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Types τ := α | unit | bool | int | τ × τ | τ + τ | τ ∗ τ
| µα.τ | (τ, . . . , τ)→ τ

Expressions e := () | true | false | if e {e} {e} | n | e = e

| e < e | e + e | x | (e, e) | fst e | snd e

| inl e | inr e | match e x{e} y{e} | fold e

| unfold e | fun f(x1 : τ1, . . . , xn : τn){e}
| e(e, . . . , e) | {e}τ

Imports I := f : τ | f : τ, I
Programs P := e | import(I) e

Figure 0.1: Syntax for FunLang.

0.1 a functional language

Our core language, FunLang is a standard pure, eager, non-terminating

functional language with imports (presented in Fig. 0.1 and Fig. 0.2).
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` P : τ
·; · ` e : τ

` e : τ

I; · ` e : τ

` import(I) e : τ

I; Γ ` e : τ
I; Γ ` () : unit I; Γ ` true/false : bool I; Γ ` n : int

I; Γ ` e : bool I; Γ ` e1 : τ I; Γ ` e2 : τ

I; Γ ` if e {e1} {e2} : τ

I; Γ ` e1 : int I; Γ ` e2 : int

I; Γ ` e1 = e2 : bool

I; Γ ` e1 : int I; Γ ` e2 : int

I; Γ ` e1 < e2 : bool

I; Γ ` e1 : int I; Γ ` e2 : int

I; Γ ` e1 + e2 : int

x : τ ∈ Γ

I; Γ ` x : τ

I; Γ ` e1 : τ1 I; Γ ` e2 : τ2

I; Γ ` (e1, e2) : τ1 × τ2
I; Γ ` e : τ1 × τ2

I; Γ ` fst/snd e : τ1/τ2

I; Γ ` e : τ1/τ2 ` τ2/τ2
I; Γ ` inl/inr e : τ1 + τ2

I; Γ ` e : τ1 + τ1 Γ, x : τ1 ` e1 : τ Γ, y : τ2 ` e2 : τ

I; Γ ` match e x{e1} y{e2} : τ

I; Γ ` e : τ [µα.τ/α]

I; Γ ` fold e : µα.τ

I; Γ ` e : µα.τ

I; Γ ` unfold e : τ [µα.τ/α]

Γ, f : (τ1, . . . , τn)→ τ ′, xi : τi ` e : τ ′

I; Γ ` fun f(x1 : τ1, . . . , xn : τn){e} : (τ1, . . . , τn)→ τ ′

I; Γ ` e : (τ1, . . . , τn)→ τ ′ I; Γ ` ei : τi

I; Γ ` e(e1, . . . , en) : τ ′

Figure 0.2: Static semantics for FunLang.
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Stack S := v, . . . , v | Fail c
Error Code c := Type | Idx |Mem | Ctrl

Program P := · | i; P
Value v := n | thunk P | ` | [v, . . .]

Instruction i := push v | add | less? | equal? | if0 P P | lam x.P | call
| fix | idx | len | alloc | read | write | free | shift k P
| reset | getlocs | noop | fail c

Figure 0.3: Syntax for StackLang

0.2 a stack language

Our target language is an untyped, stack-based language called StackLang,

which is derived from Kleffner (2017), which in turn derives some features

from Levy (2001) (presented in Fig. 0.3 and Fig. 0.4). In the case of

malformed programs that attempt to perform operations without a valid

stack, we terminate with a Type error code via the fail instruction. We use

these (and in particular, rule them out) in our logical relations to ensure

only well-formed programs.
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〈H # S # push v; P〉 → 〈H # S, v # P〉 (S 6= Fail c)
〈H # Fail c # push v; P〉 → 〈H # Fail c # fail Type〉
〈H # S, n2, n1 # add; P〉 → 〈H # S, (n1 + n2) # P〉

〈H # S # add; P〉 → 〈H # S # fail Type〉 (S 6= S′, n2, n1)
〈H # S, n2, n1 # less?; P〉 → 〈H # S, 0 # P〉 (n1 < n2)
〈H # S, n2, n1 # less?; P〉 → 〈H # S, 1 # P〉 (n1 ≥ n2)

〈H # S # less?; P〉 → 〈H # S # fail Type〉 (S 6= S′, n2, n1)
〈H # S, v, v # equal?; P〉 → 〈H # S, 0 # P〉
〈H # S, v2, v1 # equal?; P〉 → 〈H # S, 1 # P〉 v1 6= v2

〈H # S # equal?; P〉 → 〈H # S # fail Type〉 (S 6= S′, v2, v1)
〈H # S, 0 # if0 P1 P2; P〉 → 〈H # S # P1; P〉
〈H # S, n # if0 P1 P2; P〉 → 〈H # S # P2; P〉 (n 6= 0)
〈H # S # if0 P1 P2; P〉 → 〈H # S # fail Type〉 (S 6= S′, n)

〈H # S, v # lam x.P1; P2〉 → 〈H # S # [x 7→ v]P1; P2〉
〈H # S # lam x.P1; P2〉 → 〈H # S # fail Type〉 (S 6= S′, v)

〈H # S, thunk P1 # call; P2〉 → 〈H # S # P1; P2〉
〈H # S # call; P2〉 → 〈H # S # fail Type〉 (S 6= S′, thunk P1)

〈H # S, thunk P1 # fix; P2〉 → 〈H # S, thunk (push (thunk P1), fix)#
P1; P2〉

〈H # S # fix; P2〉 → 〈H # S # fail Type〉 (S 6= S′, thunk P1)
〈H # S, [v0, . . . , vn2 ], n1 # idx; P〉 → 〈H # S, vn1 # P〉 (n1 ∈ [0, n2])
〈H # S, [v0, . . . , vn2 ], n1 # idx; P〉 → 〈H # S # fail Idx〉 (n1 /∈ [0, n2])

〈H # S # idx; P〉 → 〈H # S # fail Type〉 (S 6= S′, [v0, . . . , vn2 ], n1)
〈H # S, [v0, . . . , vn] # len; P〉 → 〈H # S, (n + 1) # P〉

〈H # S # len; P〉 → 〈H # S # fail Type〉 (S 6= S′, [v0, . . . , vn])
〈H # S, v # alloc; P〉 → 〈H ] {` 7→ v} # S, ` # P〉
〈H # · # alloc; P〉 → 〈H # · # fail Type〉

〈H ] {` 7→ v} # S, ` # read; P〉 → 〈H ] {` 7→ v} # S, v # P〉
〈H # S, ` # read; P〉 → 〈H # S # fail Mem〉 ` 6∈ dom(H)
〈H # S # read; P〉 → 〈H # S # fail Type〉 (S 6= S′, `)

〈H ] {` 7→ } # S, `, v # write; P〉 → 〈H ] {` 7→ v} # S # P〉
〈H # S, `, v # write; P〉 → 〈H # S # fail Mem〉 ` 6∈ dom(H)
〈H # S # write; P〉 → 〈H # S # fail Type〉 (S 6= S′, `, v)

〈H ] {` 7→ } # S, ` # free; P〉 → 〈H} # S # P〉
〈H # S, ` # free; P〉 → 〈H # S # fail Mem〉 ` 6∈ dom(H)
〈H # S # free; P〉 → 〈H # S # fail Type〉 (S 6= S′, `)

〈H # S # shift k P1; P2;
. . . ; reset; P3〉 → 〈H # S # [k 7→ thunk P2; . . .]P1; P3〉 reset 6∈ P2; . . .

〈H # S # shift k P1; P2〉 → 〈H # S # fail Ctrl〉 reset 6∈ P2

〈H # S # reset; P〉 → 〈H # S # P〉
〈H # S, thunk lam l.P1, v# → 〈H # S, `1, . . . , `n#

getlocs; P2〉 lam l.P1; . . . ; lam l.P1; P2〉 `1, . . . , `n = flocs(v)
〈H # S # getlocs; P2〉 → 〈H # S # fail Type〉 S 6= S′, thunk lam l.P1, `
〈H # S # noop; P〉 → 〈H # S # P〉
〈H # S # fail c; P〉 → 〈H # Fail c # ·〉

Figure 0.4: Operational semantics for StackLang
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e e+

()  push 0
true/false  push 0/1
if e {e1} {e2}  e+; if0 (e1

+) (e2
+)

n  push n
e1 < / = /+ e2  e1

+; e2
+; less?/equal?/add

x  push x
inl e  e+, lam x.(push [0, x])
inr e  e+; lam x.(push [1, x])
match e x{e1} y{e2}  e+; DUP; push 1; idx; SWAP;

push 0; idx; if0 (lam x.e1
+) (lam y.e2

+)
fold e  e+

unfold e  e+; noop
(e1, e2)  e1

+; e2
+; lam x2.lam x1.(push [x1, x2])

fst/snd e  e+; push 0/1; idx
fun f(x1 : τ1, . . . , xn : τ2){e}  push (thunk push (thunk lam f.lam xn. . . . lam x1.e

+), fix)
e(e1, . . . , en)  e+; e1

+; SWAP; e2
+; SWAP . . . ; en

+; SWAP; call

SWAP , lam x.lam y.(push x; push y)

DROP , lam x.()

DUP , lam x.(push x; push x)

Figure 0.5: Compiler from FunLang to StackLang

0.3 a compiler for FunLang

In Figure 0.5, we present a compiler from FunLang to StackLang, which

induces the operational semantics of FunLang.
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Core Type τ := α | unit | bool | int | τ × τ | τ + τ
| µα.τ | (τ, . . . , τ)→ τ

Extended Type τ := unit | bool | int | τ × τ | τ + τ | µα.τ
| (τ , . . . , τ)

G#→ τ | ref τ

x : τ ∈ Γ

Γ `S x : τ

Γ, f : (τ1, . . . , τn)
 → τ ′, xi : τi `S e : τ ′

Γ `S fun f(x1 : τ1, . . . , xn : τn){e} : (τ1, . . . , τn)
 → τ ′

Γ `S e : (τ1, . . . , τn)
G#→ τ ′ Γ `S ei : τi

Γ `S e(e1, . . . , en) : τ ′

Figure 0.6: Linking types for state

I+ ] ↑Γ `+ e : τ

I; Γ ` {e}+↓τ : ↓τ

Figure 0.7: The boundary term over an arbitrary extension, +

0.4 linking with state

With this linking types extension (defined in Fig. 0.6, Fig. 0.7, and Fig. 0.8),

we can specify a more precise FFI for a mutable reference library (Fig. 0.9),

which we can then import, using, for example, to implement a memoized

fibonacci (Fig. 0.10). Since FunLang does not have polymorphism, note that

we had to pick a concrete type τ when we import them:

import( alloc : ()
 → ref τ ,

read : (ref τ)
 → τ ,

write : (ref τ, τ)
 → unit )

. . .

↑τ , τ

↑unit , unit

↑bool , bool

↑int , int

↑τ1 × τ2 , ↑τ1 × ↑τ2
↑τ1 + τ2 , ↑τ1 + ↑τ2
↑µα.τ , µα.↑τ
↑(τ1, . . . , τn)→τ ′ , (↑τ1, . . . , ↑τn)

#→↑τ ′

↓τ , τ

↓unit , unit

↓bool , bool

↓int , int

↓τ1×τ2 , ↓τ1 × ↓τ2
↓τ1+τ2 , ↓τ1 + ↓τ2
↓µα.τ , µα.↓τ
↓(τ1, . . . , τn)

G#→ τ ′ , (↓τ1, . . . , ↓τn)→↓τ ′
↓ref τ , unit

Figure 0.8: Lift and lower functions for state extension
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*ref τ+ , free; push 0

*(τ1, . . . , τn)
 → τ ′+ , push (thunk lam l.push l; free); getlocs

*τ+ , · for any other τ

ALLOC , thunk push (thunk lam falloc.lam f.push f; alloc); fix

READ , thunk push (thunk lam fread.lam r.push r; read); fix

WRITE , thunk push (thunk lam fwrite.lam f.lam r.push r; push f; write; push 0); fix

Figure 0.9: State boundary enforcement & target library code

import( alloc : ((int)
#→ int)

 → ref ((int)
#→ int),

read : (ref ((int)
#→ int))

 → ((int)
#→ int),

write : (ref ((int)
#→ int), ((int)

#→ int))
 → unit)

fun fastfib(y : int){
{let mtbl = alloc(fun f(n : int){−1}) in
fun mutfib(x : int){
if x = 0 {0}{if x = 1{1}{
let m = read(mtbl) in
if m(x) = −1{
let r = mutfib(x +−1) + mutfib(x +−2) in
let = write(mtbl, fun f(n){if n = x{r}{m(x)}}) in
r

}{m(x)}
}

}(y)}Sint
}

Figure 0.10: Example: fibonacci memoized with state
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0.5 soundness

0.5.1 FunLang model

We present the full model for core FunLang in Fig. 0.11. To distinguish

the core and extension models from one another, we annotate each with

an identifier; e.g., λ for core FunLang. To account for recursive types, the

model is step-indexed, which means that every inhabitant is actually a pair

of a natural number (the step index) and a term. Oftentimes, when the

step index is unimportant, we refer only to the term.

We begin with the value relation, VλJτK. Base types are agnostic to step

indices, so their interpretation should simply be consistent with the compiler.

Notice that VλJboolK is more liberal than the compiler, which only uses

0 and 1 for bools, but it is consistent with the StackLang eliminator if0.

VλJτ1 × τ2K contains all two-element arrays whose first element is in VλJτ1K
and whose second element is in VλJτ2K. VλJτ1 + τ2K contains all two-element

arrays whose first element is a tag n ∈ {0, 1} and whose second element is in

VλJτn+1K. VλJµα.τK motivates the use of step indices: naturally, any of its

values should also be in the interpretation of the unfolding, VλJτ [µα.τ/α]K,
but because this is a potentially larger type, a model defined inductively

over types alone would not be well-founded. Thus, we decrement the step

index before unfolding the type. Note that VλJ(~τ)→ τ ′K contains all thunks

that map well-typed inputs to well-typed outputs. Here, we additionally

consider multiple arguments and recursion when considering inputs, which

we only draw from smaller step indices.

The expression relation, EλJτK, contains pairs (k,P) of step indices and

StackLang computations. Note we run it for fewer than k steps. P behaves

like a τ if, given an arbitrary heap and stack, it either (i) runs too long; or (ii)

halts with an error that our notion of soundness accepts; or (iii) terminates

at a value in VλJτK at the top of its stack. Since EλJτK only contains closed

computations, we also interpret contexts in GλJΓK, which contain all closing

substitutions γ that map the bindings x : τ ∈ Γ to well-typed values in

VλJτK.

