANs with this and

H3 solves G1. m]
LemMa F.66 (& -!).
(©-)
PEGIO
PEP*!Q

Proor. Unfolding F, suppose we have w, p such that
° Vv p(Hl)
o P(a,p)™

Unfolding x and ! and simplifying, we must prove P(w, p) A O(w, @), noting the separation of

p must be trivial to satisfy the emptiness condition of | . With H2, it remains to show O(w, @)Y,

Now, instantiate P £ <! Q with H1 and H2 to obtain ¢ ! Q. Unfolding <& and !, this tells us that
p —+ 2 A Q(w, D), solving G1. O

F.2.5 Weakest Preconditions.

LEMMA F.67 (WP-RAMIFY).

(WP-RAMIFY)
(0. P = O + wp (o) {P} £ wp (2) {0}

Proor. Unfolding F and %, suppose we have w, p, p1, p2 such that
o v p(Hl)
[) p = pl [] p2
. . (H
° (V w. P(w) — Q(w)) (w, p1)

o wp (o) Py, p) ™
Unfolding wp (=) {-—}, suppose
o o I

o prtip"

(H2)
3)

38 Andrew Wagner, Zachary Eisbach, and Amal Ahmed
o = w".sizes”

yi = erase(p o ps) O

k < w*.step™

' = (step : w*.step — k, sizes :) ¥

;o (H11)
(Yope) oK (Y, e) »
7(G1)

We must show, for some p

o« prip

o« 2y

o i =erase(p’ ® pp) T
e ¢ €lord(©
O(e) (@', p)' "

Now, note that yi = erase(p ® py) = erase((p1 ® pz) ® py) = erase(pz ® (p1 ® py)) by H2, Res
ComPOSITION AsSOCIATIVE, and Res ComMPosITION COMMUTATIVE. Also note that p; § (p1 ® py),
since their composition is defined and valid by unfolding #§ in Hé.

This means that we can instantiate wp (e) {PHw, p2) with p, # (p1 ® pr), p = erase(p; o
(p1 pr)), and (¢, p, e) —k (Y, 1, ¢") -», using additional hypotheses and worlds from above as
appropriate. This guarantees the existence of some p; such that

o (p1 o pp) i p; M

° Ep/ > lp(Hl?})

' = erase(p; ® (p1 ® py)
e € Word(Hls)Hlé

P @' pp ™

H13 and H15 immediately solve G3 and G5 respectively.

We assert that p” = p; e p). H14 solves G4 using Res ComposiTIoN COMMUTATIVE. To prove
G2, the composition py @ (p; @ p;) must be defined and valid. This follows from H12 by unfolding
e and applying Res ComposiTIoN COMMUTATIVE as appropriate.

It remains to prove G6, and we have not yet used H16 nor H3. Unfolding V' and —x, then instan-

)(H14)

tiating (\7’ w. P(w) = Q(w)) (w, p1) with ' 3 w* 3 w and ¢’ gives us
A, AL, (H1T)
o Vo, B p.pg-prepp=pg= P(e) (', pp) = O() (@, pg)
Now, let p, = p; and pg = p” = p; ® p;. Instantiating H17 using these resources and H16 solves
G6, completing the proof. O

LEmMMA F.68 (WP-FRAME).

(WP-FRAME)

P % wp () {Q} £ wp (e) {w. P % Q(w)}

Proor. By wr-rAMIFY, it suffices if

P wp (e) (0} ¢ (V. O) = (P+ O())) + wp (e) (O}

By x-mono and V -R, it suffices if

PEO() = (p * Q(w))

for arbitrary w. This follows from —-R and REFL. O

Realistic Realizability: Specifying ABIs You Can Count On 39

LeEMMA F.69 (WP-MONO).
(WP-MONO)

Yu. P(w) E O(w)
wp (e) {P} £ wp (e) {0}
Proor. By wr-rAMIFY, it suffices if
wp (&) (P} ¥ (¥ . P(w) =+ O()) % wp () (P}

By x-mono and V -R, it suffices if

E P(w) = O(w)
for arbitrary w, which follows from —%-R and the premise. O
LEMMA F.70 (Wp-VAL).
(WP-VAL)

QW) F wp (w) {O}

Proor. Unfolding F, suppose we have w, p such that

° Vv p(Hl)

e O(w)(@,p)
Unfolding wp (—) {—}, suppose

(H2)

o o I

o prtip"™

o = w".sizes™
(He)

o k < w'.step
' = (step : w*.step — k, sizes : t//’)(m)

(Y, erase(p o pr),w) = (¥, 4, e) »
7(G1)

(H8)

We must show, for some p

o prip

« 2y

e ' =erase(p’ ® pr

e ¢ € lord(©

O @)
Let p’ = p. H4 subsequently solves G2. By the operational semantics, (i, erase(p o pr),w)

cannot take any steps, meaning we must have

Y’ =, solving G3

y' = erase(p e pr), solving G4

e’ = w, solving G5

k=0

Since k = 0, we have 0’ = w*. Applying the monotonicity of Prd to H2 with H3 solves G6. O

)(G4)

LEmMA F.71 (WP-BIND).
(WP-BIND)

wp (&) {w. wp (K[w]) {Q}} £ wp (K[e]) {Q}

Proor. Unfolding F, suppose we have w, p such that

° Vv p(Hl)

40 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

(H2)

o wp (e) {w. wp (K[w]) {O}} (@, p)
Unfolding wp (=) {—}, suppose

o ot O
prtp™
¥ = w*.sizes
p = erase(p o py))
e k< w*.step(m)
wy = (step : w*.step — k, sizes : ¢2>(H8)

H9
W K[e]) =5 (o)
7(G1)

(Hs)

We must show, for some p

o pr i p/

° 1/12) ‘p(G3)

o 11y = erase(p’ o py)'®Y

e ¢ € lord(G®

O(e) (w2, p")
It follows from H9 by inspection of the operational semantics that there exist ¢y, 4, e,, and

0 < j < k such that

(Go)

o (hme) = (Yo, m,e.) »M

o (Y K[e]) =7 (Y1, i, K[eo)) =57 (Yo, pae) »
Now, instantiate wp (&) {w. wp (K[w]) {O}}(w, p) with H3, H4, H5, H6, j < k < w*.step and
w1 = (step : w*.step — j,sizes :). By providing H10, we conclude that for some p],
s (H12)

° prip

° 1/11) ‘p(HB)

o 11 = erase(p] o pp) Y

® ¢, € Word H19)

wp (K[eo]) {0} (@1, p})
Now, instantiate wp (K[e,]) {Q}(a)l,p{) with w1 3 w1, pr # p1, Y1 = wy.sizes, k — j < w;.step,

and w; = (step : w;.step — (k — j), sizes :). Note that this w; is exactly the w, from H3, since

w.step—(k—j) = (w*.step—j)—(k—j) = w™*.step—k. For this same reason, we know k—j < w;.step.

By providing (1, 11, K[e0]) =577 (Y, yta, &) - from H11, we conclude that for some P,

o pr oy

¢2) lﬁl(Hls)

pz = erase(p; ® pr

e’ € WordH20)

O(e) @z pp) ™
We set p” = p;. H17, H19, H20, and H21 instantly solve G2, G4, G5, G6, respectively. H18 and

H13 together prove G3. O

(H11)

(H16)

) (H19)

LEmmA F.72 (Wp-LET).
(WP-LET)

> wp (e[w/x]) {Q} E wp (constx =w; e) {Q}

Proor. Unfolding F, suppose we have w, p such that

Realistic Realizability: Specifying ABIs You Can Count On 41

o« v pHD
o & wp (e[w/x]) {0} (o, p)
Unfolding 1>, this tells us that either
e w.step =01 or
o wstep> 0 A wp (e[u/x]) {O}(rw, p) ™
Unfolding wp (=) {—}, suppose
o w3)
o prtip"
e ¥ =w"sizes
o pi=erase(p e py)™
e k< w*.step(Hg)
' = (step : w".step — k, sizes : t//’)(HIO)
o (Y, constx =w; e) =K (W, 1, e) R
If we have H3, then for any w* J w, there exist no non-negative k < w*.step, meaning that

wp (const x = w: e) {O}(w, p) holds vacuously. Otherwise, we may use H4 and must prove the
existence of some p’ such that

(H2)

(H7)

o i =erase(p’ ® Pf)(Ga)
e ¢ €lord(©¥
o 0N (@)Y
By inspecting the operational semantics, we observe that the evaluation in H11 must proceed

as (i, g, const x = w; e) — (¢, g e[w/x]) =51 (Y, 1/ e) —H(HIZ), noting that this first step must

always be taken before reaching an irreducible configuration.
Now, instantiate wp (e[w/x]) {O}(»w, p) from H4 with
ot drow
pr # p, from He
¥ = »w?.sizes = w* .sizes
p = erase(p e pr), from H8
k—1<w»w*.step
' = (step : »w*.step — (k — 1), sizes : ') = (step : w*.step — k, sizes : Y’)

Note that »w* is defined, since k < w*.step must be at least one in order to take the step
in H12. Also, »0* J »w and k — 1 < »w™.step by unfolding » in H5 and H9 respectively, so

the instantiation is valid. Providing (i, y, e[w/x]) =K1 (/, i, e’) - from H12 guarantees the
existence of some p’ that meets the conditions from above, solving all remaining goals. O

LEMMA F.73 (WP-SEQ).
(wpP-SEQ) R R
wp (e)) {_. > wp (e,) {O}} F wp (esse,) {O}
Proor. After desugaring e,; e,, it suffices to prove
wp (e:) {_. > wp (e,) {O}} E wp (constx = e; e,) {0}

where x does not appear free in e,. By wp-BIND, it suffices if

wp (e1) {_. > wp (&) {Q}} E wp (1) {w. wp (const x = w; e,) {Q}}

42 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Now, since > wp (e,[w/x]) {Q} E wp (constx =w; e,) {Q} for arbitrary w by wp-LET, applying
WP-MONO leaves us with
> wp (e [w/x]) {Q} F > wp (e2) {Q}
as a proof obligation. This follows from REFL, as x does not appear free in e, O
LeEmmA F.74 (wp-BOP).
(wp-Bop)
w = [@](w,,)

> Q@) F wp (w, ® w,) {O}

Proor. Unfolding F, suppose we have w, p such that
(H1)

e Vp
o >0 (e, p)
Unfolding 1>, this tells us that either
e w.step =01 or
e w.step > 0 A O(w)(»w,p)
Unfolding wp (=) {—}, suppose
e wt 1™
pr t p™
¥ = w*.sizes
pi = erase(p o ps) O
k < w*.step™
' = (step : w*.step — k, sizes : y/) 10
(W, i, ®) =K (W1 e) _, (HID)
If we have H3, then for any o™ J o, there exist no non-negative k < w*.step, meaning that

wp (W, ® w,) {0}, p) holds vacuously. Otherwise, we may use H4 and must prove the existence
of some p’ such that

o prtp Y
v 2y
y' = erase(p’ e pr
e’ € Word(GY
O (@', p)' Y
By inspecting the operational semantics, using the premise, we observe that the evaluation in
H11 must proceed as (¢, p, w, & w,) — (¥, i, w) _(HI2)
e Y/ =1, solving G2
e ¢ =y € Word, solving G4
o pu=y
e k=1,s00 =r»wt

(Hz2)

(H4)

(H7)

)(G3)

, where

We set p’ = p; G1 and G3 follow from Hé6 and H8. It remains to show O(e') (@', p’) = O(w) (> w™, p),
which follows from H4 with with definition of Prd. O

LEMMA F.75 (WP-FUNPTR).
(WP-FUNPTR)

F3f(%){e}
> Q((£)5) E wpg (£) {Q}

Realistic Realizability: Specifying ABIs You Can Count On 43

Proor. Unfolding F, suppose we have w, p such that

o Vv p(Hl)

o > O((f)s)(w, p)
Unfolding >, this tells us that either
o w.step =0 or

e w.step >0 A Q) (»w, p)
Unfolding wp (—) {—}, suppose

e ot 1 o
pr i p™
¥ = w*.sizes
p = erase(p o pp) ™
k < w*.step™?
' = (step : w".step — k, sizes : g&’)(HlO)
(o ©) =K (/g e)
If we have H3, then for any w* J w, there exist no non-negative k < w*.step, meaning that
wpg (£) { O}(w, p) holds vacuously. Otherwise, we may use H4 and must prove the existence of
some p’ such that
/(G1)

(H2)

(H4)

(H7)

° prp
° l//’) lp(GZ)
o i =erase(p’ ® pr
e’ € Word(GY) G
O(e) (@', p)' Y
By inspecting the operational semantics, using the premise, we observe that the evaluation in

H11 must proceed as (¢, pr,) — (¢, 1, (£)¢) -»M12) where

e Y/ =1, solving G2

e ¢ = (f); € Word, solving G4

[] IJ = IJ’

e k=1sow =»owt

)(G3)

We assert p’ = p; G1 and G3 follow from H6 and H8. It remains to show O(e') (', p’) =
O((£)s) (»w*, p), which follows from H4 with the definition of Prd.
O

LeEMmMA F.76 (wp-APP).

(wp-ApP)
F>f(X){e}

> wpy (e[W7x]) (O} F wpe (¢ (7)) {Q)

Proor. Unfolding F, suppose we have w, p such that
(H1)

e Vp

-\ . (H2)
o o wpe (e[7/51) (O} p)
Unfolding ©>, this tells us that either

e w.step =013 or

44 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

-\ . (H4)

e w.step > 0 A wp; (e[w/x]) {0} (»w, p)
Unfolding wp (—) {—}, suppose

o w' I w(HS)
prtp™®
o = wt.sizes
p = erase(p e Pf)(HS)
k< w*.step(Hg)
o' = (step : w*.step — k, sizes : y/) H10)

_ P (H11)

Fr(p () () =K (0,4, e) »
If we have H3, then for any o™ 3 w, there exist no non-negative k < w*.step, meaning that

wpp ({£)r (W)) {O}(w, p) holds vacuously. Otherwise, we may use H4 and must prove the existence
of some p’ such that

o prip
° l//’) lp(GZ)
o i =erase(p’ o pp) P
¢’ € Word(GY G
O @)
By inspecting the operational semantics, using F 3 f (X) {e} we observe that the evaluation
— H
in H11 must proceed as F + (¢, g1, (£) (7)) — (¢, g e[w/x]) =51 (¢, i, e) —H(12). This first
substitution step must always be taken before reaching an irreducible configuration.