0.5.2 State extension model

In Fig. 0.12, we present auxiliary definitions used in the models for the state

and exceptions extensions. Like standard operational models for mutable

state (Ahmed, 2004), our logical relations use a Kripke world W that is

made up of a step index k and heap typing Ψ. Heap typings map locations

to type interpretations, drawn from the set of valid type interpretations

Typ, or to the sentinal value †, which indicates that a location has been
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VλJunitK = {(k, 0)}
VλJboolK = {(k, n)}
VλJintK = {(k, n)}
VλJτ1 × τ2K = {(k, [v1, v2]) | (k, v1) ∈ VλJτ1K ∧ (k, v2) ∈ VλJτ2K}
VλJτ1 + τ2K = {(k, [0, v]) | (k, v) ∈ VλJτ1K}

∪ {(k, [1, v]) | (k, v) ∈ VλJτ2K}
VλJµα.τK = {(k, v) | ∀j < k. (j, v) ∈ VλJτ [µα.τ/α]K}
VλJ(τ1, . . . , τn)→ τ ′K = {(k, thunk push (thunk lam f.lam xn. . . . lam x1.P; fix) |

∀vi k
′ < k. ∧ (k′, vi) ∈ VλJτiK =⇒

(k′, [x1 7→ v1, . . . , xn 7→ vn,
f 7→ (thunk push (thunk lam f.lam xn. . . .

lam x1.P); fix)]P) ∈ EλJτ ′K}

EλJτK = {(k, P ) | ∀H,H′,S,S′, j < k. 〈H # S # P 〉 j→ 〈H′ # S′ # ·〉
=⇒ (S′ = Fail c ∧ c ∈ OkErr) ∨ ∃v.

(
S′ = S, v ∧ (k − j, v) ∈ VλJτK

)
}

where OkErr , {Mem}

GλJ·K = {(k, ·)}
GλJΓ, x : τK = {(k, γ[x 7→ v]) | (k, v) ∈ VλJτK ∧ (k, γ) ∈ GλJΓK}

Figure 0.11: FunLang logical relation
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ϕ ::= {`, . . .}
Ψ ∩ ϕ , {` 7→ R | ` ∈ (dom(Ψ) ∩ ϕ) ∧R = Ψ(`)}

AtomV aln , {(W,ϕ, v) |W ∈Worldn}
HeapTyn , {Ψ | ∀` ∈ dom(Ψ). Ψ(`) = † ∨Ψ(`) ∈ Typn}
Worldn , {(k,Ψ) | k < n ∧Ψ ∈ HeapTyk}
Typn , {R ∈ 2AtomV aln | ∀(W,ϕ, v) ∈ R. ∀W ′. W vW ′ =⇒ (W ′, ϕ, v) ∈ R}

World ,
⋃

n
Worldn

Typ ,
⋃

n
Typn

bRcj , {(W,ϕ, v) | (W,ϕ, v) ∈ R ∧W.k < j}
bΨcj , {` 7→ bRcj | ` 7→ R ∈ Ψ}

(k,Ψ) v (j,Ψ′) , j ≤ k ∧ ∀` ∈ dom(Ψ).(bΨ(`)cj = bΨ′(`)cj ∨Ψ′(`) = †)
W1 @W2 ,W1.k > W2.k ∧W1 vW2

B(k,Ψ) , (k − 1, bΨck−1)

H :ϕ W , (∀` 7→ R ∈ (W.Ψ ∩ ϕ). (BW,H(`)) ∈ R)

Figure 0.12: State & exception extension logical relation: preliminary definitions

freed. Our type interpretations consist of tuples (W,ϕ, v) of worlds W ,

sets of relevant locations ϕ, and target values v. Rather than using the

global location information in the heap typing, we locally track the relevant

locations of v (i.e., its free locations) so that we can decide whether it is

extensionally pure (ϕ = ∅). A similar pattern of tracking locations has been

used in logical relations for linear state (Ahmed et al., 2007), though our

bookkeeping is slightly different.

We define the usual restrictions on relations and heap typings to step

indices, and use these to define a later (B) operator. Next, we define how

worlds can evolve with the v operator: future worlds can have a lower step

index, and entries in the heap typing must either be preserved (up to lower

step indices) or marked as dead.

Lastly, we characterize when a heap H, which is a mapping from locations

to values, satisfies a world W under a relevant location set ϕ: for any

location in the heap that is relevant and alive, its contents must be in the

relation specified by the heap typing in the next world (to avoid circularity

and reflect that it takes a step to retrieve a value from the heap).

Next, we define the logical relations for our state extension in Fig. 0.13.

We identify relations in this model with the superscript S. On base values,

the relation is similar to the relation for FunLang, though it now has to
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VSJunitK = {(W, ∅, 0)}
VSJboolK = {(W, ∅, n)}
VSJintK = {(W, ∅, n)}
VSJτ1 × τ2K = {(W,ϕ, [v1, v2]) | ϕ ⊂ dom(W.Ψ) ∧ ϕ1 ∪ ϕ2 = ϕ∧

(W,ϕ1, v1) ∈ VSJτ1K ∧ (W,ϕ2, v2) ∈ VSJτ2K}
VSJτ1 + τ2K = {(W,ϕ, [0, v]) | ϕ ⊂ dom(W.Ψ) ∧ (W,ϕ, v) ∈ VSJτ1K}

∪ {(W,ϕ, [1, v]) | ϕ ⊂ dom(W.Ψ) ∧ (W,ϕ, v) ∈ VSJτ2K}
VSJµα.τK = {(W,ϕ, v) | (W,ϕ, v) ∈ BVSJτ [µα.τ/α]K}
VSJref τK = {(W, {`}, `) |W.Ψ(`) = bVSJτKcW.k | †}
VSJ(τ1, . . . , τn)

#→ τ ′K = {(W, ∅, thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) |
∀vi ϕi W

′ AW. ϕi ⊂ dom(W ′.Ψ) ∧ (W ′, ϕi, vi) ∈ VSJτiK
=⇒ (W ′,

⋃
i ϕi, [x1 7→ v1, . . . , xn 7→ vn,

f 7→ (thunk push (thunk lam f.lam xn.
. . . lam x1.P); fix)]P) ∈ ESJτ ′K}

VSJ(τ1, . . . , τn)
 → τ ′K = {(W,ϕ, thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) |

ϕ ⊂ dom(W.Ψ) ∧ ∀vi ϕi W
′ AW.ϕi ⊂ dom(W ′.Ψ)

∧(W ′, ϕi, vi) ∈ VSJτiK
=⇒ (W ′, ϕ ∪

⋃
i ϕi, [x1 7→ v1, . . . , xn 7→ vn,

f 7→ (thunk push (thunk lam f.lam xn.
. . . lam x1.P); fix)]P) ∈ ESJτ ′K}

ESJτK = {(W,ϕ, P ) | ∀H:ϕW, S,H
′,S′, j < W.k. 〈H # S # P 〉 ∗→ j〈H′ # S′ # ·〉

=⇒ (S′ = Fail c ∧ c ∈ OkErr) ∨ ∃v,W ′ wW.(
S′ = S, v ∧ H′ :ϕ′∪ϕ W

′ ∧ (W ′, ϕ′, v) ∈ VSJτK
)
}

where OkErr , {Mem}

GSJ·K = {(W, ∅, ·) |W ∈World}

GSJΓ,x : τK = {(W,ϕ1 ∪ ϕ2, γ[x 7→ v]) | ϕi ⊂ dom(W.Ψ)
∧(W,ϕ1, v) ∈ VSJτK ∧ (W,ϕ2, γ) ∈ GSJΓK}

JI; Γ ` P : τK ≡
∀k γ. ∀((k, ∅), ∅, γI

S

) ∈ GSJISK. ∀((k, ∅), ∅, γI
X

) ∈ GXJIXK. (k, γ) ∈ GλJΓK =⇒
(k, γI

X

(γI
S

(γ(P)))) ∈ EλJτK

Figure 0.13: State extension logical relation: main definition
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include an arbitrary world instead of a plain step index, and also an empty

relevant location set (since base values cannot close over locations). For

pairs τ1 × τ2, we appeal to the value relation on its component types, but

we must also account for relevant locations: the relevant locations for a pair

is the union of the relevant locations for its components.

This is a key difference from a linear model, which would insist on a

disjoint union of the locations. Sums and recursive types are analogous to

the relation to FunLang. For reference types ref τ , we appeal to the relation

stored in the heap typing, as usual, but we also require that the location in

question is the only relevant location.

We divide functions into two cases: ones that hold locations and ones

that are (extensionally) pure. Functions of the latter type,
#→, have no

relevant locations of their own. Still, arguments passed to such functions

might themselves have relevant locations, so their union is relevant to the

application, a computation in the expression relation. Importantly, if the

return type is pure, then locations relevant to the arguments (and the

application) cannot be relevant to the result. Functions of the stateful type,
 →, are interpreted similarly, but they can have relevant locations of their

own, so they are incorporated into the union of locations relevant to the

application.

The expression relation is similar to that of FunLang, but we now have

constraints on what the target heap can look like. In particular, our initial

heap H must satisfy the world W under the relevant location set ϕ, and

there must be a final world W ′ wW that the final heap satisfies. We require

that locations ϕ relevant to the term and ϕ′ relevant to the final value both

be accounted for: these locations must either be freed or have their types

preserved; they cannot be changed to a different type. Essentially, this

means that everything we started with must be accounted for, and anything

that is relevant to the value must be in the heap at the correct type.

As before, we have an environment relation GSJΓK that we use to describe

closing substitutions that satisfy an environment Γ. The substitutions now

have a relevant set of locations, which is the union of all the locations

relevant to all the values in the substitution.
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0.5.3 Proving ↑ sound

We need to prove:

Lemma 0.5.1 (lift S). ∀W v. (W, ∅, v) ∈ VSJ↑τK ⇐⇒ (W.k, v) ∈ VλJτK

Proof. We note, first, that by inspection of the logical relation, all cases

of VSJτK for τ = ↑τ , ϕ = ∅. That is obviously critically important, as we

wouldn’t otherwise be able to account for such locations when moving to

the relation for FunLang, but it is also part of the design of the type system

and the functions ↑. This justifies the use of ∅ in the lemma statements.

The proof itself then follows via induction over the step index and structure

of the type, since the subset of the state relation that we are considering

maps directly to the FunLang relation, by design:

Case unit/bool/int. In this case, the values are trivially in the relation,

by definition.

Case τ1 × τ2/τ1 + τ2. These follow straightforwardly by appealing to the

inductive hypothesis.

Case µα.τ . In this case, we can appeal to our inductive hypothesis at a

smaller k (as our type may have gotten larger).

Case (τ1, . . . , τn)→ τ ′. This follows by application of the induction hy-

pothesis.

0.5.4 Proving *τ+ satisfies ↓

First, we prove two lemmas:

Lemma 0.5.2 (wrap closed S). ∀τ . fvars(*τ+) = ∅

Proof. This follows by simple inspection of the definition.

Lemma 0.5.3 (encapsulation S). ∀W ϕ v τ . (W,ϕ, v) ∈ VSJτK
=⇒ (W,ϕ, push v; *τ+) ∈ ESJ↑↓τK

Proof. We proceed by case analysis on τ , handling the majority of the cases

for which *τ+ is empty first. In those cases, which by inspection, ↑↓τ = τ ,

the proof reduces to:

∀W ϕ v τ . (W,ϕ, v) ∈ VSJτK =⇒ (W,ϕ, push v) ∈ ESJτK

This follows easily: we choose an arbitrary stack and a heap that satisfies

W and ϕ, we take a single step (if no budget, in relation trivially), and result
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in terminated program with stack with v on top. As needed, (W,ϕ, v) ∈
VSJτK, so we are done. Now we handle the other two cases:

Case ref τ . Our obligation is to show:

∀W ϕ v τ . (W,ϕ, v) ∈ VSJref τK =⇒ (W,ϕ, push v; free; push 0) ∈ ESJunitK

By inspection of VSJref τK, we know for some `, ϕ = {`}, v = `, and

W.Ψ(`) = bVSJτKcW.k. This means when we choose a heap H to run

with in ESJunitK, we know it will have ` bound to some value in

BbVSJτKcW.k, though as we will see, the actual value does not matter.

We will then take three steps:

〈H # S # push `; free; push 0〉 →
〈H # S, ` # free; push 0〉 →
〈H \ ` # S # push 0〉 → 〈H \ ` # S, 0 # ·〉

Now we choose W ′ to be W , but with ` updated to be marked as dead,

and choose ϕ′ = ∅. This means (H \ `) :ϕ W
′ (since the dead binding

in the world is ignored), and by definition, (W ′, ∅, 0) ∈ VSJunitK, so

we are done with this case.

Case (τ1, . . . , τn)
 → τ ′. Our obligation is to show:

∀W ϕ v τi τ
′. (W,ϕ, v) ∈ VSJ(τ1, . . . , τn)

 → τ ′K =⇒
(W,ϕ, push v; lam x.(push x; push x);

push (thunk lam l.push l; free); getlocs) ∈ ESJ(τ1, . . . , τn)
#→ τ ′K

Once we pick an arbitrary stack S and a heap H :ϕ W , we take the

following steps:

〈H # S # push v; lam x.(push x; push x); push (thunk lam l.push l; free); getlocs〉 →
〈H # S, v # lam x.(push x; push x); push (thunk lam l.push l; free); getlocs〉 3→
〈H # S, v, v # push (thunk lam l.push l; free); getlocs〉 →
〈H # S, v, v, (thunk lam l.push l; free) # getlocs〉

Now, we know that getlocs will run the thunk on top of the stack

once for every free location one position down the stack, which means

everything reachable from our function value. Assume those locations

are `1, . . . , `k. Then we step as follows:
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〈H # S, v, v, (thunk lam l.push l; free) # getlocs〉 3k+1→
〈H \ {`1, . . . , `k} # S, v # ·〉

Now that we have terminated, we have to fulfill the obligations

of ESJ(τ1, . . . , τn)
#→ τ ′K. By inspection of VSJ(τ1, . . . , τn)

 → τ ′K, we

know that v has form (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix).

We choose ϕ′ = ∅, and W ′ such that every location in ϕ has been

marked dead. By invariant of the relation, ϕ = {`1, . . . , `k}. Our heap

satisfies the world, by construction, and everything that should be

dead is, so the only thing that remains is to show that

(W ′, ∅, (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix)) ∈ VSJ(τ1, . . . , τn)
#→ τ ′K

This follows from our hypothesis on v, once we substitute our empty

relevant location set in.

Now we proceed to the main lemma:

Lemma 0.5.4 (boundary S). JIS ] ↑Γ `S P : τK =⇒ JI; Γ ` P; *τ+ : ↓τK

Unlike soundness for lift, this is non-trivial. To start with, the intuitive

statement that, for (W,ϕ,P) ∈ ESJτK, show (W.k,P; *τ+) ∈ EλJ↓τK, isn’t

provable (or true): the problem is that P is a term which may involve

locations in ϕ, and the relation EλJ↓τK for FunLang cannot reason about

such state. Indeed, that relation specifically says you choose an arbitrary

heap to run under, which clearly would get stuck if P tried to access a

particular location. But, of course, ↓τ is a type from FunLang, so how do

we prove this? At a high-level, this relies on both soundness of lift and the

lemma proved above. The detailed proof follows.

Proof. Expanding the goal, we see we need to show:

∀k γ. ∀((k, ∅), ∅, γI
S

) ∈ GSJISK. ∀((k, ∅), ∅, γI
X

) ∈ GXJIXK. (k, γ) ∈ GλJΓK =⇒
(k, γI

X

(γI
S

(γ(P; *τ+)))) ∈ EλJ↓τK

From Lemma 0.5.2, we know *τ+ is closed, so we can push the substitutions

in to just over P. Further, from the hypothesis, we know that P has no free

variables from IX, so we can eliminated that substitution.

The hypothesis that we are working with says:
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∀W ϕγ′ (W,ϕ, γ′) ∈ GSJIS]↑ΓK ∧ ϕ = flocs(γ(P )) =⇒ (k, ϕ, γ′(P)) ∈ ESJτK

To instantiate the hypothesis, we need an environment γ′ that satisfies

GSJIS ] ↑ΓK. We argue that it is exactly γ composed with γI
S

: we know

they are disjoint, and we know the former can be lifted into the latter via

Lemma 0.5.1. This means, in particular, that ϕ is ∅.
Since we have no relevant locations, any heap will satisfy the expression

relation: in particular, the arbitrary H that we have to consider for our

obligation, and we can similarly use the arbitrary stack S. This means that

we our hypothesis tells us that:

〈H # S # (γI
S

(γ(P))〉 ∗→ 〈H′ # S′ # ·〉

Unless we run beyond our step budget, in which case we are trivially

in the relation. Similarly, if we run to Fail c, we are also in our relation.

Otherwise, we know that S′ = S, v and, for a future world W ′ vW that H′

satisfies with the relevant locations ϕ′, (W ′, ϕ′, v) ∈ VSJτK.
Now, what we want to show is that this value is “contained” by the code

in *τ+ to behave like ↓τ . But, clearly we can’t show that using the EλJτK
logical relation, as the value still can have locations it is closing over, etc.

So, we proceed by two steps. First, we appeal to Lemma 0.5.3

This will tell us that we can evaluate the whole program at question

further, to get to a point with a world W ′′ v W ′, ϕ′′, H′′ :ϕ′′∪ϕ′ W ′′ and

(W ′′, ϕ′′, v′) ∈ VSJ↑↓τK:

〈H # S # (γI
S

(γ(P)); *τ+〉 ∗→
〈H′ # S, v # *τ+〉 ∗→
〈H′′ # S, v′ # ·〉

Now, we appeal to Lemma 0.5.1

This means that the value that we ran down to is in (W ′′.k, v′) ∈ VλJ↓τK,
which is exactly what we need to show.

0.5.5 Proving compatibility lemmas

For the lemmas relating to the state extension, we use the following notation:

JΓ `S P : τK ≡ ∀W ϕγ. (W,ϕ, γ) ∈ GSJΓK =⇒ (W, flocs(γ(P)), γ(P)) ∈ ESJτK
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0.5.6 Supporting Lemmas

Lemma 0.5.5 (relevant locations subset). If ϕ1 ⊂ ϕ, ϕ2 ⊂ ϕ, and H :ϕ W

then if ϕ1 = flocs(P), 〈H # S # P〉 ∗→ 〈H1 # S1 # P1〉, and for some ϕ′1, W 1 vW ,

H1 :ϕ′
1∪ϕ1

W 1, then H1 :ϕ2 W
1.

Proof. Consider what needs to be true for H1 :ϕ2 W
1. For every location

in ϕ2, either it is marked as dead in W 1, or the location must be in H1

and must map to a value in the relation described by W 1. Since we know

that ϕ2 ⊂ ϕ and H :ϕ W , we have a starting point at which these facts

held. Since W 1 vW , we know the only changes to the world can be adding

locations or marking existing locations as dead. Since H1 :ϕ1 W
1, we know

that anything in ϕ2 ∩ ϕ1 is satisfied. What about locations not in that set?

Since ϕ1 = flocs(P), we know the program only knew about the locations in

ϕ1—there is no way for an existing location to be synthesized out of thin

air—and thus any locations in ϕ2 \ ϕ1 will have been unchanged between H

and H1, so we are done.

Corollary 0.5.6 (Antireduction λ).

If ∀k ϕ′H H′,S. (k − j, ϕ′, push v1; push v2; . . . push vn; P) ∈ EλJτK, and

〈H # S # P′; P〉 j→ 〈H′ # S, v1, v2, . . . , vn # P〉 then (k, ϕ,P′; P) ∈ EλJτK.

Proof. Our obligation is to show that

∀H,H′, S, S′, j < k. 〈H # S # P ′;P 〉 j→ 〈H′ # S′ # ·〉
=⇒ (S′ = Fail c ∧ c ∈ OkErr) ∨ ∃v.

(
S′ = S, v ∧ (k − j, v) ∈ VλJτK

)
From our second hypothesis, we know that

〈H # S # P ′;P 〉 j′→ 〈H∗ # v1, . . . , vn # P 〉 j−j
′

→ 〈H′ # S′ # ·〉

Our first hypothesis then tells us that

(
S′ = Fail c ∧ c ∈ OkErr

)
∨ ∃v.

(
S′ = S, v ∧

(
(k − j′)− (j − j′), v

)
∈ VλJτK

)
which suffices to complete the proof.

Corollary 0.5.7 (Antireduction S).

If ∀W ′ ϕ′H H′,S. (W ′, ϕ′, push v1; push v2; . . . push vn; P) ∈ ESJτK and

W ′ vW , H :ϕ W , H′ :ϕ∪ϕ′ W ′, and 〈H # S # P′; P〉 ∗→ 〈H′ # S, v1, v2, . . . , vn # P〉
then (W,ϕ,P′; P) ∈ ESJτK.
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Proof. We consider heap H :ϕ W , arbitrary stack S. We know that if the

term in question does not run forever (which, if it does, then the suffix

P does as well, so we are done), then it steps to a terminal configuration

〈HF # SF # ·〉. We need to show that, assuming that is not an error, SF = S, v

and for some ϕF and WF vW , HF :ϕF WF and (WF , ϕF , v) ∈ VSJτK. We

know that 〈H # S # P′; P〉 ∗→ 〈H′ # S, v1, . . . , vn # P〉 and that for some W ′ vW ,

H′ :ϕ∪ϕ′ W ′. So we instantiate our first hypothesis with H′ and S. After

n steps, it is in exactly the configuration our term left off in. We know it

doesn’t run forever, and if it errors, similarly, our overall term must error, so

we conclude that it runs to a terminal configuration which due to confluence,

will be the same one. Thus, we know HF :ϕ∪ϕ′∪ϕF WF , which is stronger

than we need, and (WF , ϕF , v) ∈ VSJτK, exactly as needed.

0.5.7 FunLang Compatibility Lemmas

JI; Γ ` P : τK ≡
∀k γ. ∀((k, ∅), ∅, γI

S

) ∈ GSJISK. ∀((k, ∅), ∅, γI
X

) ∈ GXJIXK. (k, γ) ∈ GλJΓK =⇒
(k, γI

X

(γI
S

(γ(P)))) ∈ EλJτK

We now state and prove all the compatibility lemmas for our source

language. Note that we have to prove these three times: once for each

model, though the boundary terms only exist at the top level, and they are

the most challenging/interesting.

Lemma 0.5.8 (unit). Show that JI; Γ ` push 0 : unitK.

Proof. Since 0 has no free variables, what we need to show is that (k, push 0) ∈
EλJunitK. Given any H, γ, we can see that we take one step from 〈H # γ #
push 0〉 to 〈H # γ, 0 # ·〉, and thus provided k was larger than 1 (else, trivial),

what remains to show is that (k−1, 0) ∈ VλJunitK. But this is trivial by

the definition of the value relation.

Lemma 0.5.9 (bool). Show for any n, JI; Γ ` push n : boolK.

Proof. This proof is identical to that of unit.

Lemma 0.5.10 (if). If JI; Γ ` P : boolK, JI; Γ ` P1 : τK, and JI; Γ ` P2 : τK
then

JI; Γ ` P; if0 P1 P2 : τK.

Proof. We are given (k, γ) ∈ GλJΓK, ((k, ∅), ∅, γI
S

) ∈ GSJISK, ((k, ∅), ∅, γI
X

) ∈
GXJIXK, and need to show that (k, γI

X

(γI
S

(γ(P; if0 P1 P2)))) ∈ EλJτK.
Pushing the substitutions in and combining γI

X

◦γI
S

◦γ (for compactness)

to γI, we refine this slightly to:
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(k, γI(P); if0 γI(P1) γ
I(P2)) ∈ EλJτK

Applying Lemma 0.5.6, it suffices to show

(k − j, push v1; if0 γI(P1) γ
I(P2)) ∈ EλJτK

, since from the first hypothesis we know γI(P) will reduce to some value

v1 in VλJboolK. We now appeal to Lemma 0.5.6 again, finishing the proof

by noting that if v1 is 0 then the induction hypothesis on γI(P1) suffices,

and if it is not, the induction hypothesis on γI(P2)) suffices.

Lemma 0.5.11 (int). For any n, show JI; Γ ` push n : intK.

Proof. This case is analogous to unit and bool.

Lemma 0.5.12 (op-=). If JI; Γ ` P1 : intK and JI; Γ ` P2 : intK, show

that JI; Γ ` P1; P2; equal? : boolK.

Proof. We are given (k, γ) ∈ GλJΓK, ((k, ∅), ∅, γI
S

) ∈ GSJISK, ((k, ∅), ∅, γI
X

) ∈
GXJIXK, and need to show that (k, γI

X

(γI
S

(γ(P1; P1; equal?)))) ∈ EλJboolK.
Pushing the substitutions in and combining γI

X

◦γI
S

◦γ (for compactness)

to γI, we refine this slightly to:

(k, γI(P1); γ
I(P2); equal?)) ∈ EλJboolK

We apply Lemma 0.5.6 twice, appealing to our inductive hypotheses to

reduce our obligation to showing that

(k′, push v1; push v2; equal?)) ∈ EλJboolK
for some v1 and v2 in VλJintK. Since v1 and v2 are both integers, the term

steps to either 0 or 1 on the stack, which means we satisfy our requirement

to be in VλJboolK, sufficient to complete the proof.

Lemma 0.5.13 (op-¡). If JI; Γ ` P1 : intK and JI; Γ ` P2 : intK, show that

JI; Γ ` P1; P2; less? : boolK.

Proof. This proof is identical to that of =.

Lemma 0.5.14 (op-+). If JI; Γ ` P1 : intK and JI; Γ ` P2 : intK, show

that JI; Γ ` P1; P2; add : intK.

Proof. This proof is identical to that of =.

Lemma 0.5.15 (var). For any x : τ ∈ Γ, show that JI; Γ ` push x : τK.

Proof. We are given (k, γ) ∈ GλJΓK, ((k, ∅), ∅, γI
S

) ∈ GSJISK, ((k, ∅), ∅, γI
X

) ∈
GXJIXK, and need to show that (k, γI

X

(γI
S

(γ(push x)))) ∈ EλJτK.
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Since x ∈ Γ, it isn’t in I, and thus we can eliminate the other substitutions.

Further, we know from the definition of GλJΓK that there exists some v with

(k, v) ∈ VλJτK such that γ(x) = v. This means we can substitute, yielding

this as a goal:

(k, push v) ∈ EλJτK

Now we can choose an arbitrary heap H and stack S, take one step, and

end up in a terminal state with stack S, v. Since (k, v) ∈ VλJτK, we are

done.

Lemma 0.5.16 (pair). If JI; Γ ` P1 : τ1K and JI; Γ ` P2 : τ2K, show that

JI; Γ ` P1; P2; lam x2. lam x1.push [x1, x2] : τ1 × τ2K.

Proof. We are given (k, γ) ∈ GλJΓK, ((k, ∅), ∅, γI
S

) ∈ GSJISK, ((k, ∅), ∅, γI
X

) ∈
GXJIXK, and need to show that (k, γI

X

(γI
S

(γ(P1; P2; lam x2.lam x1.push [x1, x2])))) ∈
EλJτ1 × τ2K.

Pushing the substitutions in and combining γI
X

◦γI
S

◦γ (for compactness)

to γI, we refine this slightly to:

(k, γI(P1); γ
I(P2); lam x2.lam x1.push [x1, x2])) ∈ EλJτ1 × τ2K

We apply Lemma 0.5.6 twice, appealing to both induction hypotheses, to

reduce our obligation to showing

(k′, push v1; push v2; lam x2.lam x1.push [x1, x2])) ∈ EλJτ1 × τ2K
where (k′, v1) is in VλJτ1K and (k′, v2) is in VλJτ2K. The term then takes

three steps, resulting in the value [v1, v2] on the stack, which suffices to

finish the proof.

Lemma 0.5.17 (fst). If JI; Γ ` P : τ1 × τ2K, show that JI; Γ ` P1; push 0; idx :

τ1K.

Proof. We are given (k, γ) ∈ GλJΓK, ((k, ∅), ∅, γI
S

) ∈ GSJISK, ((k, ∅), ∅, γI
X

) ∈
GXJIXK, and need to show that (k, γI

X

(γI
S

(γ(P1; push 0; idx)))) ∈ EλJτ1K.
Pushing the substitutions in and combining γI

X

◦γI
S

◦γ (for compactness)

to γI, we refine this slightly to:

(k, γI(P1); push 0; idx)) ∈ EλJτ1K
We apply Lemma 0.5.6 to reduce this to showing

(k′, push v; push 0; idx)) ∈ EλJτ1K
where (k′, v) ∈ VλJτ1 × τ2K, and thus has shape [v1, v2]. The term takes

three steps to result in v1 on top of the stack, which suffices to finish the

proof.
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Lemma 0.5.18 (snd). If JI; Γ ` P : τ1 × τ2K, show that JI; Γ ` P1; push 1; idx :

τ2K.

Proof. This proof is nearly identical to that of fst.

Lemma 0.5.19 (inl). If JI; Γ ` P : τ1K, show that JI; Γ ` P; lam x.push [0, x] :

τ1 + τ2K.

Proof. We are given (k, γ) ∈ GλJΓK, ((k, ∅), ∅, γI
S

) ∈ GSJISK, ((k, ∅), ∅, γI
X

) ∈
GXJIXK, and need to show that (k, γI

X

(γI
S

(γ(P; lam x.push [0, x])))) ∈
EλJτ1 + τ2K.