Now, instantiate wp; (e [w_/x]) (O} (rw, p) from H4 with

(H7)

ot Jpw

pr t p, from He

¥ = »w?.sizes = w* .sizes

p = erase(p e pr), from H8

k—1<w»ow'.step

' = (step : »w*.step — (k — 1),sizes : ') = (step : w*.step — k, sizes : ')

Note that »w* is defined, since k < w*.step must be at least one in order to take the step in
H12. Also, »w* J »w and k — 1 < »w*.step by unfolding » in H5 and H9 respectively, so the

instantiation is valid. Providing F + (¢, u, e[w/x]) =K1 (y/, 1, ") - from H12 guarantees the
existence of some p’ that meets the conditions from above, solving all remaining goals. O

LEMMA F.77 (Wp-1F-T).

(WP-IF-T)

w ¢ {null, 0, %}
> wp (e,) {0} wp (if (w) {e,} else {e,}) {O}

Proor. Unfolding F, suppose we have w, p such that
(H1)

o Vp

e & wp(e){0}(w,p)
Unfolding >, this tells us that either

o w.step =013 or

e wstep >0 A wp () {O}(»w, p)

(H2)

(H4)

Realistic Realizability: Specifying ABIs You Can Count On 45

Unfolding wp (—) {—}, suppose
o o I
o prtip"
o = w*.sizes
o i =erase(p e pp) ™
o k< w*.step(Hg)

' = (step : w".step — k, sizes : t//’)(HIO)

(U, if () {e.) else {e,}) =K (Y,), e) »

If we have H3, then for any w* J w, there exist no non-negative k < w*.step, meaning that

(H7)

(H11)

wp (if (w) {e,} else {e,}) {0} (w, p) holds vacuously. Otherwise, we may use H4 and must prove
the existence of some p’ such that

« prttp®Y

g2y

p' = erase(p’ ® pp)(@
e’ € Word(G

O(e) (@',

By inspecting the operational semantics, using w ¢ {null, 0, ® } we observe that the evaluation
in H11 must proceed as (i, 1, if (w) {e,} else {e.}) = (Yme.) =51 (Y, 1, e) —I-)(le). This
first step must always be taken before reaching an irreducible configuration.

Now, instantiate wp (e,) {0} (»w, p) from H4 with

e >t JPpw

pr t p, from He

Y = »ow?.sizes = w* .sizes

p = erase(p e pr), from H8

k—1<w»ow'.step

' = (step : »w*.step — (k — 1), sizes : ') = (step : w*.step — k, sizes : ')

Note that »w* is defined, since k < w*.step must be at least one in order to take the step in
H12. Also, »w"™ 3 »w and k — 1 < »w*.step by unfolding » in H5 and H9 respectively, so the

instantiation is valid. Providing (i, yi, &) =51 (/, i, ¢’) - from H12 guarantees the existence
of some p’ that meets the conditions from above, solving all remaining goals. O

LEMMA F.78 (WP-TF-F).
(WP-IF-F)
w € {null, 0}

> wp (e,) {Q} F wp (if () {e,} else {e,}) {0}

Proor. Unfolding F, suppose we have w, p such that
(H1)

e Vp

o > wp(e.) {0} (w,p)
Unfolding ©>, this tells us that either

e w.step =013 or

e wstep >0 A wp (e,) {O}(»w,p)

Unfolding wp (—) {—}, suppose
(H5)

(Hz2)

(H4)

e wtJw

46 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

o prtip™

o = w*.sizes

o ji=erase(p e Pf)(HS)

k < wt.step™”

o' = (step : w* .step — k, sizes : y) H10)

(o o if (w) {e.} else {e,}) =F (Y. ¢)
If we have H3, then for any w* J w, there exist no non-negative k < w*.step, meaning that

wp (if (w) {e,} else {e,}) {0} (o, p) holds vacuously. Otherwise, we may use H4 and must prove

the existence of some p’ such that

o prip
o« y 2y
o)/ =erase(p’ ® py)
e ¢ €lord(@
o O(eN (@)Y
By inspecting the operational semantics, using w € {null, 0} we observe that the evaluation in
H11 must proceed as (¢, g, if (w) {e,} else {e,}) — (¢, p, e,) —k-1 W,y e) —H(le). This first
step must always be taken before reaching an irreducible configuration.
Now, instantiate wp (e.) {0} (>, p) from H4 with

(H7)

_, 1)

(G3)

e >0 IPw

e prff p, from Hé

e |y =pw?.sizes = w?.sizes

o u=erase(p ® pr), from H8

e k—1<w»owtstep

o o = (step:pwt.step— (k —1),sizes: ') = (step : w*.step — k, sizes : ')

Note that »w™* is defined, since k < w*.step must be at least one in order to take the step in
H12. Also, »w* J »w and k — 1 < »w*.step by unfolding » in H5 and H9 respectively, so the
instantiation is valid. Providing (i, y, e,) =51 (/, 1/, ¢’) - from H12 guarantees the existence
of some p’ that meets the conditions from above, solving all remaining goals. O

LEMMA F.79 (WP-MALLOC).

(WP-MALLOC)
n>0

> (V ¢ € Locy. (*Kn({’ +1i) > Q) —k size (£, n) — Q(t’)) £ wp (malloc (n)) {0}

Proor. Unfolding F and *, suppose we have o and p such that

o v/ p(Hl)

. (Hz2)

o> (v £ € Loce. (skyoy(E+1) o 8) — size (£, n) — Q(l’)) (. p)
Unfolding 1>, this tells us that either

o w.step =0 or

. (H4)

o wstep > 0A (v £ € Lo (skyoy(£+1) o 8) — size (£, n) —* Q([)) (>0, p)
Unfolding wp (=) {—}, suppose

o ot 1)

o prttp"

Realistic Realizability: Specifying ABIs You Can Count On 47
o = w".sizes”
p = erase(p ® Pf)(Hg)
k< w*.step(Hg)
o' = (step : w*.step — k, sizes : y/) H10)
(, pmalloc (n)) =k (¢, 1, e) I
If we have H3, then for any o™ J w, there exist no non-negative k < w*.step, meaning that
wp (malloc (n)) {0} (o, p) holds vacuously. Otherwise, we may use H4 and must prove the exis-
tence of some p’ such that
« oo
« Y29
o 1 =erase(p’ o pp)(@
e’ € Word (G4
O(e @, p) ™

Let b € N*\ dom(¢). By inspecting the operational semantics, using this and n > 0, we observe

that the evaluation in H11 must proceed as exactly (i, g, malloc (n)) — (¢, 1, €) 2 where
¥ = ylb o m
p=plbi)> 2 |i<n
7= <b, 0>(H15)
t € Word, solving G4
k=1,s0w’ = (step : »w™.step, sizes : t//’)(H16)

Since b ¢ dom(y), ¥’ 2 ¢, solving G2. Now, instantiate H4 with ¢ € Locys+, since b € N* \
dom(¢). Instantiate the — with «’ J »w* J »w. Observe that

(S, (€40 = %) (o, @izalt+1) > unq(4))

holds, by unfolding % and . From H15, size (£, n)(w’, @) holds; supplying both of these gives us
O)(p © @;n(t+i) — unq(®)). This composition of resources is defined and valid, since the
location ¢ is at a fresh block b, appearing in neither i nor u

We assert p’ = p o @,.,(£ + i) — unq(®), which solves G5. Note that unfolding — in H12
tells us dom(y) € span(y). For any ¢ + i = (b, i), we know ¢ + i is not in span(y), as we selected
b ¢ dom(y). If £ + i were in dom(p), then £ + i would be in dom(y) = dom(erase(p o py)), which
is a contradiction. p’ is thus well-defined.

Furthermore, from the argument above, p” ® py must be defined as well, emphasizing that p is
composed of p and py. Its validity follows immediately from Hé, since objs(p’ e pr) = objs(p e
pr); adding the extra @;<,(£+i) = unq(®) does not change the reachable objects. Thus, G1 holds.
Finally, applying UNIQUE ERASURE SEPARABILITY n times gives us erase(p’ e pr) = erase(p e
pr)[(b,i) — & | i <n]=p[(b,i) — & |i<n],solving G3. O

] (H14)

LEMMA F.80 (WP-FREE).

(WP-FREE)
(*i<n(f+ i) — w;) * size (£, n) * > wp (e) {0}y E wp (free (£); e) {0}

Proor. Unfolding k, %, —, and size (—, —), suppose we have w, p, £, p., and a collections of n
resources p; such that

° \/p(Hl)

o p=(@icnpi) o p.™?

48 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

(H3)

pi = (£+1i) — unq(w,)
£ = (b, 0y

w.sizes(b) =n
> wp () {0} (@, pe)
Unfolding >, this tells us that either

(Hs)

(Ho)

e w.step=0H) or

e wstep >0 A wp (&) {0} (»w, pe)
Unfolding wp (=) {—}, suppose

o ot I

o pptp™

o = w*.sizes

o pi=erase(p e py)H)
(H13)

(H8)

(H11)

e k < w'.step
o' = (step : w* .step — k, sizes : y/) H1Y)
o (Y, free(€); e) =K (Y, 1, e) L HIS)

If we have H7, then for any o™ J w, there exist no non-negative k < w*.step, meaning that
wp (free (£): e) {O}(w, p) holds vacuously. Otherwise, we may use H8 and must prove the exis-
tence of some p’ such that
7(G1)

° prip
« 2y

o)/ =erase(p’ o Pf)(GS)

o ¢ € Word(G¥

O(e) (@,)"

Unfolding 3 in H9 and pairing it with H11 and H5 ensures /() = n. Consider span(b — n);
by definition, this is exactly [(b,i) | i < n]. Now, apply UNIQUE ERASURE SEPARABILITY n times
with 1 = erase((@;<npi) ® p. ® py) to get = erase(p, ® pr) W [(I+i) = w, | i <n] (H16) Thys,
span(b — n) C dom(y).

By inspecting the operational semantics, using the remarks above, we observe that the evalua-
tion in H15 must proceed as exactly

o (Y, free(£): e) = (Y, pu\span(b — n),e) =K1 (', 1 e)
Now, instantiate wp (e) { Oy(rw, pe) from H8 with

_,(H17)

ot Jrow

pr t pe, from H10

¥ = »w’.sizes = w™ sizes

i\ span(b — n) = erase(p, ® pr), from H16

k—1<w»ow'.step

' = (step : »w*t.step — (k — 1), sizes : ') = (step : w*.step — k, sizes : ')

Note that »w* is defined, since k < w*.step must be at least one in order to take the step in
H17. Also, »w* 2 »w and k — 1 < »w™.step by unfolding » in H9 and H13 respectively, so the
instantiation is valid. Providing (¢, u \ span(b > n),e) =51 (y’, /', ¢’) - from H17 guarantees
the existence of some p’ that meets the conditions from above, solving all remaining goals. O

Realistic Realizability: Specifying ABIs You Can Count On 49

LeEMMa F.81 (WP-L0OAD).
(WP-LOAD)
PEOt—w

P x> (P —* Q(w)) Ewp (+£) {Q}

Proor. Unfolding F and *, suppose we have o, p, p1, p2 such that
V4 p(Hl)
p=p1ep:
Plw, pr)

A (H
> (P O()) (@.p2)
Applying VALID EXTENSION ANTITONICITY with p to get v/ p1, so we can instantiate the premise

PE &€ — wwith H3 to get (O£ — w) (w, p1). Unfolding ¢ and +— givesus p; — £ — unq () 1%,
Unfolding > in H4, we also have either

(H2)

4)

o w.step =00 or
N (H7)
e w.step>0A (P —k Q(w)) (»w, p2)

Now, unfolding wp (=) {=} in our goal wp (+£) {O}(w, p), suppose
e w10
prtp™
¥ = w” sizes
p = erase(p o pr)
e k < wt.step™?
' = (step : w*.step — k, sizes : ')
k ;. (H14)
(o) =% (Y e) »
If we have H6, then for any o™ J w, there exist no non-negative k < w*.step, meaning that
wp (x£) (O} (o, p) holds vacuously. Otherwise, we may use H7 and must prove the existence of
some p’ such that

o prtp Y

« Y29

o 1 =erase(p’ o pp)(@
e’ € Word(®4)
0@,)

Now, note that (p ® pr) — p — p; — £ +— unq(w) from H2 and H5. Additionally, v (p e pr)
by unfolding # in H9. Together with UNIQUE REACHABILITY ERASURE, these imply that erase(p o
pp() = (0) = 5.

By inspecting the operational semantics, using u(¢f) = w we observe that the evaluation in H14
must proceed as exactly (¢, y, =€) — (', p’, w) -»H5) where

e =1/, solving G2

e ¢ = € lord, solving G4
o u= ,U/ (H16)
[]

k=1,s00 =»w

(H10)

(H11)

(H13)

+(H17)

We assert that p’ = p. H9 and H16 therefore solve G1 and G3 respectively. To solve G5, or
equivalently to prove O (w) (»w*, p) we instantiate (P —% Q(w)) (»w, p2) from H7 with » 0* J »w.

50 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Providing P(»w*, p;) from H3 using the definition of Prd (as »w* I w) gives us O(w)(»w*, p; o
p2) = O(w)(»w™, p), using H1, solving G5, and completing the proof. O
LEMMA F.82 (WP-STORE).

(WP-STORE)

[Hf*b(hﬁwﬂm@@ﬂ@ﬂhwﬂﬂzweﬂé}

Proor. Unfolding k, *, and —, suppose we have w, p, p1, p2 such that
o / p(Hl)
[] p = ,Dl [] p2
o p1 =t ung(—)™
R (He)
° > ({’ — W —x wp (e) {Q}) (w, p2)
Unfolding >, this tells us that either

(H2)

o w.step =0 or
N (He)
e w.step>0A ({’ — W —x wp (e) {Q}) (»w, p2)

Unfolding wp (=) {—}, suppose
e o' a)(H7)

prtp™

o = wt.sizes

o 11 =erase(p o py) T
(H11)

(H9)

k < w*.step
' = (step : w*.step — k, sizes : ')
((ﬁ, K, #f =W, e) —)k (1//', I/, e’) —H(ng)

If we have H5, then for any w* J w, there exist no non-negative k < w*.step, meaning that
wp (+£ = w: e) {O}(w, p) holds vacuously. Otherwise, we may use H6 and must prove the existence
of some p’ such that
/(G1)

(H12)

° prp
° l//’) lﬁ(Gz)

o y' =erase(p’ e Pf)(GS)

e ¢ €lord(@

O (@', p)' Y

Now, note that (p pr) < p — ¢ — unq(-) from H2 and H3. Additionally, v' (p e ps) by un-
folding # in H8. Together with UN1QUE REACHABILITY ERASURE, these imply that £ € dom(erase(p o
pf)) = dom(p).