Pushing the substitutions in and combining γI
X

◦γI
S

◦γ (for compactness)

to γI, we refine this slightly to:

(k, γI(P1); lam x.push [0, x]) ∈ EλJτ1 + τ2K
We apply Lemma 0.5.6 to reduce this to

(k′, push v1; lam x.push [0, x]) ∈ EλJτ1 + τ2K
where (k′, v1) ∈ VλJτ1K. This takes three steps to result in [0, v1] on the

stack, which suffices to complete the proof.

Lemma 0.5.20 (inr). If JI; Γ ` P : τ2K, show that JI; Γ ` P; lam x.push [1, x] :

τ1 + τ2K.

Proof. This proof is nearly identical to that of inl.

Lemma 0.5.21 (match). If JI; Γ ` P : τ1 + τ2K, JI; Γ, x : τ1 ` P1 : τK, and

JI; Γ, y : τ2 ` P2 : τK, show that

JI; Γ ` P; DUP; push 1; idx; SWAP;

push 0; idx; if0 (lam x.P1) (lam y.P2)

: τK

Proof. We are given (k, γ) ∈ GλJΓK, ((k, ∅), ∅, γI
S

) ∈ GSJISK, ((k, ∅), ∅, γI
X

) ∈
GXJIXK, and need to show that, after pushing substitutions and combining

γI
X

◦ γI
S

◦ γ (for compactness) to γI,

(k, γI(P); DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.γI(P1)) (lam y.γI(P2)))

∈ EλJτK

We apply Lemma 0.5.6 to reduce this to showing

(k′, v; DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.γI(P1)) (lam y.γI(P2))) ∈ EλJτK

where (k′, push v) ∈ VλJτ1 + τ2K. We appeal to Lemma 0.5.6 again, noting

that after seven steps we will either have a v1, 0 where v1 is in VλJτ1K or

v2, 1 where v2 is in VλJτ2K on the top of the stack, and thus in either case,
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after two more steps we can appeal to one of our induction hypotheses to

complete the proof.

Lemma 0.5.22 (fold). If JI; Γ ` P : τ [µα.τ/α]K, show that JI; Γ ` P :

µα.τK.

Proof. We are given (k, γ) ∈ GλJΓK, ((k, ∅), ∅, γI
S

) ∈ GSJISK, ((k, ∅), ∅, γI
X

) ∈
GXJIXK, and need to show that (k, γI

X

(γI
S

(γ(P)))) ∈ EλJµα.τK.
This means we need to pick an arbitrary heap H and stack S and show

that this runs down to a value in the value relation (or else runs forever or

to a well-defined error).

We can instantiate our hypothesis with the same substitutions, combining

γI
X

◦ γI
S

◦ γ (for compactness) to γI, and heap and stack. This means

that (assuming no divergence beyond k, or error, which would finish the

proof immediately):

〈H # S # γI(P)〉 j→ 〈H # S, v # ·〉

Now, we know from the hypothesis that (k−j, v) ∈ VλJτ [µα.τ/α]K. What

we need to show is that (k− j, v) is also in VλJµα.τK. But this is fine, since

that definition only requires that the value be in VλJτ [µα.τ/α]K for smaller

step index, and our relations are closed under smaller step index.

Lemma 0.5.23 (unfold). If JI; Γ ` P : µα.τK, show that JI; Γ ` P; noop : τ [µα.τ/α]K.

Proof. We are given (k, γ) ∈ GλJΓK, ((k, ∅), ∅, γI
S

) ∈ GSJISK, ((k, ∅), ∅, γI
X

) ∈
GXJIXK, and need to show that (k, γI

X

(γI
S

(γ(P; noop)))) ∈ EλJτ [µα.τ/α]K.
This means we need to pick an arbitrary heap H and stack S and show

that this runs down to a value in the value relation (or else runs forever or

to a well-defined error).

We can instantiate our hypothesis with the same substitutions, combining

γI
X

◦ γI
S

◦ γ (for compactness) to γI, and heap and stack. This means

that (assuming no divergence beyond k, or error, which would finish the

proof immediately):

〈H # S # γI(P)〉 j→ 〈H # S, v # ·〉

Now, we return to our original program, which runs as:

〈H # S # γI(P); noop〉 j→ 〈H # S, v # noop〉 → 〈H # S, v # ·〉

Now, we know from the hypothesis that (k − j, v) ∈ VλJµα.τK. What

we need to show is that (k − j − 1, v) (since we took one more step) is in
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VλJτ [µα.τ/α]K. But, the definition of VλJµα.τK gives us this immediately,

as our step index is lower.

Lemma 0.5.24 (fun). If JI; Γ,f : (τ1, . . . , τn)→ τ ′, xi : τi ` P : τ ′K, show

that JI; Γ ` push (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) : (τ1, . . . , τn)→ τ ′K

Proof. We are given (k, γ) ∈ GλJΓK, ((k, ∅), ∅, γI
S

) ∈ GSJISK, ((k, ∅), ∅, γI
X

) ∈
GXJIXK, and need to show, after pushing in substitutions and combining

γI
X

◦ γI
S

◦ γ (for compactness) to γI:

(k, push (thunk push (thunk lam f.lam xn. . . . lam x1.γ
I(P)); fix))

∈ EλJ(τ1, . . . , τn)→ τ ′K

Following the definition of EλJτK, we choose an arbitrary H and S and

run the term, which after one step, results in the thunk on the stack. That

means what we need to show is:

(k, thunk push (thunk lam f.lam xn. . . . lam x1.γ
I(P)); fix) ∈ VλJ(τ1, . . . , τn)→ τ ′K

Syntactically, this clearly satisfies the value relation; that means what we

need to show is:

∀vi k
′ < k. ∧ (k′, vi) ∈ VλJτiK

=⇒ (k′, [x1 7→ v1, . . . , xn 7→ vn,

f 7→ (thunk push (thunk lam f.lam xn. . . . lam x1.γ
I(P)); fix)]P) ∈ EλJτ ′K

We do this by appeal to our hypothesis. Specifically, we construct an

extended substitution γ′:

γI, x1:v1, . . . , xn:vn, f : (thunk push (thunk lam f.lam xn. . . . lam x1.γ
I(P)); fix)

Note that f can be given the needed type in the relation because we

are only considering step k′ < k, and our overall induction is over step

indices. Further, our relations are closed under step indices, which means

our substitution γI is still valid when restricted to k′. This means that we

know:

(k′, γ′(P )) ∈ EλJτ ′K

Which, expanding out γ′, is exactly what we needed to show.
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Lemma 0.5.25 (app). If JI; Γ ` P : (τ1, . . . , τn)→ τ ′K and for i ∈ {1, . . . , n}
JI; Γ ` Pi : τiK then

JI; Γ ` P; P1; SWAP . . .Pn; SWAP; call : τ ′K

Proof. We are given (k, γ) ∈ GλJΓK, ((k, ∅), ∅, γbIS) ∈ GSJISK, ((k, ∅), ∅, γI
X

) ∈
GXJIXK, and need to show that (k, γI

X

(γI
S

(γ(P; P1; SWAP . . .Pn; SWAP; call)))) ∈
EλJτ ′K. Pushing the substitutions in and combining γI

X

◦ γI
S

◦ γ (for com-

pactness) to γI, we refine this slightly to:

(k, γI(P); γI(P1); SWAP . . . γI(Pn); SWAP; call) ∈ EλJτ ′K

Following the definition of EλJτK, we choose an arbitrary H and S and

run the term. To figure out how it steps, we instantiate our first hypothesis

with γI, H, and S. This tells us that either P runs forever (in which case,

the term is in the relation trivially), or:

〈H # S # γI(P)〉 j→ 〈H′ # S′ # ·〉

And either S′ is a well-defined error (in which case, the entire program

would have run to the same error, and we are again done), or S, vf with

(k − j, vf) ∈ VλJ(τ1, . . . , τn)→ τ ′K.
Then, we instantiate the second hypothesis with γI, H′, and S, resulting

in a similar result for a smaller step index k1 and H1 and value v1. We can

repeat this process another n− 1 times. This results in an overall evaluation

of:

〈H # S # γI(P); γI(P1); SWAP . . . γI(Pn); SWAP; call〉
∗→ 〈H′ # S, vf # γI(P1); SWAP . . . γI(Pn); SWAP; call〉
∗→ 〈H1 # S, vf , v1 # SWAP . . . γI(Pn); SWAP; call〉
∗→ 〈H1 # S, v1, vf # . . . γI(Pn); SWAP; call〉

. . .
∗→ 〈Hn # S, v1, v2, . . . , vn, vf # call〉

From VλJ(τ1, . . . , τn)→ τ ′K, we know the shape of vf , so we can expand

that out and step further:

〈Hn # S, v1, v2, . . . , vn, (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) # call〉
→ 〈Hn # S, v1, v2, . . . , vn # push (thunk lam f.lam xn. . . . lam x1.P); fix〉
→ 〈Hn # S, v1, v2, . . . , vn, thunk lam f.lam xn. . . . lam x1.P # fix〉
→ 〈Hn # S, v1, v2, . . . , vn, thunk(push(thunk lam f.lam xn. . . . lam x1.P); fix)#

lam f.lam xn. . . . lam x1.P〉
n+1→ 〈Hn # S # [xi 7→ vi, f 7→ thunk(push(thunk lam f.lam xn. . . . lam x1.P); fix)]P〉
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Now we can appeal to the definition of VλJ(τ1, . . . , τn)→ τ ′K, which tells

us that this term is in EλJτ ′K, which is exactly what we need to complete

the proof: we can instantiate that relation with Hn, S, and compose the two

reductions together to produce the result needed.

Lemma 0.5.26 (boundary S). JIS ] ↑Γ `S P : τK =⇒ JI; Γ ` P; *τ+ : ↓τK

Proof. Expanding the goal, we see we need to show:

∀k γ. ∀((k, ∅), ∅, γI
S

) ∈ GSJISK. ∀((k, ∅), ∅, γI
X

) ∈ GXJIXK. (k, γ) ∈ GλJΓK =⇒
(k, γI

X

(γI
S

(γ(P; *τ+)))) ∈ EλJ↓τK

From Lemma 0.5.2, we know *τ+ is closed, so we can push the substitutions

in to just over P. Further, from the hypothesis, we know that P has no free

variables from IX, so we can eliminated that substitution.

The hypothesis that we are working with says:

∀W ϕγ′ (W,ϕ, γ′) ∈ GSJIS]↑ΓK ∧ ϕ = flocs(γ(P )) =⇒ (k, ϕ, γ′(P)) ∈ ESJτK

To instantiate the hypothesis, we need an environment γ′ that satisfies

GSJIS ] ↑ΓK. We argue that it is exactly γ composed with γI
S

: we know

they are disjoint, and we know the former can be lifted into the latter via

Lemma 0.5.1. This means, in particular, that ϕ is ∅.
Since we have no relevant locations, any heap will satisfy the expression

relation: in particular, the arbitrary H that we have to consider for our

obligation, and we can similarly use the arbitrary stack S. This means that

we our hypothesis tells us that:

〈H # S # (γI
S

(γ(P))〉 ∗→ 〈H′ # S′ # ·〉

Unless we run beyond our step budget, in which case we are trivially

in the relation. Similarly, if we run to Fail c, we are also in our relation.

Otherwise, we know that S′ = S, v and, for a future world W ′ vW that H′

satisfies with the relevant locations ϕ′, (W ′, ϕ′, v) ∈ VSJτK.
Now, what we want to show is that this value is “contained” by the code

in *τ+ to behave like ↓τ . But, clearly we can’t show that using the EλJτK
logical relation, as the value still can have locations it is closing over, etc.

So, we proceed by two steps. First, we appeal to Lemma 0.5.3

This will tell us that we can evaluate the whole program at question

further, to get to a point with a world W ′′ v W ′, ϕ′′, H′′ :ϕ′′∪ϕ′ W ′′ and

(W ′′, ϕ′′, v′) ∈ VSJ↑↓τK:
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〈H # S # (γI
S

(γ(P)); *τ+〉 ∗→
〈H′ # S, v # *τ+〉 ∗→
〈H′′ # S, v′ # ·〉

Now, we appeal to Lemma 0.5.1

This means that the value that we ran down to is in (W ′′.k, v′) ∈ VλJ↓τK,
which is exactly what we need to show.

0.5.8 FunLang with S Compatibility Lemmas

JΓ `S P : τK ≡ ∀W ϕγ. (W,ϕ, γ) ∈ GSJΓK =⇒ (W, flocs(γ(P)), γ(P)) ∈ ESJτK

Lemma 0.5.27 (unit). Show that JΓ `S push 0 : unitK.

Proof. We expand the goal, pushing out substitution through and simplifying

ϕ, given there are no free variables in push 0, to get an obligation:

(W, ∅, push 0) ∈ ESJunitK

To satisfy this, we note that we can take 1 step (if W.k = 1, we are in the

relation trivially) to having 0 on top of the stack, with a world that has the

same heap typing and, still, no relevant locations, thus satisfying VSJunitK,
as needed.

Lemma 0.5.28 (bool). Show for any n, JΓ `S n : boolK.

Proof. This proof is identical to that of unit.

Lemma 0.5.29 (if). If JΓ `S P : boolK, JΓ `S P1 : τK, and JΓ `S P2 : τK
then

JΓ `S P; if0 P1 P2 : τK.

Proof. We are given (W,ϕ†, γ) ∈ GSJγK, where ϕ = flocs(γ(P; if0 P1 P2)),

and need to show that (W,ϕ, γ(P; if0 P1 P2)) ∈ ESJτK. Pushing the substi-

tutions in, we refine this slightly to:

(W,ϕ, γ(P); if0 γ(P1) γ(P2))) ∈ ESJτK

We appeal to Lemma 0.5.7, which reduces our obligation to

(W ′, ϕ′, v; if0 γ(P1) γ(P2))) ∈ ESJτK

where from our induction hypothesis we know that for H :ϕ W and

arbitrary S, 〈H # S # γ(P)〉 ∗→ 〈H1 # S1 # ·〉 and either S1 is a dynamic failure,

in which case we are done, or it is v above, where for some W ′ v W , ϕ′,

H1 :ϕ∪ϕ′ W ′.



0.5 soundness 28

From the definition of VSJboolK, we know v is either 0 or non-zero. In

either case, we appeal to Lemma 0.5.7 again, relying on the corresponding

hypotheses in the corresponding case that the term reduces to.

Lemma 0.5.30 (int). For any n, show JΓ `S push n : intK.

Proof. This proof is essentially equivalent to that of unit and bool.

Lemma 0.5.31 (op-=). If JΓ `S P1 : intK and JΓ `S P2 : intK, show that

JΓ `S P1; P2; equal? : boolK.

Proof. We are given (W,ϕ†, γ) ∈ GSJγK, where ϕ = flocs(γ(P1; P2; equal?)),

and need to show that (W,ϕ, γ(P1; P2; equal?)) ∈ ESJboolK. Pushing the

substitutions in, we refine this slightly to:

(W,ϕ, γ(P1); γ(P2) equal?) ∈ ESJboolK

We then apply Lemma 0.5.7 twice, relying on our two hypotheses to

reduce our obligation to

(W ′, ϕ′, push v1; push v2; equal?) ∈ ESJboolK

Note that we instantiate the second hypothesis with ϕ′′ = flocs(γ(P2)) ⊂
ϕ, noting that H1 :ϕ′′ W 1 via Lemma 0.5.5.

Since v1 and v2 are integers, this takes three steps to either 0 or 1 on

top of the stack (with unchanged heap), which is sufficient to complete the

proof.

Lemma 0.5.32 (op-¡). If JΓ `S P1 : intK and JΓ `S P2 : intK, show that

JΓ `S P1; P2; less? : boolK.

Proof. This proof is identical to that of =.

Lemma 0.5.33 (op-+). If JΓ `S P1 : intK and JΓ `S P2 : intK, show that

JΓ `S P1; P2; add : intK.

Proof. This proof is identical to that of =.

Lemma 0.5.34 (var). For any x : τ ∈ Γ, show that JΓ `S push x : τK.

Proof. We are given (W,ϕ†, γ) ∈ GSJγK, where ϕ = flocs(γ(push x)), and

need to show that (W,ϕ, γ(push x)) ∈ ESJτK.
Based on the definition of GSJγK, we know that γ(x) = v for some v where

(W,ϕ′, v) ∈ VSJτK and ϕ′ ⊂ ϕ. Substituting, we can refine our proof goal to:

(W,ϕ, push v) ∈ ESJτK
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And since ϕ = flocs(v), we know ϕ′ = ϕ. This means that after one step

starting from a heap satisfying W and ϕ′, we terminate with v on the top

of the stack, and we are done.

Lemma 0.5.35 (pair). If JΓ `S P1 : τ1K and JΓ `S P2 : τ2K then JΓ `S
P1; P2; lam x2.lam x1.push [x1, x2] : τ1 × τ2K

Proof. We are given (W,ϕ†, γ) ∈ GSJγK, where ϕ = flocs(γ(P1; P2; lam x2.lam x1.push [x1, x2])),

and need to show that (W,ϕ, γ(P1; P2; lam x2.lam x1.push [x1, x2])) ∈ ESJτ1 × τ2K.
Pushing the substitutions in, we refine this slightly to:

(W,ϕ, γ(P1); γ(P2); lam x2.lam x1.push [x1, x2])) ∈ ESJτ1 × τ2K
This follows from two applications of Lemma 0.5.7 and the operational

semantics, relying on Lemma 0.5.5 for the choice of relevant locations.

Lemma 0.5.36 (fst). If JΓ `S P : τ1 × τ2K, show that JΓ `S P1; push 0; idx :

τ1K.

Proof. We are given (W,ϕ†, γ) ∈ GSJγK, where ϕ = flocs(γ(P1; push 0; idx)),

and need to show that (W,ϕ, γ(P1; push 0; idx)) ∈ ESJτ1K.
Pushing the substitutions in, we refine this slightly to:

(W,ϕ, γ(P1); push 0; idx) ∈ ESJτ1K
We apply Lemma 0.5.7, which, combined with the hypothesis, the opera-

tional semantics, and definition of the value relation is sufficient to complete

the proof.

Lemma 0.5.37 (snd). If JΓ `S P : τ1 × τ2K, show that JΓ `S P1; push 1; idx :

τ2K.

Proof. This proof is identical to fst.

Lemma 0.5.38 (inl). If JΓ `S P : τ1K, show that JΓ `S P; lam x.push [0, x] :

τ1 + τ2K.

Proof. We are given (W,ϕ†, γ) ∈ GSJγK, where ϕ = flocs(γ(P; lam x.push [0, x])),

and need to show that (W,ϕ, γ(P1; lam x.push [0, x])) ∈ ESJτ1 + τ2K.
Pushing the substitutions in, we refine this slightly to:

(W,ϕ, γ(P); lam x.push [0, x]) ∈ ESJτ1 + τ2K
As in other cases, this follows from Lemma 0.5.7 and our hypothesis.

Lemma 0.5.39 (inr). If JΓ `S P : τ2K, show that JΓ `S P; lam x.push [1, x] :

τ1 + τ2K.

Proof. This proof is identical to that of inl.

Lemma 0.5.40 (match). If JΓ `S P : τ1 + τ2K, JΓ, x : τ1 `S P1 : τK, and

JΓ, y : τ2 `S P2 : τK, show that

JΓ `S P; DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.P1) (lam y.P2) : τK
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Proof. We are given (W,ϕ†, γ) ∈ GSJγK, where

ϕ = flocs(γ(P; DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.P1) (lam y.P2)))

and need to show that, after pushing in substitutions: Pushing the

substitutions in, we refine this slightly to:

(W,ϕ, γ(P); DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.γ(P1) (lam y.γ(P2))))

∈ ESJτ1 + τ2K

We appeal to Lemma 0.5.7 and the operational semantics to reduce this

to considering the two possible branches: when VSJτ1+τ1K is [0, v] and when

it is [1, v]. In both cases, we again appeal to Lemma 0.5.7, but to the second

or third hypothesis respectively, as operationally that is what we will reduce

to, with appropriate substitution.

Lemma 0.5.41 (fold). If JΓ `S P : τ [µα.τ/α]K, show that JΓ `S P : µα.τK.

Proof. We are given (W,ϕ†, γ) ∈ GSJγK, where ϕ = flocs(γ(P)), and need

to show that (W,ϕ, γ(P)) ∈ ESJµα.τK.
This means we are given an heap H :ϕ W , stack γ, and, assuming we

don’t run forever or out of steps (in W.k budget), we run down to 〈H′ #γ′ # ·〉.
We instantiate our first hypothesis with W , H, γ, and ϕ, to get that:

〈H # S # γ(P)〉 j1→ 〈H1 # S1 # ·〉

Now, either S1 is Fail c for appropriate c, in which case the entire program

will be and we are done, or S1 = S, v and for W 1 v W , H1 :ϕ1∪ϕ W
1, and

(W 1, ϕ1, v) ∈ VSJτ [µα.τ/α]K. Now, our obligation only needs us to prove

that the resulting value, which is the same value, is in this relation at lower

step index, so we are done.

Lemma 0.5.42 (unfold). If JΓ `S P : µα.τK, show that JΓ `S P; noop : τ [µα.τ ]K.

Proof. We are given (W,ϕ†, γ) ∈ GSJγK, where ϕ = flocs(γ(P; noop)), and

need to show that (W,ϕ, γ(P; noop)) ∈ ESJτ [µα.τ ]K.
This means we are given an heap H :ϕ W , stack γ, and, assuming we

don’t run forever or out of steps (in W.k budget), we run down to 〈H′ #γ′ # ·〉.
We instantiate our first hypothesis with W , H, γ, and ϕ, to get that:

〈H # S # γ(P)〉 j1→ 〈H1 # S1 # ·〉

Now, either S1 is Fail c for appropriate c, in which case the entire program

will be and we are done, or S1 = S, v and for W 1 v W , H1 :ϕ1∪ϕ W
1, and

(W 1, ϕ1, v) ∈ VSJµα.τK. Now, our original term steps as follows:
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〈H # S # γ(P; noop)〉 j1→
〈H1 # S, v # noop〉 →
〈H1 # S, v # ·〉

We need to fulfill ESJτ [µα.τ ]K, which means we need to choose W ′ vW ,

ϕ′ such that H1 :ϕ′ W ′ and (W ′, ϕ′, v) ∈ VSJτ [µα.τ ]K. We choose W ′ to be

W 1 with the step index decreased by one. Because this is a strictly future

world of W 1, this follows directly from the definition of VSJµα.τK.

Lemma 0.5.43 (fun). If JΓ,f : (τ1, . . . , τn)
 → τ ′, xi : τi `S P : τ ′K, show

that JΓ `S push (thunk push (thunk lam f.lam xn. . . . lam x1.γ(P)); fix) :

(τ1, . . . , τn)
 → τ ′K

Proof. We are given (W,ϕ†, γ) ∈ GSJγK, where

ϕ = flocs(γ(push (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix)))

and need to show that

(W,ϕ, γ(push (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix))) ∈ ESJ(τ1, . . . , τn)
#→ τ ′K

We can then push the substitution in to refine that to:

(W,ϕ, push (thunk push (thunk lam f.lam xn. . . . lam x1.γ(P); fix)) ∈ ESJ(τ1, . . . , τn)
#→ τ ′K

This means we are given a H :ϕ W , stack S, and, assuming we don’t run

forever or out of steps (in W.k budget), we run down to 〈H′ # S′ # ·〉.
This clearly takes a single step to put thunk push (thunk lam f.lam xn. . . . lam x1.γ(P); fix

on the stack. We can thus choose W ′ to be W with k decreased by 1, the

same relevant location set ∅. Thus we need to satisfy the value relation,

which amounts to:

∀vi ϕi W
′ AW.

ϕi ⊂ dom(W ′.Ψ) ∧ (W ′, ϕi, vi) ∈ VSJτiK
=⇒ (W ′, ϕ ∪

⋃
i ϕi, [x1 7→ v1, . . . , xn 7→ vn,

f 7→ (thunk push (thunk lam f.lam xn. . . . lam x1.γ(P)); fix)]γ(P)) ∈ ESJτ ′K

Thus we choose an arbitrary future world W ′′ @ W ′, and construct

an extended substitution γ′ = γ, x1 7→ v1, . . . , xn 7→ vn, f 7→ (thunk...). We

argue that (W ′′, ϕ ∪
⋃

i ϕi, γ
′) ∈ GSJΓ,f : (τ1, . . . , τn)

#→ τ ′, xi : τiK. Clearly,
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all of the values vi are in the value relation at the correct type. And, since

W ′′ is a strict world extension, it has a smaller step index, which means

that we can appeal to our inductive hypothesis to get that our function has

the correct semantic type at that world.

That means we can instantiate our first hypothesis with W ′′, ϕ ∪
⋃

i ϕi

and γ′ to complete the proof.

Lemma 0.5.44 (app pure). If JΓ `S P : (τ1, . . . , τn)
#→ τ ′K and for i ∈

{1, . . . , n} JΓ `S Pi : τiK then

JΓ `S P; P1; SWAP . . .Pn; SWAP; call : τ ′K

Proof. We are given (W,ϕ†, γ) ∈ GSJγK, where

ϕ = flocs(γ(P; P1; SWAP . . .Pn; SWAP; call))

and need to show that

(W,ϕ, γ(P; P1; SWAP . . .Pn; SWAP; call)) ∈ ESJτ ′K

We can then push the substitution in to refine that to:

(W,ϕ,P; P1; SWAP . . .Pn; SWAP; call ∈ ESJτ ′K

This means we are given a H :ϕ W , stack S, and, assuming we don’t run

forever or out of steps (in W.k budget), we run down to 〈H′ # S′ # ·〉.
To figure out how it steps, we instantiate our first hypothesis with W , γ,

H, S and ϕ′, where ϕ′ = flocs(γ(P1)) ⊂ ϕ, noting that the heap will still

satisfy the same world with the smaller ϕ′, to get that:

〈H # S # γ(P)〉 j1→ 〈H1 # S1 # ·〉

Now, either S1 is Fail c for appropriate c, in which case the entire program

will be and we are done, or S1 = S, vf and for W 1 vW , H1 :ϕf∪ϕ′ W 1, and

(W 1, ϕf , vf) ∈ VSJ(τ1, . . . , τn)
#→ τ ′K. From the value relation, we note that

ϕf is ∅.
We then instantiate out second hypothesis with W 1, H1, S1, and ϕ′′ =

flocs(γ(P2)) ⊂ ϕ. Note that H1 :ϕ′′ W 1 from Lemma 0.5.5.

This means that:

〈H1 # S, vf # γ(P2)〉
j2→ 〈H2 # S2 # ·〉

Since this program began running in the same state as the previous

one stopped, and the previous one began at the beginning of our whole

program, again, we are either trivially in the relation or else we know that
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S2 = S1, v1 = S, vf , v1 and for W 2 vW 1, H2 :ϕ1∪ϕ′′ W 2, and (W 2, ϕ1, v1) ∈
VSJτ1K.

We can repeat this process another n− 1 times. This results in an overall

evaluation of:

〈H # S # γ(P); γ(P1); SWAP . . . γ(Pn); SWAP; call〉
∗→ 〈H′ # S, vf # γ(P1); SWAP . . . γ(Pn); SWAP; call〉
∗→ 〈H1 # S, vf , v1 # SWAP . . . γ(Pn); SWAP; call〉
∗→ 〈H1 # S, v1, vf # . . . γ(Pn); SWAP; call〉

. . .
∗→ 〈Hn # S, v1, v2, . . . , vn, vf # call〉

From VSJ(τ1, . . . , τn)
#→ τ ′K, we know the shape of vf , so we can expand

that out and step further:

〈Hn # S, v1, v2, . . . , vn, (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) # call〉
→ 〈Hn # S, v1, v2, . . . , vn # push (thunk lam f.lam xn. . . . lam x1.P); fix〉
→ 〈Hn # S, v1, v2, . . . , vn, thunk lam f.lam xn. . . . lam x1.P # fix〉
→ 〈Hn # S, v1, v2, . . . , vn, thunk(push(thunk lam f.lam xn. . . . lam x1.P); fix)#

lam f.lam xn. . . . lam x1.P〉
n+1→ 〈Hn # S # [xi 7→ vi, f 7→ thunk(push(thunk lam f.lam xn. . . . lam x1.P); fix)]P〉

Now we can appeal to the definition of VSJ(τ1, . . . , τn)
#→ τ ′K, which tells

us that this term is in ESJτ ′K, given the values were in the value relation,

which we know from each instantiated hypothesis. We then instantiate that

relation with Wn+1, ϕf ∪
⋃

i ϕ
i , and compose the reductions together to

produce the result needed.

Lemma 0.5.45 (app state). If JΓ `S P : (τ1, . . . , τn)
 → τ ′K and for i ∈

{1, . . . , n} JΓ `S Pi : τiK then

JΓ `S P; P1; SWAP . . .Pn; SWAP; call : τ ′K

Proof. This proof is nearly identical to the previous one: the only difference

is that ϕf is not empty, but that just carries down to the final instantiation

which we left unsimplified in the above proof for clarity.

0.5.9 Proving libraries satisfy types

The next step we need to do is prove that the library code that we are

linking with satisfies the types that we are importing it as. We note

that a single library may have multiple types that it can be given—and

may be usable from different extensions, which have different reasoning

principles. This is most noticeable in our case because our source language
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and extensions lack polymorphism, while many of our library functions

are naturally polymorphic: e.g., ref τ , not ref int or ref bool. However,

when we prove the libraries sound, we can prove that they satisfy the more

general pattern, and thus include them at whatever more concrete type is

appropriate.
All the library code we used is repeated below. We show the types that

we want to prove that the code has.