By inspecting the operational semantics, using £ € dom(y) we observe that the evaluation in
H13 must proceed as (¢, jt, £ = w;) — (, u[£ > w],e) =51 (¥,),) —I->(H14). This first step
must always be taken before reaching an irreducible configuration.

Note that p, § p1 = p2 §f £ — unq(-), since their composition is defined and valid as exactly
p. Applying UN1QUE UpDATE COMPATIBILITY gives us p; § £ +— unq(w). Let us call this valid
composition p,; we use it below:.

Now, instantiate ([— W —% wp (e) {Q}) (»w, pz) with »w and (£ +— w) (»w,f +— unq(w)),

which holds by +— definition, to obtain wp (e) (O} (rw, pw)(Hls)_

Realistic Realizability: Specifying ABIs You Can Count On 51

Before instantiating this, first observe (p, ® pr) # £ — unq(—) by unfolding § in H8. Apply-
ing UN1QUE UPDATE COMPATIBILITY using this gives us (pz ® pr) # £ unq(w)(Hlé) as well. Now,
apply UNIQUE ERASURE SEPARABILITY using these facts to obtain

o p=erase(p e py) = erase(p; ® (p2 ® pr)) = erase(py ® py) W [—]
e erase(p, ® pr) = erase(f > unq(w) @ (p, ® pr)) = erase(p; ® pr) W [L >
Together, these observations let us deduce that erase(p, ® pr) = p[£ — w].
We are finally ready to instantiate H15 with

(H17)
](H18)

ot Jpw

pr # pu, by unfolding § in H16

¥ = »w?.sizes = w* sizes

erase(p. pf) = [t v 4]

k—1<w»o'.step

o ' = (step:p»wt.step— (k —1),sizes: ') = (step : w*.step — k, sizes : ')

Note that »w* is defined, since k < w*.step must be at least one in order to take the step in
H14. Also, »* J »w and k — 1 < »w*.step by unfolding » in H7 and H11 respectively, so the

instantiation is valid. Providing (i, u[£ +— w],e) —*~1 (/,), e’) - from H14 guarantees the
existence of some p’ that meets the conditions from above, solving all remaining goals. O

LEmMMA F.83 (WP-INCR-OWN).

(WP-INCR-OWN)
n=n+1

fr>nx*> (f —n —k Q(n/)) E wp (++€) {0}

Proor. Unfolding F, *, and —, suppose we have w, p, p1, p2 such that
° \/ p(Hl)
e p=p1e®p:
o pi =t unq(n)™
R (H
o o (£ = 0() (0 02)
Unfolding >, this tells us that either

o w.step =0 or

(H2)

4)

R (H6)
e w.step>0A (l’ —n — Q(n/)) (»w, p2)
Unfolding wp (—) {—}, suppose
o o 1D

H
prtp™
¥ = w*.sizes
p = erase(p o pp) 10
k< w*.step(Hu)
' = (step : w".step — k, sizes : t//’)(le)

;L (H13)

(Y ++0) =K (Y e) +
If we have H5, then for any w* J w, there exist no non-negative k < w*.step, meaning that
wp (++£) {O}(w, p) holds vacuously. Otherwise, we may use H4 and must prove the existence of
some p’ such that

o prtp Y

(H9)

52 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

l//’) lp(GZ)

p = erase(p’ o pp)
e’ € Word(G4)(G5)

(e (@', p")

Now, note that (p e pr) -+ p — ¢ = unq(n) from H2 and H3. Additionally, v (p ® pr) by
unfolding # in H8. Together with UN1QUE REACHABILITY ERASURE, these imply that erase(p e
ppIE) = p(t) =n.

By inspecting the operational semantics, using u(f) = n and n’ = n + 1, we observe that the

evaluation in H13 must proceed as exactly (¢, y, ++¢) — (', i/, n’) —f—)(HM), where
Y =1/, solving G2

n’ € Word, solving G4

ul — ,U[f — n/] (H15)

e k=1so0 = > ot (H10)

We assert that p” = p, e £ = unq(n’). Observe that (p, @ pr) # £ = unq(n) by unfolding §
in H8. Applying UNIQUE UPDATE COMPATIBILITY using this gives us (p; ® p) # £ = unq(n’) as
well. By # definition, this solves G1.

Now, apply UNIQUE ERASURE SEPARABILITY to the compatibility observations above to obtain

 crase(p o py) = erase(ps » (p ® py)) = erase(py ® py) ¥ [¢ > 0] H7)
e erase(p’ e pr) = erase(f > unq(n’) @ (p; ® pr)) = erase(p; ® pr) W [£ > 10’
Together, these observations let us deduce that ' = u[£ + n’] = erase(p’ @ pr), solving G3.

](HIS)

To solve G5, or equivalently to prove O(n’)(»w*, p’) we instantiate ({’ —n — Q(n’)) (»w, p2)
from H6 with »w* J »w. Providing (£ — n’) (»w*, ¢ — unq(n’)), which holds by — definition,
gives us Q(n')(»w*, ps ® £ > unq(n’)) = O(n')(»w™, p’), solving G5 and completing the proof.

[m}

LEMMA F.84 (WP-DECR-OWN).

(WP-DECR-OWN)

n=n-1

fi>n x> (f [" Q(n/)) Ewp (—¢) {0}

Proor. Unfolding k, *, and —, suppose we have w, p, p1, p2 such that
° Vv p(Hl)
® p=p1e®p:
p1 = — ung(n)
R (H
> (£ 0 O) (@, p2)
Unfolding 1>, this tells us that either

e w.step =01 or

(H2)

4)

. (Hs6)
e w.step>0A (t’ —n’ — Q(n/)) (>, p2)

Unfolding wp (—) {-—}, suppose
o o I D

prtp™

o = w*.sizes

e j1=erase(p ® pr)

(H9)
(H10)

Realistic Realizability: Specifying ABIs You Can Count On 53
e k< w*.step(Hu)
e o = (step: w'.step —k,sizes : t//’)(le)
k ’ o (H13)
o (Vop——0) =5 (Y e) »
If we have H5, then for any o' J w, there exist no non-negative k < w*.step, meaning that
wp (——¢) {O}(w, p) holds vacuously. Otherwise, we may use H4 and must prove the existence of

some p’ such that

o prtp Y

° ¢/ > lp(GZ)

e ;' =erase(p’ ® pr)
e € Word(G4)(G5)
(e, p)

Now, note that (p e pr) - p — £ +— unq(n) from H2 and H3. Additionally, v' (p e pr) by
unfolding # in H8. Together with UNIQUE REACHABILITY ERASURE, these imply that erase(p o
pp)(0) = u(e) = .

By inspecting the operational semantics, using p(f) = n and n’ = n — 1, we observe that the
evaluation in H13 must proceed as exactly (¢, yr, —¢) — (', ', n’) -4 where
¥ =¢’, solving G2
n’ € Word, solving G4
// — H[f — n/] (H15)

e k=150 0 = w10

(G3)

We assert that p” = p; @ £ = unq(n’). Observe that (p, ® pr) # £ = unq(n) by unfolding §
in H8. Applying UN1QUE UPDATE COMPATIBILITY using this gives us (p; ® ps) # £ = unq(n’) as
well. By #f definition, this solves G1.

Now, apply UNIQUE ERASURE SEPARABILITY to the compatibility observations above to obtain

o erase(p ® pf) = erase(py » (p ® py)) = erase(p, ® py) & [£ > 0] 7
e erase(p’ e pr) = erase(f — unq(n’) e (p ® pr)) = erase(p, ® pr) W [£ +— 1]
Together, these observations let us deduce that ' = u[£ + n’] = erase(p’ @ pr), solving G3.

(H18)

To solve G5, or equivalently to prove O (rw*, p’) we instantiate (f —n —x Q(n/)) (»w, p2)
from H6 with »w* J »w. Providing (£ +— n’) (»w*, ¢ — unq(n)), which holds by + definition,
gives us Q(n')(»w*, ps ® £ > unq(n’)) = O(n')(»w™, p’), solving G5 and completing the proof.

O

LEMMA F.85 (WP-INCR-SHARE).

(WP-INCR-SHARE)

PEO@,0
Px> (Vn> 1.P4*@(Qﬁﬁ(n)) E wp (++£) {R}

Proor. Unfolding k and *, suppose we have w, p, p1, p2 such that
v p(Hl)

[]
©
I
S
[]
o
S

P(a)’ P1
R (H
o > (V n> 1.P4*@[Q4*R(n)) (@, p2)
Unfolding 1>, this tells us that either

4)

54 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

e w.step =01 or
R (He)
e w.step>0A (V n>1P—x@,0—* R(n)) (»w, p2)

Unfolding wp (=) {—}, suppose
e ot 1 w(H7)
prtp™
¥ = w*.sizes
pt = erase(p o py)
e k < w*.stepV
' = (step : w*.step — k, sizes : ')
(Y ++0) =K (9 g1, -
If we have H5, then for any ot J w, there exist no non-negative k < w*.step, meaning that
wp (++£) {R}(w, p) holds vacuously. Otherwise, we may use H6 and must prove the existence of
some p’ such that
/(G1)

(H9)

(H10)

(H12)

prip
g2y
y =erase(p’ e pr
e’ € Word(G¥
k(e (', p)
Now, instantiate the premise P k ¢ @, Q with with H3 (noting v' p; using VALID EXTENSION AN-
TITONICITY wWith H1) to obtain & @; O(w, p1). Unfolding ¢ and @, , this guarantees the existence
of some p, such that p; — £ shr(1, pg) A Q(w, pq)<H14).
Now, we use p ® pr —+ p; — £ > shr(1, py) with SHARED REACHABILITY ERASURE (since p ® pf

)(G3)

is valid by H8) to obtain erase(p e pr)(£) = pu(£) = nM15) for some n > 1.

Now, let n’ = n + 1. By inspecting the operational semantics, using p(f) = n, we observe that
the evaluation in H13 must proceed as exactly (¢, y, ++€) — (¢/, p’,n") M0 yhere
¥ =/, solving G2
n’ € Word, solving G4
l’l’ — u[f — n/] (H17)

e k=150 0 = wet™®)

To solve R(¢') (', p’) = R(n") (> w*, p’), we will want to use H6 with H3 and H14. This motivates

the assertion that p” = p e £ > shr(1, p,). Instantiating H6 with n’ > 1, >t J»w, P(ro’, p1),

and Q(»w*, py) (invoking the monotonicity of Prd as appropriate) gives us R(n') (»w*, p; ® p, ®
Pq)s solving G5 with the choice of p’.

To prove G1, we can unfold and re-fold § to equivalently obtain p e ps # £ = shr(1, py) as a goal.
Since p ® pr — £ + shr(1, pg) and v (p ® py), as noted above, applying SHARED REACHABILITY
INCREMENTABILITY solves G1.

Finally, we must show p’ = p[f + n’] = erase(p’ ® pr). To do so, note that objs(p’ e pr) =
objs(p e py), by applying OpjecT ComposITION with the observation that any object of £
shr(1, pg) is already included in objs(p e pr), since p ® pr — £ > shr(1, p,). Therefore,

erase(p’ « py) = |+ erase(x) | €' = x € p' @ pr o (@ (tp cobisioropp)|

= ¢+ erase() [€/ e € shr(1pg) @ p o pr o (@ (ap0rcobisipopr o) |

Realistic Realizability: Specifying ABIs You Can Count On 55

But we know p e pr e (.(fo,po)eobjs(p.pf)po) maps ¢ to shr(n, pq) from H15 (noting the resource

that is shared must be p, for the composition to be defined, which it is by v ’s definition), so
composing another shr(1, p;) increments the reference count by one, while changing nothing else.
Therefore, erase(p” ® py) = u[£ +— n’] = i/, completing the proof. O

LEMMA F.86 (WP-DECR-SHARE).

(WP-DECR-SHARE)

@/ P %> (v n (Tn>07V (TR=0" % £ 0% P)) —kQ(n)) F wp (—£) {0}

Proor. Unfolding F and *, suppose we have w, p, p1, p2 such that
o« v pHD
S p=EpPrep
@¢ Pw, p1)"™
> (\7’ n.("Thn>0"VvV(Th=0" x££ 0*P)) —* Q(n)) (w,pz)(H
Unfolding 1>, this tells us that either
o w.step =01 or

(H2)

4)

o w.step > 0 A (v n ("n>0"V (Tn=0"%x£+>0xP)) —* Q(n)) (»a),pz)(H6)
Unfolding wp (=) {—}, suppose

o w')
pr i p™
o = wt.sizes
p =erase(p e Pf)(Hlo)
k < w*.stepH1V
' = (step : w*.step — k, sizes : ')
(o) > (g o)
If we have H5, then for any o' J w, there exist no non-negative k < w*.step, meaning that

(H9)

(H12)

wp (——£) {O}(w, p) holds vacuously. Otherwise, we may use H6 and must prove the existence of
some p’ such that

o prtp
o« ¢ 2y
o y' =erase(p’ e Pf)((m
e ¢ €lord(@
O (@', p)' Y
Now, unfold @, in H3 to obtain p; = £ + shr(1, p,) A P(w, pp)(HM). for some p,. This means
we can instantiate SHARED SUBRESOURCE ERASURE with v/ p e pr from H8, along with p e pr =
p1 ® (p2 ® pr) where p;(£) = shr(1, p,). Noting erase(p ® pr) = p gives us one of the two
following cases:
o u(f) = 119 with
- ¢ ¢ dom(p; e pf)(Hw) and
~ ¥ (&, po) € objs(p e py). ¢ ¢ dom(pg) "
o u(f) > 1M with
- ¢ € dom(p, pf)(ng) or
= 3 (. po) € objs(pz ® pr). £ € dom(py)

(H20)

56

Andrew Wagner, Zachary Eisbach, and Amal Ahmed

In either case, let n’ = p(£) — 1. By inspecting the operational semantics, we observe that the
evaluation in H13 must proceed as exactly (¢, y, —¢) — (', p’, 1) -»T2D where

Y =1/, solving G2

n’ € Word, solving G4
y/ — ,Ll[[N n/] (H22)
k=1,s0ow = > oo+ (H23)

We now consider each of the two cases above separately, based on the resulting n’ value:

Case: n’ > 0. Note that n’ > 0 exactly when u(¢) > 1, giving us H19 and H20 to work with.

Instantiate H6 with n’. Since n” > 0 holds, we can instantiate the resulting — with »w* 2
» w to obtain O(n) (> w*, py).

We assert p’ = p,. With H23 and the observation above, we solve G5. Since p §f pr and p =
p1 ® pa, we have p; # pr by unfolding § and appealing to VALID EXTENSION ANTITONICITY.
This solves G1.

To solve G3, we must prove erase(p; ® pr) = p[f = n’]. Unfolding erase(—), we have

erase(p; ® pr) = |t > erase(y) [' > y € pr e pr e (‘ (eo,p0>eobjs(pz.pf>po)]

If we have H19, then (p; @ pr)(£) = shr(—, p,), since ¢ is in the domain. If £ mapped to
a cell of any other form, that would contradict p § py. Similarly, if we have H20 then we
have p; ® pr — py — £ — shr(—, p,) by unfolding objs. In either case, p; ® py — p, and
(¢, pp) € objs(pz @ pr).

With this, we deduce objs(p e pr) = objs(p, ® pr). By OjEcT ComPOSITION, we have
objs(p @ pr) = objs(p1) U objs(ps ® pr). Since p; = £ + shr(1, p,), unfolding objs reveals
objs(p1) = (¢ pp) U objs(p,). But both of these are contained in objs(p, e pr) by the
argument above.

With this, we can now unfold y = erase(p ® pr) and compare with the erasure above:

erase(p pr) = [f’ > erase(y) [/ y €pirep,epre (. (zo,p0>e<>bjs<p.pf>po)]

= |:[’ = erase()() | f’ [X S ,01) IDZ [) pf) (. ([U,PO)EObjS(Pz‘Pf)pO)]

This looks exactly like the erasure above. The only difference is that here, there is an extra
p1 = £ = shr(n, py) in the underlying composition. Observe that erasing a shared cell
yields its reference count, removing p; from the composition will decrease the reference
count by 1, and the resulting composition will still contain some ¢ + shr(n’, p,). This
means that erase(p, ® pyr) is exactly erase(p e pr) = p, but with £ — n’ where n’ =n -1,
completing this case.

Case: n’ = 0. Note that n’ = 0 exactly when p(¢) = 1, giving us H16 and H17 to work with.

Instantiate H6 with n’ = 0 to get ("0 >07V(T0=0" % 0xP)— Q(n/)) (»w, p2).
Observe ¢ — unq(0) satisfies £ — 0 in any world, and P(»w*, p,) holds from H14 and
the definition of Prd. This means we can instantiate the — with »w* J »w and supply
£+ unq(0) e p, to obtain O (»w*, py ® £ — unq(0) @ Pp)-
We assert p’ = p; @ £ — unq(0) e p,. With H23 and the observation above, we solve G5.
It remains to prove p’ § p and that erase(p” ® py) = p[€ +— n'].
Following the argument in the n” > 0 case, observe objs(p ® pr) = (£, pp) U (p2 ® py ® py).
Since, £ — unq(0) has no reachable objects, this is equivalent to stating

« objs(p » pf) = (£.py) Uobjs(p’ » py) 12"
To prove p’ § py, take arbitrary (&, p3), (£, p4) € objs(p” @ pr). We must prove

Realistic Realizability: Specifying ABIs You Can Count On 57

o pstisn p’ t %0

o (5=t Aps=ps) V(5 # s A ps th pa)'
Since (43, p3), (44, p4) € objs(p @ pr) by H24, and v p e py from H8, we can instantiate to
instantly solve G7 as well as obtain ps; s p1 ® ps ® pf(st).
To prove G6, we can reduce the proof obligation from p3 #sn p” # pf to ps #sh p2pp 8 pr by

using H17, to deduce ¢ ¢ dom(ps3). Similarly, we can rewrite H25 as p3 fsp p2 ® pf(H%) by
the same logic.

Unfolding fsn, we must prove ps(¢') # p; ® p, ps(£’) for all £’ in both domains. If
¢’ € dom(p, ® pyr), we can instantiate H26 to obtain the needed compatibility. Otherwise,
¢’ € dom(p3) N dom(p,). Instantiating v' p @ py with (4, p3) and (¢, p,), gives us exactly
p3 sh pp (since 65 # € by H17), from which the final case follows.

Now, we turn to prove erase(p’ ® pr) = p[£ + n’]. To do so, we will unfold erase(—) with
the goal of meeting in the middle with y = erase(p o py):

erase(p’ o py) = |0/ 1 erase() [€'+ x € p' o pr o (@ (tp)cobis(oropy)0 |

= [[/ > erase(y) | £/ + y € pp @ £+ unq(0) Pp ® pf e (‘(t’o,po)eobjs(p’-pf)po)]

- [[/ b erase(y) | £ x € p2opp e pse (. (t’o,po)eobJS(p"pf)pO)] v =0l

We can move the £ — unq(0) out of the composition, since we know the composition
is defined from p” # py; if anything else with ¢ in its domain were to be composed, the
resulting composition would be undefined.

We now consider y = erase(p ® pr) and manipulate it into a similar form. To do so, we
apply H24, along with both H16 and H17 to pull out ¢:

erase(p « pf) = ¢/ 1= erase(x) | €+ x € p o pr o (@ (s p01cobistpmp) 20 |

- [f, > erase(y) | £ > y € prepyepre (.(fo,po)E(f,pp)UobJS(p“pf)po)]

= [¢ > erase(n) 1> x e pr oy o pp o (@ pnrcoisiorapppo) | 1 11

Therefore, when we take y and augment it to obtain y[£ + 0], this changes erase(p ® pr)
to exactly erase(p’ ® pr), solving G3 and completing the proof.

]

LEMMA F.87 (WP-SHARE).

(WP-SHARE)

£ 1% Px (@ P — wp (e) {Q}) k wp () {Q}

Proor. Unfolding k, *, and —, suppose we have w, p, p1, p2, p3 such that

V4 p(Hl)

p=p1®p2eps3
p1 = ung(1)*
P(w,)™

A (H5)
(@¢P = wp (e) (0}) (@,0)

(H2)

Unfolding wp (—) {—}, suppose

ot 3 59

58 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

o prtip™”

o = w*.sizes
o ji=erase(p e Pf)(Hg)
k < wt.step™10

’ R H .y (H11)
' = (step : w".step — k, sizes : ')

, ’ , Hi12
(i e) =K (,p,) » T2

(H8)

We must prove the existence of some p’ such that

/(G1)

prip
l//’) lp(GZ)

W = erase(p’ ® Pf)
e’ € Word(G4)<G5)
Qe (@, p")

(G3)

Now, let p, = £ + shr(1, p2). By unfolding @, , note that @, P(w, p;) holds using H4. We can
use this and v 3 w to instantiate H5, giving us wp (e) (O} (w, p3 ® pe).

Since pr ® p3 # p1 e p; by unfolding # in H7, UNIQUE SHARED CONVERTIBILITY gives us
pr ® p3 § pg, or equivalently pr # ps e p; by Res ComposiTioN AssociaTive. This allows us to

instantiate wp (e) {0 (o, p3 ® pp) with

e w"dw

° pripsepe

e = w?.sizes

e erase(ps ® p; ® pr)

e k < w'.step

o ' = (step: w*.step — k,sizes:)

It suffices to prove that erase(ps ® p; ® pr) = ,u(G6). Once that is proved, providing H12 will
guarantee the existence of some p’ that solves all remaining goals above. To do so, first observe
that objs(p,) = (£, p2) Uobjs(pz). Unfolding objs, clearly (¢, p,) is in the objects of p,, by applying
—-suB. However, any other object that is reachable must go through p, first, and thus must be
an element of objs(p;). We can use this observation alongside OBjecT COMPOSITION to obtain
objs(ps ® pe ® py) = objs(p, ® ps ® pr) U (£, p2)).

Next, since p, ® ps ® pr #f p; by unfolding § in H7, applying UNIQUE ERASURE SEPARABILITY
yields

= erase(p o pr)
= erase(p; ® p3 ® py ® p1)
= erase(p; ® p3 ® pr £ > unq(1))
= erase(p, @ p3 ® pr) W [£ > 1]

Also, by UN1QUE DomAIN ExcLusioN, we have that £ is not in the domain of p, e p3 e pr, or
in that of any of its objects. This, alongside H13 and the characterization of y above, allow us to

Realistic Realizability: Specifying ABIs You Can Count On 59

deduce that erase(ps ® p; ® pr) = u through the following series of equalities:
[t" — erase(y) | - XEpsepyepre (. ([0,‘00)Eobjs(p3op(opf)p0)]
- [f/ = erase(X) | U= XEpse (¢ Shr(l’pZ)) ®pre (. (f’o,Po)GObF(Pz'Ps'Pf)U(f,Pz)po)]

= [f’/ > erase(y) [/> y€pyepsepre (. (fo,po)Eobjs(pzop3npf)p0)] ¥ [£ > erase(shr(1, p2))]
= erase(py » ps @ py) W [£ > 1]

=4

The fact that ¢ is not found in the domain of the rest of the composition allows us to pull out

[£ — 1] using £ — shr(1, pz). We also pull out p, from the object composition for clarity before
re-folding erase(—). This proves G6 and completes the proof. O

LeEMMA F.88 (HT-APP).
(HT-APP)

Px {P}e{Q} E wp(e) {Q}
Proor. Unfolding {—} — {-}, we must prove P * ! (P — wp (e) {Q}) E wp(e) {O}. By !-L

and x-MoNo, it suffices to prove P * (P — wp (e) {Q}) E wp(e) {O}, which follows from —*-
L. O

LEmMA F.89 (WP-ADEQUACY). Ifemp E wpg (e) {w. "w € Z}, then oks(e).

Proor. Unfolding emp, k, and ok (since v/ @), suppose we have k, ¥/, ¢/, and ¢’ such that
e V. wpy (e) {w. "w € Z"}(w, @)V
« FF(2,0,6) oF (¥ e) »

It remains to prove that ¢’ € Z(GV and y/ = @(?.

Let & = (step : k + 1,sizes : @) and instantiate H1 with &. Unfolding wp (—) {—} tells us

Vo' b, pr 0,k < wbstep,), e,) = w¥sizes,w’ = (step : w*.step — k,sizes : ') .
F+ (f,erase(@ o pr),e) =F (Y, 1/ e) »
= 3p #pry 2y nerase(p’ @ pp) =y’ Ne' €lord ATe € Z7 (', p’)

Instantiate this with @ J &, @ § @, ¥/, p’, and €. Supplying H2 tells us that there exists some p’
where (among irrelevant things)
e erase(p’ e @) = ,u’(m)
e e e’ (a)’,p’)(H4)
By the definition of "=, G1 holds. Furthermore, p’ = @ necessarily, so erase(p’ ® @) = @ = 1/,
solving G2. O

F.3 Properties of the ABI

LeEMMA F.90 (LR-VAL).
VITIG) = E[T](w)

Proor. By the definition of E[T], wr-vAL, and REFL.]

LeEMMA F.91 (LR-BIND).
E[T.J(e) xV w. V[T](w) = E[T.J(K[w]) £ E[T.](K[e])

60 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Proor. By the definition of E[T] and wr-BIND, it suffices if
wp () {VIT.]} * V w. V[T.](w) — E[TJ(K[w]) & wp (e) {w. E[TJ(K[w])}
which follows by wp-RAMIFY. O
LemMA F.92 (LR-ADEQUACY). Ifemp £ E[Z]5(e), then oks(e).
Proor. By unfolding E[-], V[-], then U[-] and applying wr-ADEQUACY.]

Definition F.93 (Canonical Semantic Signature). Let > be a fully rigid signature. Its canonical se-
mantic signature is defined

——i<n

(=) = [Xr—) <kind 1k, sel : [s‘ — <off:i,semty : D(V[[T,]]gXD> i< n]> | o rigidk X {s;: T; "}

Note the recursive use of (>) is justified by the use of > . Because V[—] is defined only in terms
of operations that are non-expansive and contractive with respect to the step-index, recursive uses

of () inside of V[-] are suitably guarded.

LEMMA F.94 (SIGNATURE SUBSTITUTION UNRESTRICTED). S[>]: () is unrestricted:
S[21:(s) £ I S[2]:(5)

Proor. Immediate from the definition of S[—] using ! -IDEM. m]

LeMMa F.95 (C-WEAK).
dom(y’) 2 dom(y) = C[I[(y) r C[II(y)

Proor. Suppose we have dom(y’) 2 dom(y). Unfolding C[-] and applying x-mono, it suf-
fices to prove "dom(y) 2 dom(I')" £ "dom(y’) 2 dom(I')". This follows by observing dom(y’) 2
dom(y) 2 dom(T'). O

LeMMa F.96 (C-sPLIT).
S[EI(s) * C[LLLI(y) 2= S[Z]() * CIL](y) * S[Z](5) * CIL](y)

ProoF. By SIGNATURE SUBSTITUTION UNRESTRICTED, ! -UNR and *-MoNO, S[>](¢) is handled.

Unfolding C[[-] and -7, it remains to prove both
e dom(y) 2 dom(I,I}) & dom(y) 2 dom(I}) A dom(y) 2 dom(I)(CY
o Serern VITIO) 3 derer VITIG () * Korer, VITIr ()

Note that each I' is a multi-set (as evident from srRc-sTAT-DUP), which does not change how I, T,
is split into I and I.. G1 follows from dom(I’,I}) = dom(I}) U dom(I;) and properties of 2. G2
follows from unfolding %, as each occurrence of any I', I, 5 x : T appears in exactly one of I, or
I, by the definition of I, T.. m]

LeEMmMA F.97 (C-coNs).
o [fT'3x:T, then
S[EIGe) * CITI(y) & VITI(y () — (S[Z](5) * C[T,x: T](¥))
o Ifx ¢ dom(T), then
S[EIG) * C[I](y) B ¥V w. V[T](w) — (S[Z](5) * C[I',x = T](y[w/x]))

Proor. We prove each case separately, in similar ways. Note that if x ¢ dom(I"), we can pick
an arbitrary w for the new substitution to map x to.

Realistic Realizability: Specifying ABIs You Can Count On 61

Case: I' 3 x : T By applying —x-R, cancelling S[>](¢), and unfolding C[-], it suffices if
"dom(y) 2 dom(I)" V[T](y(x))*"*" V[T](y(x))
"dom(y) 2 dom(T,x:)" V[T]Gy

Since dom(y) 2 dom(T), it follows that dom(y) 2 dom(I',x : T) asI' 3 x : T already.
Unfolding s thus completes the proof.