ALLOC : (τ)
 → ref τ , t−p (t−l falloc.lam x.push x; alloc); fix

READ : (ref τ)
 → τ , t−p (t−l fread.lam l.push l; read); fix

WRITE : (ref τ , τ)
 → unit , t−p (t−l fwrite.lam x.lam l.push l; push x; write; push 0); fix

where t−p = thunk push and t−l = thunk lam

Lemma 0.5.46 (alloc sound S).

∀W τ. (W, ∅, thunk push (thunk lam falloc.lam x.push x; alloc); fix) ∈ VSJ(τ+)
 →

ref τ+K

Proof. It suffices to show:

∀v ϕ W ′ AW.ϕ ⊂ dom(W ′.Ψ) ∧ (W ′, ϕ, v) ∈ VSJτ+K
=⇒ (W ′, ϕ, push v; alloc) ∈ ESJref τ+K

Thus, we choose a H :ϕ: W ′, S, and take two steps 〈H # S # push v; alloc〉 2→
〈H, ` 7→ v # S, ` # ·〉, for fresh `. To complete the proof, we choose W ′′ to

be W ′ extended with ` mapping to VSJτ+K, appropriately restricted, and

ϕ′ = {`}, which means (W ′′, ϕ′, `) ∈ VSJref τ+K as needed.

Lemma 0.5.47 (read sound S).

∀W τ. (W, ∅, thunk push (thunk lam fread.lam l.push l; read); fix) ∈ VSJ(ref τ+)
 →

τ+K

Proof. It suffices to show:

∀` W ′ AW.` ∈ dom(W ′.Ψ) ∧ (W ′, {`}, `) ∈ VSJref τ+K
=⇒ (W ′, {`}, push `; read) ∈ ESJτ+K

Thus, we choose a H :{`}: W
′, S, and if W ′.Ψ(`) 6= †, take two steps

〈H # S # push `; read〉 2→ 〈H # S, v # ·〉, which from the invariant on the heap,

(BW ′, ∅, v) ∈ VSJτ+K as needed. If W ′.Ψ(`) = †, then the location has been

freed and we will reduce to fail Mem, which is also in the relation.

Lemma 0.5.48 (write sound S).

∀W τ. (W, ∅, thunk push (thunk lam fwrite.lam x.lam l.push l; push x; write; push 0); fix)

∈ VSJ(ref τ+, τ+)
 → unitK
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Proof. It suffices to show:

∀` v W ′ AW. {`} ∪ ϕ ⊂ dom(W ′.Ψ) ∧ (W ′, {`}, `) ∈ VSJref τ+K ∧ (W ′, ϕ, v) ∈ VSJτ+K
=⇒ (W ′, {`} ∪ ϕ, push `; push v; write; push 0) ∈ ESJunitK

Thus, we choose a H :{`}∪ϕ: W ′, S, and, if W ′.Ψ(`) 6= †, take four steps:

〈H # S # push `; push v; write; push 0〉 →
〈H # S, ` # push v; write; push 0〉 →
〈H # S, `, v # write; push 0〉 →
〈H[` 7→ v] # S, `, v # push 0〉 →
〈H[` 7→ v] # S, 0 # ·〉

Note that the third step succeeds because the invariant on the heap means

that ` is bound in it. To complete the proof, it suffices to choose ϕ′ as ∅,
W ′′ as an extension that simply decreases the step index, since (W ′′, ∅, 0) ∈
VSJunitK. We know H[` 7→ v] :{`}∪ϕ W

′′ and that W ′′ is an extension, since

the value we updated the location with had the same type as what was at

`. If W ′.Ψ(`) = †, then the location has been freed and we will reduce to

fail Mem, which is also in the relation.

0.5.10 Finally, proving soundness

With all of the compatibility lemmas proved, we can prove the fundamental

property of the logical relation:

Theorem 0.5.49 (fundamental property).

If I; Γ ` e : τ then JI; Γ ` e+ : τK.

Proof. We prove this by induction over the typing derivation, using a

corresponding compatibility lemma for each typing rule. Note that when

we cross the boundary, we will switch to using compatibility lemmas for the

corresponding extension.

With that, we can prove type soundness. Note that this references the

exception extension covered later, as we close with libraries that could

reference it.

Corollary 0.5.50 (type soundness). If I; · ` e : τ then given libraries γI
S

(where ((k, ∅), ∅, γI
S

) ∈ GSJISK) and γI
X

(where ((k, ∅), ∅, γI
X

) ∈ GXJIXK),

for any heap H, stack S, if 〈H # S #γI
S

(γI
X

(e+))〉 ∗→ 〈H′ # S′ # P′〉 then one of:

• P′ = · and S′ = Fail c and c ∈ OkErr



0.5 soundness 36

• P′ = · and S′ = S, v and ∃j. (j, v) ∈ VλJτK

• ∃H∗ S∗ P∗. 〈H′ # S′ # P′〉 → 〈H∗ # S∗ # P∗〉

Proof. This is simply a combination of the fundamental property with the

definition of EλJτK.
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Extended Type τ := τ | unit | bool | int | τ × τ | τ + τ

| µα.τ | (τ , . . . , τ)
◪→ τ | ref τ

x : τ ∈ Γ

Γ `X x : τ

Γ, f : (τ1, . . . , τn)
�→ τ ′, xi : τi `X e : τ ′

Γ `X fun f(x1 : τ1, . . . , xn : τn){e} : (τ1, . . . , τn)
�→ τ ′

Γ `X e : (τ1, . . . , τn)
◪→ τ ′ Γ `X ei : τi

Γ `X e(e1, . . . , en) : τ ′

Figure 0.14: Linking types for exceptions and state

This extension reuses the same core language, FunLang, as in our state

case study, and thus the same target, StackLang. We do not reproduce the

FunLang static semantics, the operational semantics of StackLang, or the

compiler between them.

0.6 soundness

0.6.1 Exception extension model

0.6.2 Proving ↑ sound

Lemma 0.6.1 (lift X). ∀W v. (W, ∅, v) ∈ VXJ↑τK ⇐⇒ (W.k, v) ∈ VλJτK

Proof. We prove this by simultaneous induction over the size k and the

structure of τ .

Case unit/bool/int. In this case, the values are trivially in the relation,

by definition.

Case τ1 × τ2/τ1 + τ2. These follow straightforwardly by appealing to the

inductive hypothesis.

Case µα.τ . In this case, we can appeal to our inductive hypothesis at a

smaller k (as our type may have gotten larger).

Case (τ1, . . . , τn)→ τ ′. This follows by application of the induction hy-

pothesis.

0.6.3 Proving *τ+ satisfies ↓

Lemma 0.6.2 (wrap closed X). ∀τ . fvars(*τ+) = ∅
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↑τ , τ

↑unit , unit

↑bool , bool

↑int , int

↑τ1 × τ2 , ↑τ1 × ↑τ2
↑τ1 + τ2 , ↑τ1 + ↑τ2
↑µα.τ , µα.↑τ
↑(τ1, . . . , τn)→τ ′ , (↑τ1, . . . , ↑τn)

�→↑τ ′

↓τ , τ

�

unit , unit�

bool , bool�

int , int�

τ1×τ2 ,

�

τ1 ×

�

τ2�

τ1+τ2 ,

�

τ1 +

�

τ2�

µα.τ , µα.

�

τ

�

(τ1, . . . , τn)
�→ τ ′ , (

�

τ1, . . . ,

�

τn)→

�

τ ′

�

(τ1, . . . , τn)
�→ τ ′ , (

�

τ1, . . . ,

�

τn)→U + (

�

τ ′)�

ref τ , unit

↓τ , U +

�

τ

where U = µα.unit + int + (α× α) + (α+ α) + ((α)→ α) + α

Figure 0.15: Lift and lower functions for exceptions extension

CATCH , thunk push (thunk lam fcatch.lam f.push f; call; lam res.push [1, res]; reset); fix

THROW , thunk push (thunk lam fthrow.lam exn.push [0, exn]; shift ()); fix

*ref τ+ , free; push [1, 0]; reset

*(τ1, . . . ,τn)
�→ τ ′+ , DUP; push (thunk lam l.push l; free); getlocs; lam res. push [1, res]; reset

*τ+ , lam res.push [1, res]; reset where τ not in above

Figure 0.16: Exception target library & boundary enforcement
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import( alloc : ((int)
�→ int)

�→ ref ((int)
�→ int),

read : (ref ((int)
�→ int))

�→ ((int)
�→ int),

write : (ref ((int)
�→ int), ((int)

�→ int))
�→ unit,

catch : (()
�→ U)

�→ U + U,

throw : (U)
�→ int)

fun fiblist(lst : µα.(int× α) + unit){ 1

{let mtbl = alloc(fun f(n : int){−1}) in 2
let mf = fun mutfib(y : int){
if x = 0 {0}{if x = 1{1}{
let m = read(mtbl) in
if m(x) = −1{
let r = mutfib(x− 1) + mutfib(x− 2) in
let = write(mtbl, fun f(n){if n = x{r}{m(x)}}) in
r

}{m(x)}
} in

fun mutfiblist(l : µα.(int× α) + unit){
match unfold l

x {if fst x < 0 {throw(fold inl ())} { 3
fold inl(mf(fst x), mutfiblist(snd x))}

y {fold inr()}
}

}(lst)}X
U + µα.(int× α) + unit

}

Figure 0.17: Example: fibonacci with input checks and memoization
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VXJunitK = {(W, ∅, 0)}
VXJboolK = {(W, ∅, n)}
VXJintK = {(W, ∅, n)}
VXJτ1 × τ2K = {(W,ϕ, [v1, v2]) | ϕ ⊂ dom(W.Ψ) ∧ ϕ1 ∪ ϕ2 = ϕ∧

(W,ϕ1, v1) ∈ VXJτ1K ∧ (W,ϕ2, v2) ∈ VXJτ2K‘}
VXJτ1 + τ2K = {(W,ϕ, [0, v]) | ϕ ⊂ dom(W.Ψ) ∧ (W,ϕ, v) ∈ VXJτ1K}

∪ {(W,ϕ, [1, v]) | ϕ ⊂ dom(W.Ψ) ∧ (W,ϕ, v) ∈ VXJτ2K}
VXJµα.τK = {(W,ϕ, v) | (W,ϕ, v) ∈ BVXJτ [µα.τ/α]K}
VXJref τK = {(W, {`}, `) |W.Ψ(`) = bVXJτKcW.k | †}
VXJ(τ1, . . . , τn)

�→ τ ′K = {(W, ∅, thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) |
∀vi ϕi W

′ AW. ϕi ⊂ dom(W ′.Ψ) ∧ (W ′, ϕi, vi) ∈ VXJτiK
=⇒ (W ′,

⋃
i ϕi, [x1 7→ v1, . . . , xn 7→ vn,

f 7→ (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix)]P)
∈ EXJτ ′K}

VXJ(τ1, . . . , τn)
�→ τ ′K = {(W,ϕ, thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) |

ϕ ⊂ dom(W.Ψ) ∧ ∀vi ϕi W
′ AW.

ϕi ⊂ dom(W ′.Ψ) ∧ (W ′, ϕi, vi) ∈ VXJτiK
=⇒ (W ′, ϕ ∪

⋃
i ϕi, [x1 7→ v1, . . . , xn 7→ vn,

f 7→ (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix)]P)
∈ EXJτ ′K�}

K ::= push v1; push v2; . . . push vn; [·]; P

EXJτK� = {(W,ϕp,P) | reset 6∈ P ∧ ∀(W,ϕk,K) ∈ KJτ ⇒ τ ′K. (W,ϕp ∪ ϕk,K[P]) ∈ EXJτ ′K}
RJτK = {(W,ϕ, push v) | (W,ϕ, v) ∈ VXJτK}

∪ {(W,ϕp ∪ ϕv, push [0, v]; shift (); P) | (W,ϕv, v) ∈ VXJUK ∧ reset /∈ P}
KJτ ⇒ τ ′K = {(W,ϕ,K) | ϕ = flocs(K) ∧ ∀W ′ wW, (W ′, ϕ′, P ) ∈ RJτK.

(W ′, ϕ ∪ ϕ′,K[P ]) ∈ EXJτ ′K}
EXJτK = {(W,ϕ,P) | ∀H:ϕW, S. runningW.k(〈H # S # P 〉) ∨ ∃j < W.k,H′,S′.

〈H # S # P 〉 ∗→ j〈H′ # S′ # ·〉 ∧ ((S′ = Fail c ∧ c ∈ OkErr)
∨ ∃vϕ′W ′ wW.

(
S′ = S, v ∧ H′ :ϕ′∪ϕ W

′ ∧ (W ′, ϕ′, v) ∈ VXJτK
)
)}

where OkErr , {Mem}

Figure 0.18: Exception extension logical relation: main definition
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Proof. This follows by simple inspection of the definition.

Lemma 0.6.3 (encapsulation continuation). ∀W τ. (W, ∅, *τ+) ∈ KJτ→↑↓τK

Proof. We proceed by case analysis on τ , handling the majority of the cases

for which *τ+ is the default, exception catching case first.

In those cases, which by inspection, ↑↓τ = U + τ , the proof obligation is

to show that

(W, ∅, lam res.push [1, res]; reset) ∈ KJτ→U + τK

That means:

∀vϕ. (W,ϕ, v) ∈ VXJUK =⇒
(W,ϕ, push [0, v]; shift (); lam res.push [1, res]; reset) ∈ EXJU + τK#

∧ ∀vϕ. (W,ϕ, v) ∈ VXJτK =⇒
(W,ϕ, push v; lam res.push [1, res]; reset) ∈ EXJU + τK#

We consider each case in turn. First, we consider the case when an

exception value is raised. We choose an heap H :ϕ W , and a stack S, and

see that the term runs as follows:

〈H # S # push [0, v]; shift (); lam res.push [1, res]; reset〉 →
〈H # S, [0, v] # shift (); lam res.push [1, res]; reset〉 →
〈H # S, [0, v] # ·〉

At this point, we clearly satisfy the requirements of the expression relation.

In the other case, when no exception is raised, we again choose a heap H :ϕ W

(note this is a differest set of relevant locations!), and run as follows:

〈H # S # push v; lam res.push [1, res]; reset〉 →
〈H # S, v # lam res.push [1, res]; reset〉 →
〈H # S # push [1, v]; reset〉 →
〈H # S, [1, v] # reset〉 →
〈H # S, [1, v] # ·〉

Again, we satisfy the relation, this time in the other disjunct.