Case: x ¢ dom(I") Applying V -R, take an arbitrary w, then apply —x-R, cancel S[>](¢), and
unfold C[—]. It therefore suffices if

“dom(y) 2 dom(1)” V[TJ (<)) < V[T]()
“dom(y[u/x]) 2 dom(T,x: 1)1 V[T [(y[u/xlGe))

Since dom(y) 2 dom(I'), it follows that dom(y[w/x]) 2 dom(T,x : T), as we add x to the
domain of y. Now, consider V[T,](y[w/x](x;)). If x; : T, is exactly x : T, which occurs
once, then y[w/x](x;,) = y[w/x](x) = w by the definition of substitution, even if x €
dom(y). Otherwise, x; # x and y[w/x](x;) = y(x,). With these observations, unfolding %
completes the proof, since the remaining x; : T; € I are exactly the x, : T, € I".

m}
LeEmMa F.98 (C-uncons). IfI' 3 x : T, then
S[Z](s) * C[TT(y) £ VTI(y () * (V[T (y(x)) —* (S[=](s) * C[T](y)))

Proor. Unfolding C[-], we must prove

el

S[=)(¢) "dom(y) 2 dom(1)" V[TI(y(x))
VITGE) VITIGE) = SEIE * CII()

Since I' 3 x : T, we can apply x-mono, cancelling V[T](y(x)), followed by —-R to add it back. It
therefore suffices if

el

S[2)(¢) "dom(y) 2 dom(1)” V[TIG()
S Crly)
which follows by cancelling S[2](¢) and refolding C[-]. o

F.4 Compiler Compliance

THEOREM F.99 (CoMPILER COMPLIANCE).
“iI're:TwedF =0T pe: T

Proor. By induction on the compilation derivation, in each case appealing to the appropriate
compatibility lemma in Compatibility Lemmas. O

LeEMMA F.100 (Cross-COMPILER LINKING). For any two compliant compilers ~»q and ~»y, if
Shike :Tymye AF and >0, x: Ty ke, : T, wg e, 4F, (withx ¢ 1), then 31, T, Er, 5,
constx =e;; e,: [,

Proor. Follows immediately from SAFE LINKING with the definition of compliant compilation.
[m]

LEmMA F.101 (SAFE LINKING). If 21 Ep, e, 0 Ty and 251, x : T, kg, e, ¢ T, (withx ¢ 1), then
30,1, Ep, p, constx =e;; e, : T,

62 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Proor. Let F = F,F, and observe that >;I} kr, e, : T, implies >;I' k¢ e, : T,. This follows
by unfolding kr, with the observation that F 2 F,. Similarly, >;I,,x : T, Er, e, : T, implies
>;1,,x: T, Er e, : T,. The result then follows from COMP-LET-COMPAT.]

THEOREM F.102 (COMPILER ADEQUACY). If2;@ Fe:Z ~» e 4 F and X 4 F, then okg(e).

ProoF. In addition to > 4 FH) applying CoMPILER COMPLIANCE gives us ¥; @ kr e : ZH2) Un-
folding k¢, this is

VE 2 F 6y S[2]: (s) * Cl2l (v) ¢ E[Z]5 (ely])
Since the context is @ and e’s free variables are exactly those in the context (which is easily con-

firmed by induction on the compilation relation), e must be closed and thus e[y] = e. Unfolding
C[-] reveals that C[@]:, (y) = " T7'. Thus, we can simplify as

VE 2 F,6. Sl (¢) F S[Z]E ()™

By CANONICAL SIGNATURE SATISFIABLE with H1, we have emp £ S[2].(2). Instantiating H3
with F 2 F and (2, using TRANS as well, we have

emp & E[Z] (e)
okr(e) now follows from LR-ADEQUACY. O
LEMMA F.103 (CANONICAL SIGNATURE SATISFIABLE).
SHF=>FCF = empke S (2)
PRrOOF. Assume the premises » 4 F(H!) and F ¢ 72 Applying & -InD, it suffices if
emp A > SE]e (2)e £ S (2)

Inverting H1 with comp-3, we have that every definition in 3 is rigid ™3 Then (—) is defined and

ensures dom(2 |, = dom(Z)(H4). We now use ! -emp and ! -A; to transform the proof obligation
into

! (emp A5 STT(3),) & ST 3D,
Unfolding S and applying ! -MmoNo, we must show for arbitrary m k X {ﬁkn} € 2 that
emp A > S[Z] (25
“dom((>)s) 2 dom(2)™ Y rSkind =k "dom(S.sel) 2 {s | i < n}7
Vi<nlwp ((seli)F, ()) (0. " = Ssel(s) o}
Vi< . Ssel(s).semty(v) = & V[T]Y ()

V £ (€ 0% 8.0bj(£+1)} (destry)y (£) {emp}s OO
"m = rigid = dom(d.sel) C {s, | i <n} AVi < n.d.sel(s).off =i

1(G7)

where
. . (200 \]\
§=(2)p(X) = <k|nd sk, sel = [si > <ofF i, semty : > V[T][" >]>
G1 holds by H4. G2 and G3 hold by H5. G7 holds by H3 and H5. G5 follows from H5 with =-reFL.
Now, rewriting with SIGNATURE SUBSTITUTION UNRESTRICTED (implicitly using A-moNo and ©> -
MONO), we can apply > -! to transform the premise into !> (S[2]. (2]). Then by !-UNg, it
suffices to use this information in order to prove the following two goals:

Realistic Realizability: Specifying ABIs You Can Count On 63

e For G4, it suffices by V -R and ! -mono if for all i < n
> S[2]L () F wps ((se1;>F, ()) {w. Tw = 8.sel(s)).off T}

Inverting H1 with comp-3, we have F 3 selj () {sel ;X}(H6). Then by wr-aprp with H6
and > -moNo, it suffices if

S[2]. (¢) E wps (&& zX) {w. " = 8.sel(s).off 1}

which follows from strL and H5.
e For G6, by V -R, unfolding {-} — {-}, !-monNo0, and —-R, it suffices if for all ¢,

>S[2].(g) €+ 0 S.obj(f+1)
wpp ((destrx) (£) {emp}

Inverting H1 with comp-2, we have F 3 destry (r) {destr; (r)}(m). Then by wp-app
with H7, > -R, and > -Mono, it suffices if

S[Z](g) £+ 0 Sobj(L+1)
wp (destry (£)) {emp}
which follows from prop then pesTrOY with H5 and O[-].

O

LeEMMA F.104 (SIGNATURE SATISFIABLE). For any %, there exists a F, ¢ such that emp £ S[2]:(¢).

Proor. Take >’ to be the same as > but with every flex definition marked rigid. Then take F to
satisfy >’ 4 F (which must exist, by comp-Z). Then apply CANONICAL SIGNATURE SATISFIABLE and
use SIGNATURE PRESERVATION for each X € > O

Lemma F.105 (pup).
PEOV[T](w)

P (¥ P+ V[TI) = O(0) & wp (aup () (0)

ProOF. By caseson T.
Case: T = Z. Unfolding ‘V[-], U[-], and dupr (-), it suffices if

P VnP—=+*"weZ —0O(n)
wp (-1) {0}

given the premise
PeoTwez EHY

By wpr-vAL, V -L, and —*-L, it suffices if
PEP*"weZ
which follows from H1 with ! -"=7, & -!, and ! -UNR.
Case: T # Z Unfolding V[-], R[-], and dup ; (-), it suffices if
P VnP—%(Tweloc\null? x @, O[T](w+1)) —* O(n)
wp (++) {0}

given
PEG (TweLoc\ null™ x @, O[T] (v + 1))

64 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Applying ¢ -prop and ¢ -! with H2, followed by "—"-L, we learn w € Loc \ null(H3), SO
we rewrite for clarity

P VnP—("¢eloc\null" x @ O[T](£+1)) — O(n)
wp (++£) {Q}

Applying wp-INCR-SHARE with H2 and ¢ -DRoP, and then > -R, it suffices if

Vn P—x ("¢eloc\null? x @, O[T](£+1)) —* O(n)
Va>1.P %@ O[T](t+1) — O(n)
which is straightforward with H3.

LeMmMmA F.106 (DROP).
S[E:(e) £V w, TAZAV[T]E(w)} drop’ (w) {emp}s

Proor. Applying > -IND, it suffices if
SEle(¢) AV w, THI. {(V[[T]]Ii(w)} drop’ (w) {emp}
Vw TH3. {(V[[T]]g(w)} drop’ (w) {emp}r

If > = @, then the goal is solved vacuously. Otherwise, we introduce arbitrary w and T at the
meta-level with V -R and proceed by case analysis on T A »HD,

Case: T = 7. After using SIGNATURE SUBSTITUTION UNRESTRICTED, ! -A1, and ! -IDEM, then
unfolding {-} — {-}, we can apply ! -MoNO and —-R. It therefore suffices if

| (ST21(e) A& ¥ T4 S AVITIE) drop’ (1) {emp}) VIZIS(s)

wpe (drop’ () {emp)
Unfolding the definitions of drop. (-), V[Z], and U[-], we must prove

! (S[[z]]F(g) A Y, T 43 {V[TIE()} drop (w) {emp}) ryeZn

wpe (—1) {emp}

which follows from wr-var, ! -"—7, and ! -DRrOP.

Case: T # Z. Like above, we rewrite with SIGNATURE SUBSTITUTION UNRESTRICTED and ! -
A1, then unfold {—} — {—}. Applying ! -MoNO and —-R, then unfolding drop? (-), V[-],
and R[-], it suffices if

SEls(e) AV u, THEI. {(V[[T]]i(w)} drop? (w) {emp}
"weloc\null?l @,O0[T]i(w+1)

wpp (consty = ——w; if (y) {y} else {destrﬁ (w)}) {emp}
With "—"-L, rename w to ¢ for clarity. Manipulating with > -R, > -A, and > -, it suffices if

> (SIZ1(9) AV 5 T 43 AVITIE)) drop} () {emp}) @ O[TIE(e+1)

wpp (consty = ——w; if (y) {y} else {destrﬁ (w)}) {emp}

We first use wp-BIND and WP-DECR-SHARE, cancelling @, O[T (¢ + 1) and applying > -
Mmono. Then, after applying wr-LET and > -R, it suffices to consider two cases:

Realistic Realizability: Specifying ABIs You Can Count On 65

e We must show
SEs(g) AY w, THZ. {"V[[T]]g(w)}dropi (w) {emp} "n>0"

wp (if (n) {n} else {destr’ (¢£)}) {emp}
which is straightforward from wp-1r-T and > -R, using SIGNATURE SUBSTITUTION UN-
RESTRICTED, ! -Aq, ! -" =7, and ! -DROP.
o We must show
SEl:(¢) AV w, THZ. {(V[[T]]f.(w)} drop’ (w) {emp}
S[El:(¢) "n=0" 0 O[T]a(£+1)

wpe (if (n) {n} else {destr? (f)}) {emp}

which follows by first applying wp-1¥-F and > -R, then DEsTROY (with H1) after using
SIGNATURE SUBSTITUTION UNRESTRICTED, ! -A1, ! -A /%, and ! -L.

m]
LEMMA F.107 (DESTROY). If2 + T, then
S[E1(¢) Vw T4 AV[TIE()} drop? (w) {emp}:™ 250 O[TE(£+1)
wpp (destr? (¢)) {emp}

Proor. Assume > + T2 and proceed by cases on T.
Case: 7. Trivial because O[Z](¢) = L.
Case: f' — T. By O [[T,l — T]] and destr?,. . (=), with ! -Drop, it suffices if

£ 0 % Self % {£ +— 0 % Self} (destr)y (£) {emp}r £ wpp (x(£ + 2) (£)) {emp}
where
Self =€+ 1+ (call)y x £+ 2 (destr)y x Env

for some call, destr, and Env. This follows from wp-Bop, wpP-LOAD, & -R, and HT-APP
interspersed with wp-BIND and > -R.
Case: X. By O[X], it suffices if

S[El () Vow, TAZAV[T]a(w)}drop’ (w) {empls £+ 0 g(X).obj(£+1)
wpe (destr’y (£)) {emp}

Note that by H2 and unfolding S[>];(¢), there is some § = g(X)(H3). By H2, proceed by
cases on the mode of X.
Case: 2 3 flexk X {=}. By destr, (—) with | -DRrop, it suffices if

S[Z]:(g) *x £ — 0 x 5.0bj(£ + 1) F wpy. (destry (£)) {emp}

which follows directly the definition of S[-], ! -pDrOP, and HT-APP.
Case: 2 5 rigid k X {—}. By H3, 8[-], ! -, ! -DRrOP, and " = "-L we have §.kind = kHY
along with n = |dom(8.sel)| ™, Vi < n. §.sel(s)).off = i and

IV i< n,u Ssel(s).semty(w) = > V[T][5 (w)
Vow T43. {(V[[T]]é(w)} drop? (w) {emp}r €+ 0 ¢(X).obj(¢+1)

wpy (destr? (¢)) {emp}
Now proceed by cases on the kind of X.

66 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Case: k = struct First, rewrite with H3, §.obj using H4, H5, and destr’ (-). If
n = 0, the proof is straightforward from ! -prROP, WP-FREE, > -R, and wp-VAL.
Otherwise, by simplifying with H6 and =-L (using ! -UNR max(0, n — 1) times), it
suffices if

Vo, T4Z AV[T]i(w)} drop? (w) {emp}p(Hl)
T V[T

b0 size(6, 1+|n|) T+1+iw,

WP (const x; = #[1+1]; dropy (x:); “free (f); O) {emp}

for some W__. By n applications of wp-BOP, WP-LOAD with ¢ -R, wp-LET, and the
premise H1 (noting that it is unrestricted as both domains are inhabited) with
H2 via wr-rAMIFY, all interspersed with wp-BIND, > -R, and > -MONoO (to strip
the > s off the V[-]s), it suffices if

<n

t— 0 size(f, 1+|n|) t’+1+i0—>wsii

wpg (free (£); 0) {emp}

which follows from WP-FREE, > -R, and wp-VAL.
Case: k = enum First, rewrite with H3, §.0bj using H4, H5, and destr’ (—). By
simplifying with H6 and =-1, it suffices if

Vow TH2. {(V[[T]]g(w)} drop? (w) {emp}r
60 size(£,3) L+1-] £+20- 0w, >V[T](w)

i<n

if (£[1] = 1) {constxj =£|2]; d:rop?i (%:); free(f); O}

WPg {emp}

else {havoc}
for some j and W, - Unfolding —|—|, by wp-BoP and wp-LoAaD with ¢ -R, fol-
lowed by wp-BIND, > -R, and > -MoNO (to strip the > off the V[-]), it suffices
if

Vo, TH4Z AV[T]i(w)} drop? (w) {emp}r

£ 0 size(£,3) £+l £+2-w,. V[T]E(w)

e _ . s .]
WP if (j =1) {const x; = #[2]; drop7 (x,); free (£); O} {emp}

else {havoc}

By max(j —1, 0) applications of wp-Bopr and wP-IF-F interspersed with wP-BIND
and > -R, it suffices if

Vu T4, {(VIIT]]i(w)} drop? (w) {emp}p(Hl)
60 size(£,3) £+1—3 t+20 0w, V[T]:(w.)

if (j =3) {const x, = f£]2]; dropii (x;); free(f); O}

j<i<n
"Pe| elseif (j =1) {constx, = £[2]; drop} (x); free (#); 0 {emp}
else {havoc}

By wp-BOP, WP-IF-T, then wP-LOAD with ¢ -R, all interspersed with wp-BIND and
> -R, it suffices if

Realistic Realizability: Specifying ABIs You Can Count On 67

Vo, T 43 AV[T]E(w)} drop? (w) {emp}r ™™
£ 0 size(£,3) £+1— 3 t+20 0w, V[T]E(w.,)

WP (@ T (WSJ) ; free (£); O) {emp}

By wr-sEQ and the premise H1 with H2 via HT-APP and WP-RAMIFY, using both
wpP-BIND and > -R, it suffices if

>0 size(£,3) t+10 3 +20 0w,
wpg (free (£); 0) {emp}

which follows from WP-FREE, > -R, and wp-VAL.

LEMMA F.108 (sEL). If> 3> mk X {s; : T‘»kn}, then forall j < n
S[7e(5) * ¥ . "n = 6(X).5el(5).0ff T — O(n) & wpy (se1) ()

——i<n_(H1
Proor. Assume the premises > 3 mk X {s, : T, }(:

Case: m = rigid. Unfolding ﬁ;x’ it suffices if

and j < nM?) By cases on m.

S[1:(g) * ¥ n. "n = g(X).sel(s).off T — O(n) E wp; () {0}
By the definition of S, "—"-L, and SIGNATURE SUBSTITUTION UNRESTRICTED, it suffices if
V=7 0k wpe (1) {0}

which follows from wp-vaAL.
Case: m = flex. Unfolding &l;x, it suffices if

S[2]. () * V n. "n = ¢(X).sel(s).off T — O(n) E wp, (se1; ()) (0}
By the definition of S, SIGNATURE SUBSTITUTION UNRESTRICTED, and ! -L, it suffices if
WP, ((sel;)F ()) (w. T = 8.sel(s).0ff 1}V n. Tn = g(X).sel(s).off T —x O(n)
wpe (s€13, 0) {0}

which follows from Wp-BIND, WP-FUNPTR, and WP-RAMIFY.

F.4.1 Compatibility Lemmas.

LEMMA F.109 (COMP-LET-COMPAT).

(COMP-LET-COMPAT)
Mlhiepe T, X0,x:TiEpe,: T, x¢dom(l))

I, Epconstx=e;; e,: 1,

Proor. Unfold k and consider arbitrary F’ 2 F, ¢, y(Hl) . Assume the premises >; I kr e, : T, (Hz),
S, x: T Epe,: TZ(H3), and x ¢ T, We must show

S[2]: (¢) * CILLLIE (v) B E[TLIE (const x = e.: ex[y])

68 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

By C-spriT and simplifying substitutions, it suffices if
Sl (9) Clli () SPI () CILIE ()
8[[T2]]g,(const x=e[y]: ex[y \ x])
Then by C-cons with H4, it suffices if
S[Z]:(s) CILE () ¥V w VITLIE () — (S[2]:(6) * CIL,x : Tl (y[w/x]))
8[[T2]]§,(const x=e[y]; e[y \ x])

Observe that C[[[, x : Tlﬂ;(y[w/x]) E C[L,x: Tl]];((y \ x)[w/x]), since the substitutions are
equivalent (noting [w/x] takes precedence). Applying this fact, H2, and H3, using H1 and —-
MONO, it suffices if

E[TI (eilyD) ¥V w V[T, Jp (w) — E[T.] (e [y \ =] [w/x])
SHTZHF’(COHStX =e.[yls ey \ x])

By LR-BIND, it suffices if
(V[[Tl]];(w) Vow. V[T (w) = E[To](euy \ x][w/x])
E[T.]w (constx =w; e[y \ x])

which follows by —-L, wp-LET, and > -R. m]

LEmMMA F.110 (COMP-VAR-COMPAT).

(COMP-VAR-COMPAT)
Six:TeEpx:T

Proor. Unfold k and consider arbitrary I 2 F, ¢, y, By SIGNATURE SUBSTITUTION UNRESTRICTED,
! -DROP, and LR-VAL, it suffices if

Clx: TIE.(v) £ VITIE <[y
By C[-] and "="-L, it suffices if
VITE (r() & VITIE Gely])
where x € dom(y), which follows by substitution. O

LEmMA F.111 (COMP-DUP-COMPAT).

(coMP-DUP-COMPAT)
'sx:T, XI,x:TiEpe:T,

% T epdupr (x);e: T,

Proor. Unfold £ and consider arbitrary ¥ 2 F, ¢, y M) Also assume the premises I' 3 x : T, H2)
and >; 1, x: T, Ep e : T2(H3). We must show
Sl (¢) * CITTE (v) ¥ EIT-IE (dup +, (y(x)) :elyD)
By C-uncons with H2, it suffices if
VITIE () VITIE () = (SEL (9) * CITTE ()

ET.J5 (dup+, (y(x)):ely])

By C-cons with H2 and —x-Mono, it suffices if
VITIE () VITIE () = (VITIE (y()) =+ (S[2]:(¢) * [T x : T ()
E[T.] (dup+, (y(x)):elyl)

Realistic Realizability: Specifying ABIs You Can Count On 69

Then by H3 using H1 and —x-Mono, followed by —x-cURRY, it suffices if

VT () (VITIE () * VITIE (r(x)) —+ E[T.]5 (elyD
E[T.IE (qup v, (y()) selyD

By &[-] and wr-sEq, it suffices if
VITIGG) (VITIGG) * VITIE) = EMT] Iy
wp (dupr, (v())) (> EITI(lrD)
By wr-ramiFy and & -R, it suffices if
VITIGE) & wp (dupr, (v (VITIGG) * VITD)

which is exactly pup. O

LEmMMA F.112 (COMP-DROP-COMPAT).

(COMP-DROP-COMPAT)
>;Tepe:T,

>:Tx: T, Ep drop#l (x);e:T,

ProoF. Unfold k and consider arbitrary 7' 2 F, ¢, y™V. Also assume the premise ;' bz e : T, (H2)
We must show

S[21: () * CIT,x: TulE (y) B E[T3 (drop?, (y(x)) ely])
By C-spuiT, C[-], ! -DROP, and substitution, it suffices if

S (o) VITIE () Sl (o) CIITE ()
E[T.]5 (drop’ (y(x)):elyl)

By H2 with H1, it suffices if

S[1e(e) VITIE (v(x) E[T.IE (elyD)
E[T.J5 (drop (y(x):ely])

By E[-] and we-sEq, it suffices if

S[1e (6 * VITIE() * ELTIE(elyD) ¥ wpy (drop’, (v(0))) (> EITLE Iy}

By wp-MONO, > -R, and —x-emp we can rewrite as

S[51e(6) * VITIE() * (emp — E[T.JE(e[yD) & wpe (drop’, (r(o) | (E[TIE D)

Applying wp-RAMIFY, it suffices if

SI51:.(6) * VITJE) ¥ wpr (drop?, (v(x)) {emp)

which follows from DRrRoOP. m]

LeEMMA F.113 (comP-I-Z-COMPAT).

(comp-I-Z.-COMPAT)
;@ Epn:/Z

70 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Proor. Unfold £ and consider arbitrary ¥’ 2 F,¢, yH). By SIGNATURE SUBSTITUTION UNRE-
STRICTED, ! -DROP, and LR-VAL, it suffices if

Clals (v) £ VIZ]E (nly])
Unfolding C[-], V[-], U[-], and simplifying the substitution, it suffices if
"dom(y) 2 dom(@)" £ "n e Z”
which follows since dom(y) 2 dom(®) and n € Z. O

LEMMA F.114 (COMP-@-7-COMPAT).

(coMP-®-7.-COMPAT)
SlEre :Z XL, Epe,:Z

I, LEre, ®e,: Z

Proor. Unfold k and consider arbitrary F 2 F, g, y(Hl). Assume the premises ;I kr e, : 7(H2)
and 3; T, Er e, : ZM3) We must show

S[2]: () * CITLLIE (v) £ E[Z]5 (e @ e.) [y])

By C-spriT and simplifying substitutions, it suffices if
S[2]: (6) * CILIE (v) * S[=]: () * CILIE (v) £ E[Z]5 (e, [y] @ euly])
Then by H2 and H3 with H1, it suffices if
E[Z]5 (e [y]) * E[Z]% (eoly]) k E[Z]5 (e.[y] @ e.[y])

By Lr-BIND, V -R, and —*-R, it suffices if

VIZI5 (w) > E[Z]5 (e.[y]) £ E[Z]5 (w, @ e.[y])
Again, by LrR-BIND, V -R, and —-R, it suffices if

VIZ]E (0) * V[Z]5 (w.) £ E[Z]5 (v, @ w,)

By &[-], we-Bop, and 1> -R, it suffices if

VIZI (w) * V2] (w) £ VIZ ([8] (v, 02))
which follows after unfolding V-], U[-], and [®].

LeEMMA F.115 (coMP-I—-COMPAT).

(comp-I—-COMPAT)

[=yj: Tjj<m T, ze :Tkn — T,x : T‘K" Epe: T T #%z,x " distinct

i<n

Z;I“I:Fef:Ti - T

where

cally (z¢, X7 <") {const yj =*(z¢ + 3+ j); dupr, (yj)jm;e} ,

j<m

destry (zf) {const vy =*(zs + 3+ 3); drop% (yj)j ifree (zf); O}

Realistic Realizability: Specifying ABIs You Can Count On 71

and

const z¢ =malloc (3 + m);
*zg = 1;

x(zg + 1) = cally;

x(zs + 2) = destry;

Wz 43+ =y

Zf

A
e =

Proor. Unfold £ and consider arbitrary 7 2 F(H), along with ¢, y. Also assume the premises
——ji<m(H2) —i<n ——i<n (H3)
T=y: T, and¥;T,ze: T, — T,x: T, Ere:T . Simplifying substitutions via C[-]
and H2, it suffices if

constzs =malloc (3 +m);

*ze = 1

*(zg + 1) = cally; —i<n s
S[[Z]]F’ (g) * C[[r]];(}’) Fwp >I<(Zi +2) = dest};k; v [[T‘ - T]‘ F'}

s(ze +3+3) = P \z)(yy):

Zf

Using zs ¢ vy; : Tjj<m, we conclude that (y \ z¢)(y;) = y(y;) and simplify accordingly. By wr-Bop,
WP-MALLOC, and WP-LET interspersed with appropriate uses of wp-BIND, &> -R, and —-R, it suffices
if

SEIe () CITIS () t+j— & " size(t 3+m)
<m[

wp (t’ = 1; #(€+ 1) = cally; (£ +2) = destry; *(£+3 +) = y(¥3);) (v [[TK" - T]] ;}

where £ # nul11®™% by we-marroc. By applying we-sTORE three times, alongside wr-Bop and
WP-FUNPTR twice each (with appropriate uses of wp-BIND, > -R and —-R in between) it suffices if

SBle(o) CIEw))
t— 1 f+1 (cally)y €+2 (destry)y {43+ Y size (€, 3+ m)

wp (Er 37 = v) [T -1

S
F

By unfolding C[-], along with m more applications of wp-Bop and Wr-STORE, again interspersed
with wp-BIND, > -R and —-R as fit, it suffices if

S (o) €43+ y() * VITIG ()
1 f+1 (cally)y €+2 (destry)p size(€, 3+m)

wp 0 (V[T - T]7)

Make the following abbreviations

Env

Self

Kjeml +3+ = y(y5) * VIT[(y(y5) * size (£, 3+ m)
£+ 1 (cally)y x £+2 > (destry)p * Env

A
A

Then by wp-SHARE, —-R, and wp-vAL, it suffices if

S[[ZHF/ () * @ Self £V H:fi<n . T]] ;(()

72 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Applying —-L and cancelling, we proceed by > -1nD. It suffices if
—i<n S
SBIe(s) > (@eself + V[T = 1] (o)

@p Self =V Hfm - T]‘ 1i,(f’)

By —-R, V[-] with H4, O[-], @ -! with!-{—} — {-}, and 3 -R, it suffices if

i<
i

@cSelf SPle(s) A > (@ self + V[T = T] i 0)
@¢ Self {£ +— 0 % Self} (destry)p (£) {emp}
VT {@e Self * YeienVITIE (w)} (callide (67) {V[T]E}

Cancelling @, Self and applying SIGNATURE SUBSTITUTION UNRESTRICTED, ! -A, and | -UNR we
break the remaining proof obligation down into two goals:

o Simplifying with ! -L and A-L, we must show
S[Z]s () £ {€ > 0 % Self } {(destri)p (£) {emp}

Unfolding {—} — {-}, and applying SIGNATURE SUBSTITUTION UNRESTRICTED, ! -MONO,
and —*-R, it suffices if

S[Z]z () * £+ 0 % Self £ wp, ({(destry)e (£)) {emp}
By wp-app with destr, and H1, and > -R, it suffices if
SELe(e) €0 Self

wp (consty; = +(¢+3+J); drop3, (y;) sfree (8); o) (emp)

By m applications of wp-BOP, WP-LOAD, WP-LET, WP-SEQ, and DROP, all interspersed with
applications of wp-BIND, > -R, —x-R, ¢ -R, ¢ -DROP, and ! -UNR, along with appeals to the
definitions of Self and Env, it suffices if
£ 0
E+1 0 (cally)y €420 (destr)y 43+ y(y) | size(6 3+m)

wp (free (£); 0) {emp}

which holds by wp-FREE, > -R, and wp-vAL.
e We must also show

! (S[[Z]]F,(g) A e (@f Self — (V[[T’Kn - T]] i ({)))

VA @e Self * Yei<aVITIE (w)} (callide (677°") (VITIE)

Noting that Word is inhabited, applying ! -{—} — {-},!-V ,!-monNo0, V -R, and —-R it suf-
fices to show for all @,"~" that

—i<n S ——i<n
SPlLe(9) A > (@ Selfakq/ﬂt = T]] F/({’)) @c Self V[T ()
wp (<Callk>F' (¢, W_ii<n)) {V[Tlee}
By wp-app with call, and H1, it suffices if

S () A > (@[Self —x (V[[fkn N T]‘ i(f)) @ Self mi<n

> wp (const y; = +(£+ 3+ j); dupr, s e[f/zf,wi/xf"]) (VTS

Realistic Realizability: Specifying ABIs You Can Count On 73

Crucially, after > -R (using A-MoNoO) and > -A, we can apply > -mono. It therefore suffices
if

i<
i

S[[Z]]F,(g) A (@(Self —*(V[[T N T]] i([)) @ Self mi<n

wp (const yi =*(£+3+3); dﬂﬂ (yj)j<m;e[t’/zf,w‘/x‘iq]) {(V[[T]]g/}

By m applications of wp-BOP, WP-LOAD, WP-LET, WP-SEQ, and DUP, all interspersed with ap-
plications of wp-BIND, > -R, —%-R, & -@ , and < -DrRoP, along with appeals to the definitions
of Self and Env, it suffices if

SITe () A @ self V[T = 1] (o)
@self VITIE() — VITEGG))
wp (ele/ze 0 ™ YO v ™ (VITIE)

By SIGNATURE SUBSTITUTION UNRESTRICTED, ! -Ay, | -UNR, ! -L, A-L, and —-L, it suffices
if

SPLo V[T =T VITE@ ™ VITEGG)

wp (ele/zz, "y G s T AVITIE)
which follows from H3 with H1 and the definitions of C[-] and E[-].