Now, we consider the other two types, which use unique wrapping code:

Case ref τ . Our obligation is to show:

∀vϕ. (W,ϕ, v) ∈ VXJUK
=⇒ (W,ϕ, push [0, v]; shift (); free; push [1, 0]; reset) ∈ EXJU + unitK#

∧ ∀vϕ. (W,ϕ, v) ∈ VXJref τK
=⇒ (W,ϕ, push v; free; push [1, 0]; reset) ∈ EXJU + unitK#
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The first case is identical to our first one, so we only consider the

second case. By inspection of VXJref τK, we know for some `, ϕ = {`},
v = `, and W.Ψ(`) = bVXJτKcW.k. This means when we choose a heap

H :ϕ W , we know it will have ` bound to some value in BbVXJτKcW.k,

though as we will see, the actual value does not matter. We will then

take four steps:

〈H # S # push `; free; push [1, 0]; reset〉 →
〈H # S, ` # free; push [1, 0]; reset〉 →
〈H \ ` # S # push [1, 0]; reset〉 →
〈H \ ` # S, [1, 0] # reset〉 →
〈H \ ` # S, [1, 0] # ·〉

Now we choose W ′ to be W , but with ` updated to be marked as

dead, and choose ϕ′ = ∅. Still, (H \ `) :ϕ W
′ (as dead elements in the

world are ignored), and by definition, (W ′, ∅, 0) ∈ VXJunitK, which,

along with the appropriate tag, is sufficient to satisfy VXJU + unitK,
so we are done with this case.

Case (τ1, . . . , τn)
 → τ ′. Our obligation is to show:

∀vϕ. (W,ϕ, v) ∈ VXJUK
=⇒ (W,ϕ, push [0, v]; shift (); lam x.(push x; push x);

push (thunk lam l.push l; free); getlocs; lam res. push [1, res]; reset)

∈ EXJU + (τ1, . . . , τn)
 → τ ′K#

∧ ∀vϕ. (W,ϕ, v) ∈ VXJ(τ1, . . . , τn)
 → τ ′K

=⇒ (W,ϕ, push v; lam x.(push x; push x);

push (thunk lam l.push l; free); getlocs; lam res. push [1, res]; reset)

∈ EXJU + (τ1, . . . , τn)
 → τ ′K#

As before, the first case is identical to previous, so we only consider

the second case. Once we pick an arbitrary stack S and a heap H :ϕ W ,

we take the following steps:

〈H # S # push v; lam x.(push x; push x); push (thunk lam l.push l; free);

getlocs; lam res. push [1, res]; reset

〉 4→

〈H # S, v, v # push (thunk lam l.push l; free); getlocs; lam res. push [1, res]; reset〉 →
〈H # S, v, v, (thunk lam l.push l; free) # getlocs; lam res. push [1, res]; reset〉

Now, we know that getlocs will run the thunk on top of the stack

once for every free location one position down the stack, which means
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everything reachable from our function value. Assume those locations

are `1, . . . , `k. Then we step as follows:

〈H # S, v, v, (thunk lam l.push l; free) # getlocs; lam res. push [1, res]; reset〉 3k+1→
〈H \ {`1, . . . , `k} # S, v # lam res. push [1, res]; reset〉 →
〈H \ {`1, . . . , `k} # S # push [1, v]; reset〉 →
〈H \ {`1, . . . , `k} # S, [1, v] # reset〉 →
〈H \ {`1, . . . , `k} # S, [1, v] # ·〉

Now that we have terminated, we have to fulfill the obligations of

EXJU+ (τ1, . . . , τn)
#→ τ ′K. We choose ϕ′ = ∅, and W ′ such that every

location in ϕ has been marked dead. By invariant of the relation,

ϕ = {`1, . . . , `k}. Our heap satisfies the world, by construction, and

everything that should be dead is, so the only thing that remains is

to show that (W ′, ∅, [1, v]) ∈ VXJU + (τ1, . . . , τn)
#→ τ ′K. This follows

from the definition of VXJτ + τK and our hypothesis on v, once we

substitute our empty relevant location set in.

0.6.4 Proving libraries satisfy types

We now need to show that our exception library satisfies the proper semantic

types. We present the definitions and their intended types first, after which

we show the proofs.

CATCH : (()
�→ τ)

�→ U + τ

, t−p (t−l fcatch.lam f.push f; call; lam res.push [1, res]; reset); fix

THROW : (U)
�→ τ

, t−p (t−l fthrow.lam exn.push [0, exn]; shift ()); fix

where t−p = thunk push and t−l = thunk lam

Lemma 0.6.4 (catch sound X).

∀W τ. (W, ∅, thunk push (thunk lam fcatch.lam f.push f; call;

lam res.push [1, res]; reset); fix)

∈ VXJ(() �→ τ)
�→ U + τK

Proof. It suffices to show:
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ϕ ⊂ dom(W.Ψ) ∧ ∀v ϕ W ′ AW. ϕ ⊂ dom(W ′.Ψ) ∧ (W ′, ϕ, v) ∈ VXJ() �→ τK
=⇒ (W ′, ϕ, push v; call; lam res.push [1, res]; reset) ∈ EXJU + τK

Thus, we need to consider heap H :ϕ∪ϕk W ′, stack S, and after two steps,

are running the body of v. From the definition of VXJ() �→ τK, we know

that the body, which has to arguments, is in EXJτK�. We instantiate that

with K = [·]; lam res.push [1, res]; reset, and thus it suffices to show that

(W ′′, ∅,K) ∈ KJτ ⇒ U+τK. In the case that a normal value is returned, this

tags it in with 1 and returns it, satisfying the relation. In the case that an

exceptional value is produced, it is already tagged with 0, and immediately

reduces to the value, so we are done.

Lemma 0.6.5 (throw sound X).

∀W τ. (W, ∅, thunk push (thunk lam fthrow.lam exn.push [0, exn]; shift ()); fix) ∈
VXJ(U)

�→ τK

Proof. It suffices to show:

ϕ ⊂ dom(W.Ψ) ∧ ∀v ϕ W ′ AW. ϕ ⊂ dom(W ′.Ψ) ∧ (W ′, ϕ, v) ∈ VXJUK
=⇒ (W ′, ϕ, push [0, v]; shift ()) ∈ EXJτK�

We choose an arbitrary τ ′,K, and the result is now immediate from

the definition of KJτ ⇒ τ ′K, since our term is already in the form of the

exception result.

0.6.5 Compatibility lemmas & type soundness

We use the following shorthand for typing rules for the exception notation,

which supplements the notation defined already.

JΓ `X P : τK ≡ ∀W ϕγ. (W,ϕ, γ) ∈ GXJΓK =⇒ (W, flocs(γ(P)), γ(P)) ∈ EXJτK�

Lemma 0.6.6 (boundary X). JIX ] ↑Γ `X P : τK =⇒ JI; Γ ` P; *τ+ : ↓τK

Proof. The general approach of this proof is similar to the one for S

(Lemma 0.5.4); the difference, of course, is that the X logical relation

has a different shape, and so some details are different.

Expanding the goal, we see we need to show:
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∀k γ. ∀((k, ∅), ∅, γI
S

) ∈ GSJISK. ∀((k, ∅), ∅, γI
X

) ∈ GXJIXK. (k, γ) ∈ GλJΓK =⇒
(k, γI

X

(γI
S

(γ(P; *τ+)))) ∈ EλJ↓τK

We note due to Lemma 0.6.2 that *τ+ is closed, so can push the substitu-

tion in to only around P.

The hypothesis that we are working with says:

∀W ϕγ (W,ϕ, γ) ∈ GXJIX ] ↑ΓK =⇒ (W,ϕ, γ(P)) ∈ EXJτK 

To instantiate the hypothesis, we need an environment γ′ that satisfies

GSJIX ] ↑ΓK. We argue that it is exactly γ composed with γI
X

: we know

they are disjoint, and we know the former can be lifted into the latter via

Lemma 0.6.1. This means, in particular, that ϕ is ∅. Now, we need to

choose a continuation and return type τA from KJτ → τAK. We choose *τ+,

with τA set to ↑↓τ , which we know, with any world and empty ϕ, is in the

relation from Lemma 0.6.3. This then tells us that (W, ∅, γ(P); *τ+) is in

EXJ↑↓τK#.
This means we can use the arbitrary heap H we are given initially to

instantiate this relation, as our world and set of relevant locations makes

no restriction on the heap. We also use the arbitrary stack S we are given.

This means that we know that either we run past our step index budget

(in which case we are trivially in EλJ↓τKρ, our overall goal), or after some

number of steps we have either run to an acceptable failure state (also okay),

or we have terminated in a value v, at a future world W ′, with relevant

locations ϕ′ such that (W ′, ϕ′, v) ∈ VXJ↑↓τK. By inspection of the value

relation, we can see for all types ↑↓τ , ϕ′ will be ∅. At this point, the result

follows from Lemma 0.6.1.

0.6.6 Supporting Lemmas

Lemma 0.6.7 (EXJτK Embeds VXJτK). If (W,ϕ, v) ∈ VXJτK, then

(W,ϕ, push v) ∈ EXJτK

Proof. We choose heap H :ϕ W , arbitrary stack S, take a single step and

the result is immediate.

Lemma 0.6.8 (EXJτK� Embeds EXJτK). If (W,ϕ,P) ∈ EXJτK, then

(W,ϕ,P) ∈ EXJτK�

Proof. Our obligation is to show that for arbitrary τ ′,K, where (W,ϕk,K) ∈
KJτ ⇒ τ ′K, (W,ϕ ∪ ϕk,K[P ]) ∈ EXJτK. We do this by appealing to our
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hypothesis, as we know that if we do not run forever, or result in an

acceptable error, we will reduce to a final value on the stack. In that case,

we simply appeal to the first case of RJτK and we are done.

Lemma 0.6.9 (Monotonicity X). If (W,ϕ, v) ∈ VXJτK and W ′ wW , then

(W ′, ϕ, v) ∈ VXJτK

Proof. This follows from the definition of world extension: step indices

can decrease, which can only have the effect of bringing more terms into

the relation, in the case that we run out of steps before we can rule our

membership, and the heap typing can expand or mark existing locations as

dead, neither of which rules out existing values being in the relation.

Lemma 0.6.10 (Antireduction# X).

If ∀W ′ ϕ′H H′,S. (W ′, ϕ′, push v1; push v2; . . . push vn; P) ∈ EXJτK# and

W ′ vW , H :ϕ W , H′ :ϕ∪ϕ′ W ′, and 〈H # S # P′; P〉 ∗→ 〈H′ # S, v1, v2, . . . , vn # P〉
then (W,ϕ,P′; P) ∈ EXJτK#.

Proof. We consider heap H :ϕ W , arbitrary stack S. We know that if the

term in question does not run forever (which, if it does, then the suffix

P does as well, so we are done), then it steps to a terminal configuration

〈HF # SF # ·〉. We need to show that, assuming that is not an error, SF = S, v

and for some ϕF and WF v W , HF :ϕF WF and (WF , ϕF , v) ∈ VXJτK#.
We know that 〈H # S # P′; P〉 ∗→ 〈H′ # S, v1, . . . , vn # P〉 and that for some

W ′ v W , H′ :ϕ∪ϕ′ W ′. So we instantiate our first hypothesis with H′ and

S. After n steps, it is in exactly the configuration our term left off in. We

know it doesn’t run forever, and if it errors, similarly, our overall term must

error, so we conclude that it runs to a terminal configuration which due to

confluence, will be the same one. Thus, we know HF :ϕ∪ϕ′∪ϕF WF , which

is stronger than we need, and (WF , ϕF , v) ∈ VXJτK, exactly as needed.

Lemma 0.6.11 (Monadic Bind X). If (W,ϕp,P) ∈ EXJτK , and (W ′, ϕk ∪
ϕ′p,K[P′]) ∈ EXJτ ′K whenever (W ′, ϕ′p,P

′) ∈ RJτK and W ′ w W , then

(W,ϕk ∪ ϕp,K[P]) ∈ EXJτ ′K .

Proof. Given (W,ϕ′k,K
′) ∈ KJτ ′ ⇒ τ ′′K, we must show (W,ϕ′k ∪ ϕk ∪

ϕp,K
′[K[P]]) ∈ EXJτ ′′K#. Because (W,ϕp,P) ∈ EXJτK , it suffices if (W,ϕk ∪

ϕ′k,K
′[K]) ∈ KJτ ⇒ τ ′′K. Given (W ′, ϕ′p,P

′) ∈ RJτK where W ′ w W ,

we must show (W ′, ϕ′k ∪ ϕk ∪ ϕ′p,K′[K[P′]]) ∈ EXJτ ′′K#. By assumption,

(W ′, ϕk ∪ ϕ′p,K[P′]) ∈ EXJτ ′K , so (W ′, ϕ′k ∪ ϕ′k ∪ ϕ′p,K′[K[P′]]) ∈ EXJτ ′′K#
by definition of EXJτ ′K .

Corollary 0.6.12 (Antireduction X).

If ∀W ′ ϕ′H H′,S. (W ′, ϕ′, push v1; push v2; . . . push vn; P) ∈ EXJτK and

W ′ vW , H :ϕ W , H′ :ϕ∪ϕ′ W ′, and 〈H # S # P′; P〉 ∗→ 〈H′ # S, v1, v2, . . . , vn # P〉
then (W,ϕ,P′; P) ∈ EXJτK .
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Proof. In Lemma 0.6.10, the only cases are divergence, (type-sound) ter-

mination, and failure. Here, we must also consider exceptions, but we can

use Lemma 0.6.11 as needed. Otherwise, the proof proceeds as in Lemma

0.6.10.

Lemma 0.6.13 (Thread X). If (W,ϕp,P) ∈ EXJτK , and (W ′, ϕk∪ϕv,K[push v]) ∈
EXJτ ′K whenever (W ′, ϕv, v) ∈ VXJτK and W ′ wW , then (W,ϕk∪ϕp,K[P]) ∈
EXJτ ′K .

Proof. By Lemma 0.6.11, it suffices if (W ′, ϕk ∪ ϕ′p,K[P′]) ∈ EXJτ ′K given

(W ′, ϕ′p,P
′) ∈ RJτK where W ′ wW . Unfolding RJτK, there are two cases.

• P′ = push v for (W ′, ϕ′p, v) ∈ VXJτK. Then apply the second premise.

• P′ = push [0, v]; shift (); P′′ for (W ′, ϕv, v) ∈ VXJUK, ϕv ⊆ ϕ′p. Given

(W ′, ϕ′k,K
′) ∈ KJτ ′ ⇒ τ ′′K, we must show (W ′, ϕ′k∪ϕk∪ϕ′p,K′[K[push [0, v]; shift (); P′′]]) ∈

EXJτ ′′K#. Since K = push vk; [·]; Pk, we must show (W ′, ϕ′k ∪ ϕk ∪
ϕ′p,K

′[push v; push [0, v]; shift (); P′′; Pk]) ∈ EXJτ ′′K#. Applying Lemma

0.6.10, it suffices if (W ′′, ϕ′k∪ϕk∪ϕ′p,K′[push [0, v]; shift (); P′′; Pk]) ∈
EXJτ ′′K#. But notice that (W ′′, ϕk∪ϕ′p, push [0, v]; shift (); P′′; Pk) ∈
RJτ ′K, so applying the definition of KJτ ′ ⇒ τ ′′K is sufficient.