]
LeEMmMmA F.116 (comP-E—-COMPAT).
(comp-E— -COMPAT)
;T Epe; : T‘-Kn 2 Tr Er e :fKn - T
Z;fkn, Iy Er const x; = e;; (%(x; + 1)) (xf,e_ik”) : T
)) (#H1) —— 1))
Proor. Unfold k and consider arbitrary F' 2 F, ¢,y . Assume that ;T Er e, : T, and

i<n (

2 Tr Er e f — T 3). We must show
S (5) * C [[F r,]] ;(Y) E E[TIE (const x, = e (x(xc + 1)) (x5 [¥])

By C-spriT and simplifying substitutions, it suffices if

SO~ CHE® SPL() CINE®

EITIE (constx. = efyls (+(x + 1) (x. e lrT "))
By H2 and H3 with H1, it suffices if

el om ™ &[T = 1] e

E[T]: (const x; = e [y]; (+(x; + 1)) (xf,rb/]kn))

By rr-BIND and wr-LET with V[-], R[-], and O[-], it suffices if for any ¢ € Locy+
erl-n™ @0 [[fk" . T]] i (£+1)

—i<

EITIE (e + 1) (£5D1™))

74 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

Unfolding O[-], this is

E[T](e.lyD ™"
3 call, destr, Env. let Self = £+ 1+ (call)y x £+2 > (destr)p * Envin
Self
* VI (I VITIE) * @ Self} (call)e (67" {w. V[T ()}e
* {1+ 0 x Self} (destr)p (£) {emp}r
EITIE (e + 1) (£2T1™))

Applying @ -3 and 3 -R, there exist call, destr, and Env. Abbreviate Self = £+1 — (call), x
¢+ 2+ (destr)y x Env, then observe that

' VT {kicn VT 15 (w.) * @ Self} call(L, 7" {w. V[T]i(w)}e
"\ x {€ 0 x Self} destr(¢) {emp}r

@;

by applying ! -V (noting that the domain Word is inhabited), ! -{—} — {-},and !-x. By @ -!, ! -L,
and ! -prop it suffices if

eI ey
@ Self ¥ T {PianVITIE () * @ Self} (call)e (65°") {w. V[TIE(w)}e
EITEE ((+(e+ 1) (£ 5T™))

By wp-BIND and wp-LoAD with ¢ -@, ¢ -DRopP, and > -R, appealing to the definition of Self, it
suffices if

i<n

&[T] (e.lyD
@ Self VT (JeicaVITIE(0) % @ Self} (call)s (677) {w. V[TIE(0)}e
EITIE (ca1 e (651"
By n applications of Lr-BIND, it suffices if
VML
@ Self VT (JeicaVITIE(0) % @ Self} (call)p (677) {u. V[TIE(0)}e
E[T]S ((call)p (£7))

which follows from &[-] and xT-APP.

O
LeEMMA F.117 (comp-I-struct-cOMPAT).
(comp-I-struct-COMPAT)
> 5 rigidstruct X {s, : T} %L Epes:Th
Z;Ekn Ep constx =malloc(n+1); *sx=1; x(x+1+1) =ey; Knx : X
. (H1) L. ——i<n_(H2)
Proor. Unfold F and consider F' 2 F, ¢, y'""). Assume that > 5 rigidstruct X {s;: T '} and
—i<n(H3)
>;TheEe : T, . We must show

SPL [T w

E[X]: (const x =malloc (n+1); *x =1; *(x + 1 +1) = e, [y]; i<nx)

Realistic Realizability: Specifying ABIs You Can Count On 75

By C-spurt, it suffices if

SEI-) " CE®
8[[X]]g,(const x=malloc(n+1); *x=1; *(x+ 1+1) = e;[y]; i<"x)

By SIGNATURE SUBSTITUTION UNRESTRICTED and ! -UNR, then H3 with H1 and , it suffices if

SPlo eMEEND”
E[X]5 (const x =malloc (n+1); *x = 1; =(x + 1 +1) = e, [y]; i<"x)

By wp-BoP, wpP-MALLOC, and WP-LET interspersed with wp-BIND and > -R, it suffices if for any
f e LOCN+ (H4)

SEL () E[TE (L) i & ™ size(6 n+1)

SHXH}%/(*[— 1’ :}:(f + 1+ 1) = ei[Y]’ {’)

By wP-sTORE and > -R, it suffices if

S (o) 8[[Ti]]g(el[}’])i<n b1 (+1+i0 & size (¢, n+1)
ENXIEGE+ L+ =elyl: 0

By n applications of LR-BIND, wP-BOP, and WP-STORE, interspersed with wp-BIND and > -R, it

—i<n

suffices if for any W,

Sz (¢) (V[[Ti]]é(wi)iq b1 t+1+i—w, " size(t,n+1)
E[XI5(0)
By WP-SHARE, LR-VAL, V[-] with H4, R[-], @ -!, and @ -moNo, it suffices if

Sz (¢) (V[[Ti]]g(wi)iq C+1+i—w, " size(f, n+1)
¢(X).obj(£ + 1)

Note that by H2 and unfolding S[-], there is some & = ¢(X) (05 Since the mode of X is rigid, by
by H5, we have we have §.kind = struct ™ n = |dom(8.sel)| 7, Vi < n. 8.sel(s).off = i'™® and

it suffices if
IV i < n,w. bsel(s).semty(w) = > V[T]5(w)

VITEGW) T+ixio " size(6n+1)
¢(X).obj(¢ +1)
If n = 0, we are done with ! -Drop. Otherwise, unfolding §.obj with H6 and HS5, it suffices if
IV i < n,w. dsel(s).semty(w) = > V[T]5(w)
(V[[Ti]]fﬂ(wl)lq T+1+iow. " size(f, n+1)

size (£, 1+ |dom(S.sel)|) T w.. £+ 1+8.5el(s).0ff s w. * d.sel(s).semty(w) =

which follows from H7, HS, ! -UNR, > -R, and =-L. m]

LemMa F.118 (comp-E-struct-cOMPAT).

(comp-E-struct-COMPAT)
¥ 3 mstruct X {s; : TiKn} S>;Tepe: X

3;T kp constx = e; constxy = >:<(x + sel;.X + 1); dup T, (x;) ;dropy (%)%, : T;

76 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

———i<n_(H2)
ProoF. Unfold and consider F’ 2 F, ¢, yH). Assume the premises > 3 mstruct X {s, : T},

and 2;T Er e : X H3) We must show
Sl (s) CITIE(v)

E[TIs (const x = e[y]; constx, = (x + ﬂ;x + 1); dupr, (x;) ;drop% (x) ;XJ)

By SIGNATURE SUBSTITUTION UNRESTRICTED and ! -UNR, then H3 with H1, it suffices if
S () EIXIE (elyvD)
[T (const x =ely]; constx, = x(x + @;X + 1); dup -, (x;) ;dropy (x) ;xj)

By Lr-BIND, V[-], R[~], and O[], it suffices if for any ¢ € Locy+ %
S[E]i(g) @ g(X).0bj(£ +1)

8[[Tj]]§, (const x =#¢; constx; = \(x + sel?_x + 1); dup , (x;) ;dropy (x) ;XJ)

By wr-LET and > -R, it suffices if
S (g) @eg(X).0bj(f +1)
8[[Tj]]g, (const Xy = >z=({’ + ﬂ;x + 1); dup, (x;) sdropy (£) ;XJ)

Note that by H2, ! -unr and unfolding S[~], there is some & = ¢(X) ™). Since the mode of X is
indeterminate, by H5, we have we have §.kind = struct™) and it suffices if

S[E](g) Vi< nu Ssel(s).semty(w) = V[T]5(v) @ 8.0bj(£+1)

BITIE (constx, = +(e-+ 5013, +1): dup, () crop (053
Then by 8.0bj with H6 and H5, and also -3 and @ -3 , it suffices if for any w,"**™*"

S[Z](g) Vi< nu dsel(s).semty(w) = > V[T]2 (w)
@; (size (€. 1+ |dom(8sel)]) * £+1+8.el(s).off > w. % 5.se|(s).semty(ws))

8[[Tj]]f_, (const X; = >;=<f + &;X + 1); dupr, (x;) sdropy (£) ;Xj)

edom(d.sel)

By !-L and V -L, it suffices if
S (s) b.sel(s).semty(w) = > V[T]2 (w.)
@; (size(t’, 1+ [dom(8.sel)]) *

8[[Tj]]f_, (const X, = >k<f + &Jix + 1); dupr, (x;) sdropy (£) ;Xj)

£+ 1+ 8.5el(s).0ff i w. % 5.sel(s).semty(ws))

sedom(d.sel)

By !-=, | -UNR, @ -!, and =-L to use = to rewrite under the @,, then > -R, > -x, and @ ->, it
suffices if
S (s) .sel(s).semty(w) = > V[T]2 (w.)
size (£, 1+ |dom(J.sel)|)
* V[T (w.,)
@ | % r+1+8sel(s).off o
*sedom((s.sel)\sjf + 1+ d.sel(s).off > w, * d.sel(s).semty(w.)

e[l (const x; = :;:(t’ + ﬁ;x + 1); dup, (x;) sdropy (£) ;xj)

Realistic Realizability: Specifying ABIs You Can Count On 77

By two uses of wp-BOP and also SEL with | -UNR, all interspersed with wp-BIND, &> -R, and > -MONO

(to strip the), it suffices if

S[2]5 (g) b.sel(s).semty(w) = > V[T 5 (w.)
size (£, 1+ |dom(d.sel)|)

* (V[[TJ]]IS;’(WSJ)

@e| % £+1+8sel(s).off - w,
* * cdom(Bsel)\ £+ 1+ .sel(s).off > w, * &.sel(s).semty(w.)
S om . SJ'

ST (const %y = (£ +d.sel(s).off +1): dupy, (x;):drop} (¢) ;XJ)

By wp-LET and wP-LOAD with ¢ -@ and ¢ -DROP, interspersed with wp-BIND and 1> -R, it suffices

if
S[2]5(¢) b.sel(s).semty(w) = > V[T 5 (w.)
size (£, 1+ |dom(d.sel)|)
* (VHTJ]]IS;’ (WSJ)

@e | % £+1+8.sel(s).off > W,
* *sedom@.se.)\sf +1+8.5el(s).off > w. * 8.sel(s).semty(iv.)

SHTJ]];, (dﬂ T (wsj) ;drop X (£) ;wsj)
By wp-sEQ and pUP with ¢ -@ and ¢ -prop, followed by wp-ramIFY and > -R, it suffices if
S[2] (g) b.sel(s).semty(w) = > V[T 5 (w.)
size (¢, 1+ |dom(d.sel)|)
* (V[[TJ]]; (v,)

VITIEGL) @l % 41+ 85el(s).off > w,
* *Sedom(a‘sel)\%f + 1+ .sel(s).off — w, x §.sel(s).semty(w.)

elrls (drﬂi (6) ;wsj)
By !-=, @ -!, and =-1, along with @ -moNo and > -R, we can once again use = to rewrite under

the @, . It therefore suffices if

Sl (¢) VITIE (w)

@, (size (¢, 1+ |dom(6.sel)|) « *sedom(5 sel)[+ 1+ 8.sel(s).off > w, x 6.sel(s).semty(ws))
[Tl (dropf< (€) ;wsj)

By @ -3 and *-3 , and folding V-] (using H4), R[], O[-], and §.obj with H5 and H6, it suffices

if
S (o) VITIE (w) VIX]E (o)

EITIE (drops (0) 5w,

By wp-sEQ and Drop, followed by wr-ramiIry and > -R, it suffices if
(V [[TJ]]ls;’ (wsj)

SHTJH; (Wa)

which follows by LrR-VAL.

78 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

LemMa F.119 (comp-I-enum-COMPAT).
(comp-I-enum-COMPAT)
Y 3> menum X {s; : T‘-Kn} 5T kpe - T

;T Er constx =malloc (3); xx=1; x(x+ 1) = sel?x; #(x+2) =e; x: X

i

—i<n (H2)
Proo¥. Unfoldk and consider i 2 F, ¢, yH). Assume the premises > 3 mstruct X {s, : T}

and 2T Fr e, : T, (H3) We must show
S[]:(s) CITIE (y)
E[X]E (constx =malloc (3); *x=1; *(x+ 1) = &;X; #(x +2) = e[yl x)

By SIGNATURE SUBSTITUTION UNRESTRICTED and ! -UNR, then H3 with H1, it suffices if
Sl (o) &[T (e lyD
8[[)(]]; (constx =malloc (3); *x=1; x(x+ 1) = ﬂ;x; #(x+2) =e [yl X)

By wp-MALLOC, WP-STORE, and wWP-BOP, all interspersed with wp-BIND and > -R, it suffices if for
any ¢ € Locy+ (H4)

SEIe(s) E[TIS (e lyl) size(£,3) L1 L+1>% (+2 %

EIXIE, (+(e+1) = se1 7 +(£42) = /[y ¢)

Note that by H2, ! -unr and unfolding S[~], there is some & = ¢(X) ™. Since the mode of X is

indeterminate, by H5, we have we have §.kind = enum™®) and it suffices if

S[2](g) Vi< nu dsel(s).semty(w) = > V[T]2 (w)
SHTJ]];(ej[y]) size(£,3) £—>1 £+1—> 8 (+2+—> &

EIXIE, (+(e+1) = se1 7 +(£42) = /[y ¢)

Then by wp-BIND and sEL with H5, it suffices if
IV i < n,u. S.sel(s).semty(w) = > V[T [5(w)
E[T I (e lyl) size(t,3) €1 L+1—>% (+2— &
EIX]E (+(£+1) = S.sel(s).off: (£ +2) =e [y]: ¢)
By wp-sTORE and wP-BoOP interspersed with wp-BIND and > -R, it suffices if
IV i < nu. S.sel(s).semty(w) = > V[T]2 (w)
E[TIs (e lyl) size(£,3) £+ 1 €+1> Ssel(s).off £+2+— &
EIXIE (+(e+2) = e [y]: ¢)
By LR-BIND, then ! -L and V -L, it suffices if for any w,
S.sel(s).semty(w) = > V[T]2 (w,)
VITI (w,) size(£.3) £+ 1 €£+1 dsel(s).off £+2— &
EIXE (+(e+2) =w,: £)
By wP-STORE, &> -R, and LR-VAL, it suffices if
S.sel(s)).semty(w) = > VT3 (w,)
V[T 15 (w)) size(t,3) €1 £+1> Ssel(s).off £+2w,
VIXE 0

Realistic Realizability: Specifying ABIs You Can Count On 79

By wp-sHARE, V[-] with H4, R[], O[-], and H5, it suffices if
S.sel(s).semty(w) = > V[T]2 (w))
@¢ (V[T]5 () * size (£, 3) x £+ 1 S.sel(s).off x £+2+— w))
@¢ g(X).obj(£+1)
By !-=, @ -!, and @ -mono0 with §.obj and HS6, it suffices if

8.sel(s).semty(w) = > V[T][5 (w)
V[T (w)) size(t,3) £+1+> Ssel(s).off £+2— u,

size (€, 3) \/sedom(&sel)(+ 1 d.sel(s).off x J w,. £+ 2 — w, x d.sel(s).semty(w.)
which holds by selecting s; and applying =-L with > -R. O

LEMMA F.120 (comp-E-enum-COMPAT).
(comp-E-enum-COMPAT)
S origidenumX{s : T} ST kre:X Shnx: T Fre T, L3x<"

constx = e;
consty = *(x + 1);

1,1 Er T
if (y=1) {const x; = #(x + 2); dupr, (x;);dropy (x); el}
else {havoc}
. (H1) .. ———i<n (H2)
Proor. Unfoldk and consider F’ 2 F, ¢, y'""). Also, assume that > > rigidenum X {s; : T, '} ,
i<n(H4
S e XM ST S T rre, : T (). We must show

S[J: (o) CILLIE (1)

const x = e[y];
consty ==(x + 1);

ST | - . ‘
if (y = 1) {const x, = #(x +2); dupr, (x,);drop} (%) ;el[y\xi]}

else {havoc}

By C-spLiT and n applications of A-R with C-cons (with ! -UNR as needed), it suffices if
SE () CIRE W) N\, Y o VITE () (S[5] () CITx s TIE (vl fx.1)

constx = e[y];
consty = *(x + 1);

E[TIE | - 4 i
if (y=1) {const x; = x(x + 2); dup, (x;);dropy (x);ely\ xl]}

else {havoc}
Simplify with the observation that (y\x;)[w./x;] = y[w, /%], since w, will take priority as the value
for x, in the parallel substitution, regardless of whether x, is in y. By SIGNATURE SUBSTITUTION
UNRESTRICTED and ! -UNR, then H3 with H1 and &, it suffices if

SPIee) XIS\, Y o VITIE () = E[TIE (e ly \ =] lw. /)

const x = e[yl];
consty = *(x + 1);

EITIE | - . :
if (y=1) {const x; = x(x + 2); dup, (x;);dropy (x) ;e [y\x1]}

else {havoc}

80 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

By Lr-BIND, V[-], R[-], and O[], it suffices if for any ¢ € Locy+)
SILo(6) @re(obje+ D)\ Vu VITIE (u) = EITIE (e.ly \ 2.1 /x.])

constx ={¢;
consty = *(x + 1);

i<n

eIXJE,
if (y=1) {const x; = #(x +2); dupr, (%) sdrop (%) e[y \ =]
else {havoc}

By wp-LET and wP-BOP interspersed with wp-BIND and > -R, it suffices if
S[E1e(s) @esO0.0bj(e+1) \ Vo VT (w) —+ E[TIE (e [y \ =1 [w./x.])

consty = =(£+1);

EIXIE | if (y=1) {constxj = #(£ +2); dupr, (x,) ;drop} (£) e[y \ xi]}
else {havoc}

Note that by H2, ! -unr and unfolding S[-], there is some § = ¢(X) (H6) Since the mode of X is
rigid, by H6, we have we have §.kind = enum™ n = |dom(8.sel)| ¥, Vi < n. §.sel(s).off = i'H),
and it suffices if
S[Z](g) Vi< nu. Ssel(s).semty(w) = > V[T]2 (w)
SPLe(e) @ec()obj(e+1) /\ ¥ VT (o) — E[TIE (e [y \ = [/x.])

consty = #(£+1);

8[[X]]g, if (y=1) {const x; = #(€ + 2); dup T, (%:) ;drﬂf< (0) e[y \ xi]}lq
else {havoc}
Then by §.obj with H7 and Hé, and simplifying with ! -size (-, —) and @ -!, it suffices if
S[2](g) Vi< nu dsel(s).semty(w) = > V[T]2 (w)
@; vsedm(&sal)f +1 5 S.el(s).0ff % T w.. L4215 w, * 5.sel(s).semty(ws))
size (£, 3) /\Kn\/ we VITIE () —* E[TI5 (e [y \ x.1[w./x.])

consty = #(£+1);

i<n

8[[)(]]; if (y=1) {const x; = x(£ + 2); dup, (x;);drop (£) e[y \ Xl]}
else {havoc}

By @ -V, V-L, and H8, we have n > 0(H1%) cases; if n = 0, then the disjunct under the jump is false,
and we apply @ - L (which is the expected nullary generalization of @ -V). Simplifying with ! -UNR
I-L,V -L,!-=, @ -!, and =-1 to use = to rewrite under the @,, then applying @ -3 , it suffices if
for any j < n and w;,

S[ZHF’ ()
Vi< nu dsel(s)semty(w) = V[T]5(v) @ (E+1— j*+2—uw x>V[T]5(w))
size ([’ 3) (V[[TJE}S;’ (WJ) — 8[[TJ]]15;' (eJ [Y \ XJ] [WJ/XJ])

consty = #(€£+1);

SHXH; if (y=1) {const x; = *(£ + 2); dup T, (x;);dropy (£) ey \ xl]}
else {havoc}

Realistic Realizability: Specifying ABIs You Can Count On 81

By wp-LoaAD—with ¢ -@ and ¢ -DrROP—and WP-LET, interspersed with wp-BIND, it suffices if
S[[Zﬂp (5)
Vi< nu dsel(s)semty(w) = V[T]2(v) @ ((+1 j*t+2—u x>V[T](w))
size (€,3) VITIE(w) —+ E[TIE (e, ly \] [w, /1)

EIX]: (if (j=1) {const x; = *(£ +2); dupr, (x,);dropy (£) e[y \ xl]} ' else {havoc})

By @ -MoNoO, > -R, > -x, and @ -I>, it suffices if
S[2]:(s)
Vi< nw dsel(s)semty(w) = V[T]i(w) @ ((+1— 3*xt+2—u *V[T] ()
size(£,3) V[T][5 (w)) —+ E[T] (e [y \ =1 [w,/%])

SHX]]? (if (j=1) {const x; = *(£+2); dup, (x;) ;dropy (£) ey \ xl]} ' else {havoc})

By max(j — 1,0) applications of wp-Bopr and wp-1r-F, and then one more application of wp-BoP,
interspersed with wp-BIND, &> -R, and > -MoNo (to strip the >, recalling H10), it suffices if
S[E]:(s)
IV i<nw dsel(s)semty(w) = V[T (w) @ (6+1 G x+2u x V[T]5 ()
size (£,3) V[TIE (w) = E[TIE (e[y \ =, 1w, /%,1)

EIX]E (if (1) {const x; = (¢ +2); dupr, (x,);dropy (£) e[y \ XJ]} else {- -}n_j else {havoc})

By wp-1F-T, and wp-BoP, all interspersed with wp-BIND, and > -R, it suffices if

S[2]: ()
IV i<nw dsel(s)semty(w) = V[T]:(v) @ (6+1 jx+2u x V[T]5 ()
size (£,3) V[TI7 (w) = E[TIL (e,[y \ %,10w,/%,1)

EIX]E (const x; = *(£+2); dupy, (x;) sdropy (£) ey \ XJ])

By wp-LoaD—with ¢ -@ and ¢ -DrROP—and WP-LET, interspersed with wp-BIND, > -R, and —*-R,
it suffices if

S[[ZHP ()
IV i<nw dsel(s).semty(w) = V[T (w) @ (6+1 jx+2u x V[T]5 ()
size (£,3) V[T]5 (w) = E[TI5 (e [y \ = 10w, /%,])

EIXIE, (dup, (w,) sdrop} () ie,ylw,/x])

By wP-sEQ, DUP with ¢ -R, wP-RAMIFY, and > -R, it suffices if

S[[ZHF’ ()
IV i< nu dsel(s).semty(w) = V[T [2(w) @ (+1— jx+20u xV[T](w))
size (£, 3) (V[[Tj]]i(wj) (V[[Tj]]; (w,) — (‘)[[TJ]]g,(eJ [y \=10w,/x])

EIXJE, (arop’ (€)5e,ly \ = 10w /x,])
Refolding with V[-] (using H5), R[-], §.0bj, H6, and H7 (using =-1 like above as appropriate), it
suffices if
SEL () VIXJE () E[T]E (e ly \ =11, /x])
EIXIE, (arop’ (0 e,y \ /1w /x,])

which follows by wp-sEQ, DROP, WP-RAMIFY, and > -R.]

82 Andrew Wagner, Zachary Eisbach, and Amal Ahmed

F.5 Library Evolution
Definition F.121 (Supported Evolution). > supports evolution to >’ if for all T', e, F, T,

S;Tepe: T=>Y;TEpe: T
LeEMMA F.122 (PRESERVED SIGNATURE EVOLUTION). > supports evolution to >’ if for allF, ¢,

S[[Z/HF(G) F S[[ZHF(G)

ProoF. Assume the premise, that S[>'].(¢) £ S HZHF(g)(Hl). Unfolding Supported Evolution
and k, it suffices if for all T, e, F, T,

VE 2 F 6y S (9) * CIVTE (v) & ETIE (e[y])
= V' 2F.qy. S[(¢) * CITTE (v) £ E[TIE (elvD)
Then assume
o VE 2 Fgy. Sl () * CITTE () ¥ S[TIE (e [y) ™
and take arbitrary F' 2 FH3) M4 and yH5) 1t suffices if
S[Te(s) * CITTE (v) & E[TTE (e[yD)
which, after applying H1, follows from instantiating H2 with H3, H4, and H5. O

LEmMA F.123 (SIGNATURE PRESERVATION). If{s;: T, | j <m} 2 {s,: T, | i < n}, then
S[[z,m kX {5 Tf”‘}]‘ (o) F Sﬂz,ﬂeka{g : T‘i<"}]] (©)
F F
Proor. Assume the premise {s;: T, | j<m} 2 {s: T, |i< n}(Hl). If there are no j < m then
there must not be any i < n and the proof is trivial. Otherwise, unfolding S and simplifying and
letting § = ¢(X), it suffices to show

—_—j<m H8
rdom(¢) 2 dom(, mkX (57N ™ Vi kY () es . D rskind = k11O

S (H4)
“dom(S.sel) 2 {s, | j < m}—l(HS) Vj<m ! wp: (<Sel;<>F ()) {w. Tw = d.sel(s;).off '}

V j < m,w sel(s).semty(w) = > V[T 5 ()™
V£ {€— 0% d.0bj(£+1)} (destrx); (£) {emp}F(Hz)

——i<n (G1)

"dom(¢) 2 dom(Z, flexk X {5, : T, })7 VmkY{-}ex .. r§kind =k
(G5
“dom(S.sel) 2 {s | i < n}‘I(G4) Vi<n !wpg ((Sel;>F ()) {w. "w = d.sel(s).off '}

Vi< nw d.sel(s).semty(w) = > (V[[T-‘]]f.(w)(%)
V£ {— 0% d.obj(£+1)} (destrx): () {emp}p(G7)
We can discharge each proof obligation separately, using *x-mono. G1 follows from H8, which also

ensures that § is well defined. G2 follows from H7. G3 follows from H6. G4 follows from H5 and
H1. G5 follows from H4 and H1. G6 follows from H3 and H1. G7 follows from H2. O

LEmMA F.124 (Cross-VERSION LINKING). If 2 supports evolution to ', and both 2'; T kg, e, : T,
and 251, x : Ty Fp, e, Ty, (withx € 1), then 251, 1, kp, g, constx = e,; e, : [,

Proor. By Supported Evolution, 3;1,,x : T, kr, e, : T, implies ;T,,x : T, kg, e, : T,. Using
this, the result follows from COMP-LET-COMPAT. O

Lemma F.125 (EvoLUTION ADEQUACY). If 2 supports evolution to X' and >’ 4 F, then 2;@ + e :
7 ~> e 4 F implies okg(€).

Realistic Realizability: Specifying ABIs You Can Count On 83

PROOF. Suppose we have >’ 4 FHV and, applying ComMPILER COMPLIANCE, ¥; @ Er e : Z. By the
definition of Supported Evolution, we also have >'; @ kr e : Z. Unfolding kr and C[[-] as in the
proof of COMPILER ADEQUACY, we have

VF 2 F ¢ S[¥]x(s) £ E[Z]S (e)

By CANONICAL SIGNATURE SATISFIABLE with H1, we have emp £ S[2].(2'). oks(e) follows
after instantiating this with F 2 F and (>, then applying LR-ADEQUACY. o

	Contents
	List of Figures
	A Source
	A.1 Syntax
	A.2 Statics

	B Target
	B.1 Syntax
	B.2 Dynamics

	C Compiler
	D Logic
	E ABI
	F Proofs
	F.1 Domains
	F.2 Logic
	F.3 Properties of the ABI
	F.4 Compiler Compliance
	F.5 Library Evolution