0.6.7 FunLang with X Compatibility Lemmas

JΓ `X P : τK ≡ ∀W ϕγ. (W,ϕ, γ) ∈ GXJΓK =⇒ (W, flocs(γ(P)), γ(P)) ∈ EXJτK�

Lemma 0.6.14 (unit). Show that JΓ `X push 0 : unitK.

Proof. We are given (W,ϕ†, γ) ∈ GXJγK, where ϕ = flocs(γ(push 0)) = ∅ ,

and need to show that (W, ∅, γ(push 0)) ∈ EXJunitK�.
Thus, we consider arbitrary continuation K with (W,ϕk,K) ∈ KJunit⇒

τK. We need to show that (W,ϕk,K[γ(push 0)]) ∈ EXJτK. But this follows

exactly from the definition of RJτK.

Lemma 0.6.15 (bool). Show for any n, JΓ `X n : boolK.

Proof. This proof is essentially identical to that of unit.

Lemma 0.6.16 (if). If JΓ `X P1 : boolK, JΓ `X P2 : τK, and JΓ `X P3 : τK
then

JΓ `X P1; if0 P2 P3 : τK.

Proof. Unfolding J·K and pushing substitutions, we must show

(W,ϕ, γ(P1); if0 γ(P2) γ(P3)) ∈ EXJτK�
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given (W,ϕ†, γ) ∈ GXJΓK where ϕ =
⋃
ϕi and ϕi = flocs(γ(Pi)). Applying

Lemma 0.6.13 with the first premise, it suffices if

(W ′, ϕ2 ∪ ϕ3, push n; if0 γ(P2) γ(P3)) ∈ EXJτK�

given (W ′, ∅, n) ∈ VXJboolK and W ′ wW . There are two cases.

• Suppose n = 0. Then by Lemma 0.6.12, it suffices if

(W ′, ϕ2, γ(P2)) ∈ EXJτK�

Applying Lemma 0.6.13 with the second premise, it suffices if

(W ′′, ϕ′, push v) ∈ EXJτK�

where (W ′′, ϕ′, v) ∈ VXJτK, W ′′ w W ′. Then apply Lemmas 0.6.7,

0.6.8.

• Suppose n 6= 0. Then by Lemma 0.6.12, it suffices if

(W ′, ϕ3, γ(P3)) ∈ EXJτK�

Applying Lemma 0.6.13 with the third premise, it suffices if

(W ′′, ϕ′, push v) ∈ EXJτK�

where (W ′′, ϕ′, v) ∈ VXJτK, W ′′ w W ′. Then apply Lemmas 0.6.7,

0.6.8.

Lemma 0.6.17 (int). For any n, show JΓ `X push n : intK.

Proof. This proof is essentially identical to that of unit.

Lemma 0.6.18 (op-=). If JΓ `X P1 : intK and JΓ `X P2 : intK, then

JΓ `X P1; P2; equal? : boolK.

Proof. Unfolding J·K and pushing substitutions, we are to show

(W,ϕ, γ(P1); γ(P2); equal?) ∈ EXJboolK�

given (W,ϕ†, γ) ∈ GXJΓK where ϕ =
⋃
ϕi and ϕi = flocs(γ(Pi)).

Applying Lemma 0.6.13 twice, it sufficies if

(W ′, ∅, push n1; push n2; equal?) ∈ EXJboolK�

given (W ′, ∅, ni) ∈ VXJintK and W ′ wW . Applying Lemma 0.6.12, there

are two cases:
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• Suppose n1 = n2. Then we must show

(W ′, ∅, push 0) ∈ EXJboolK�

which we have by Lemmas 0.6.7, 0.6.8 and the definition of VXJboolK.

• Suppose n1 6= n2. Then we must show

(W ′, ∅, push 1) ∈ EXJboolK�

which we have by Lemmas 0.6.7, 0.6.8 and the definition of VXJboolK.

Lemma 0.6.19 (op-¡). If JΓ `X P1 : intK and JΓ `X P2 : intK, then

JΓ `X P1; P2; less? : boolK.

Proof. This proof is essentially identical to that of =.

Lemma 0.6.20 (op-+). If JΓ `X P1 : intK and JΓ `X P2 : intK, then

JΓ `X P1; P2; add : intK.

Proof. This proof is essentially identical to that of =.

Lemma 0.6.21 (var). JΓ `X push x : τK

Proof. Unfolding J·K and pushing substitutions, we are to show

(W,ϕ, push v) ∈ EXJτK�

given (W,ϕ†∪ϕ, γ[x 7→ v]) ∈ GXJΓK where (W,ϕ, v) ∈ VXJτK. Then apply

Lemmas 0.6.7, 0.6.8.

Lemma 0.6.22 (pair). If JΓ `X P1 : τ1K and JΓ `X P2 : τ2K then

JΓ `X P1; P2; lam x2.lam x1.push [x1, x2] : τ1 × τ2K

Proof. Unfolding J·K and pushing substitutions, we are to show

(W,ϕ, γ(P1); γ(P2); lam x2.lam x1.push [x1, x2]) ∈ EXJτ1 × τ2K�

given (W,ϕ†, γ) ∈ GXJΓK where ϕ =
⋃
ϕi and ϕi = flocs(γ(Pi)).

Applying Lemma 0.6.13 twice, it sufficies if

(W ′, ϕ′, push v1; push v2; lam x2.lam x1.push [x1, x2]) ∈ EXJτ1 × τ2K�
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given (W ′, ϕ′i, vi) ∈ VXJτiK and ϕ′ =
⋃
ϕ′i and W ′ wW . Applying Lemma

0.6.12, it suffices if

(W ′′, ϕ′, push [v1, v2]) ∈ EXJτ1 × τ2K�

given W ′′ wW ′, which we have by Lemmas 0.6.7, 0.6.8 and the definition

of VXJτ1 × τ2K.

Lemma 0.6.23 (fst). If JΓ `X P : τ1 × τ2K, then JΓ `X P; push 0; idx : τ1K.

Proof. Unfolding J·K and pushing substitutions, we are to show

(W,ϕ, γ(P); push 0; idx) ∈ EXJτ1K�

given (W,ϕ†, γ) ∈ GXJΓK where ϕ = flocs(γ(P)).

Applying Lemma 0.6.13, it sufficies if

(W ′, ϕ′, push [v1, v2]; push 0; idx) ∈ EXJτ1K�

where (W ′, ϕ′i, vi) ∈ VXJτiK and ϕ′ =
⋃
ϕ′i and W ′ w W . Applying

Lemma 0.6.12, it suffices if

(W ′′, ϕ′1, push v1) ∈ EXJτ1K�

where W ′′ wW ′, which we have by Lemmas 0.6.7, 0.6.8.

Lemma 0.6.24 (snd). If JΓ `X P : τ1 × τ2K, then JΓ `X P1; push 1; idx :

τ2K.

Proof. As in Lemma 0.6.23.

Lemma 0.6.25 (inl). If JΓ `X P : τ1K, then JΓ `X P; lam x.push [0, x] :

τ1 + τ2K.

Proof. Unfolding J·K and pushing substitutions, we are to show

(W,ϕ, γ(P); lam x.push [0, x]) ∈ EXJτ1 + τ2K�

given (W,ϕ†, γ) ∈ GXJΓK where ϕ = flocs(γ(P)).

Applying Lemma 0.6.13, it sufficies if

(W ′, ϕ′, push v; lam x.push [0, x]) ∈ EXJτ1 + τ2K�

given (W ′, ϕ′, v) ∈ VXJτ1K and W ′ w W . Applying Lemma 0.6.12, it

suffices if

(W ′′, ϕ′, push [0, v]) ∈ EXJτ1 + τ2K�

given W ′′ wW ′, which we have by Lemmas 0.6.7, 0.6.8 and the definition

of VXJτ1 + τ2K.
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Lemma 0.6.26 (inr). If JΓ `X P : τ2K, then JΓ `X P; lam x.push [1, x] :

τ1 + τ2K.

Proof. As in Lemma 0.6.25.

Lemma 0.6.27 (match). If JΓ `X P0 : τ1 + τ2K, JΓ, x : τ1 `X P1 : τK, and

JΓ, y : τ2 `X P2 : τK, then

JΓ `X P0; DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.P1) (lam y.P2) : τK

Proof. Unfolding J·K and pushing substitutions, we must show

(W,ϕ, γ(P0); DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.γ(P1)) (lam y. γ(P2)))

∈ EXJτK�

given (W,ϕ†, γ) ∈ GXJΓK where ϕ =
⋃
ϕi and ϕi = flocs(γ(Pi)). Applying

Lemma 0.6.13 with the first premise, it suffices if

(W ′, ϕ′,

push [n, v]; DUP; push 1; idx; SWAP; push 0; idx; if0 (lam x.γ(P1)) (lam y. γ(P2)))

∈ EXJτK�

given (W ′, ϕ′0, [n, v]) ∈ VXJτ1 + τ2K and W ′ wW where ϕ′ = ϕ′0∪ϕ1∪ϕ2.

There are two cases.

• Suppose n = 0 and (W ′, ϕ′0, v) ∈ VXJτ1K. Then by Lemma 0.6.12 and

pushing substitutions, it suffices if

(W ′, ϕ1, γ[x 7→ v](P1)) ∈ EXJτK�

Applying Lemma 0.6.13 with the second premise, it suffices if

(W ′′, ϕ′′, push v′) ∈ EXJτK�

where (W ′′, ϕ′′, v) ∈ VXJτK, W ′′ w W ′. Then apply Lemmas 0.6.7,

0.6.8.

• Suppose n = 1 and (W ′, ϕ′0, v) ∈ VXJτ2K. Then by Lemma 0.6.12 and

pushing substitutions, it suffices if

(W ′, ϕ2, γ[y 7→ v](P2)) ∈ EXJτK�

Applying Lemma 0.6.13 with the third premise, it suffices if

(W ′′, ϕ′′, push v′) ∈ EXJτK�
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where (W ′′, ϕ′′, v) ∈ VXJτK, W ′′ w W ′. Then apply Lemmas 0.6.7,

0.6.8.

Lemma 0.6.28 (fold). If JΓ `X P : τ [µα.τ/α]K, then JΓ `X P : µα.τK.

Proof. Unfolding J·K and pushing substitutions, we are to show

(W,ϕ, γ(P)) ∈ EXJµα.τK�

given (W,ϕ†, γ) ∈ GXJΓK where ϕ = flocs(γ(P)).

Applying Lemma 0.6.13 with the first premise, it sufficies if

(W ′, ϕ′, push v) ∈ EXJµα.τK�

given (W ′, ϕ′, v) ∈ VXJτ [µα.τ/α]K and W ′ wW . Applying Lemmas 0.6.7,

0.6.8, it suffices if

(W ′, ϕ′, v) ∈ VXJµα.τK

which is immediate from the assumption, the definition of VXJµα.τK, and

Lemma 0.6.9.

Lemma 0.6.29 (unfold). If JΓ `X P : µα.τK, then JΓ `X P; noop : τ [µα.τ ]K.

Proof. Unfolding J·K and pushing substitutions, we are to show

(W,ϕ, γ(P); noop) ∈ EXJτ [µα.τ ]K�

given (W,ϕ†, γ) ∈ GXJΓK where ϕ = flocs(γ(P)).

Applying Lemma 0.6.13 with the first premise, it suffices if

(W ′, ϕ′, push v; noop) ∈ EXJτ [µα.τ ]K�

given (W ′, ϕ′, v) ∈ VXJµα.τK and W ′ w W . Applying Lemma 0.6.12, it

suffices if

(W ′′, ϕ′, push v) ∈ EXJτ [µα.τ ]K�

given W ′′ AW ′ (N.B., we take care to strictly advance the world, here).

Applying Lemmas 0.6.7, 0.6.8, it suffices if

(W ′′, ϕ′, v) ∈ VXJτ [µα.τ ]K

which is immediate from the assumption, the definition of VXJµα.τK, and

Lemma 0.6.9.
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Lemma 0.6.30 (fun). If JΓ,f : (τ1, . . . , τn)
�→ τ ′, xi : τi `X P : τ ′K,

then JΓ `X push (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) :

(τ1, . . . , τn)
�→ τ ′K

Proof. Unfolding J·K and pushing substitutions, we are to show

(W,ϕ, push (thunk push (thunk lam f.lam xn. . . . lam x1.γ(P)); fix))

∈ EXJ(τ1, . . . , τn)
�→ τ ′K�

given (W,ϕ†, γ) ∈ GXJΓK where ϕ = flocs(γ(P)).

Applying Lemmas 0.6.7, 0.6.8, it suffices if

(W,ϕ, thunk push (thunk lam f.lam xn. . . . lam x1.γ(P)); fix)

∈ VXJ(τ1, . . . , τn)
�→ τ ′K

Unfolding the definition of VXJ(τ1, . . . , τn)
�→ τ ′K and pushing substitu-

tions, we must show

(W ′, ϕ′, γ[xi 7→ vi, f 7→ thunk push (thunk lam f.lam xn. . . . lam x1.γ(P)); fix](P))

∈ EXJτ ′K�

given W ′ A W and (W ′, ϕi, vi) ∈ VXJτiK where ϕ′ =
⋃
ϕi ∪ ϕ ⊂ W ′.Ψ,

which is immediate from the premise.

Lemma 0.6.31 (app). If JΓ `X P0 : (τ1, . . . , τn)
�→ τ ′K and for i ∈

{1, . . . , n} JΓ `X Pi : τiK then

JΓ `X P0; P1; SWAP . . .Pn; SWAP; call : τ ′K

Proof. Unfolding J·K and pushing substitutions, we are to show

(W,ϕ, γ(P0); γ(P1); SWAP . . . γ(Pn); SWAP; call) ∈ EXJτ ′K�

given (W,ϕ†, γ) ∈ GXJΓK where ϕi = flocs(Pi) and ϕ =
⋃
Pi.

Applying Lemmas 0.6.13, 0.6.12 with the premises in order, it suffices if

(W ′, ϕ′, push v1; . . . ; push vn; push (thunk push (thunk lam f.lam xn. . . . lam x1.P); fix);

call) ∈ EXJτ ′K�

given W ′ wW , (W ′, ϕ′i, vi) ∈ VXJτiK for i > 0, and

(W ′, ϕ′0, thunk push (thunk lam f.lam xn. . . . lam x1.P); fix) ∈ VXJ(τ1, . . . , τn)
�→ τ ′K

where ϕ′ =
⋃
ϕ′i. Applying Lemma 0.6.12, it suffices if

(W ′, ϕ′, [xi 7→ vi, f 7→ thunk push (thunk lam f.lam xn. . . . lam x1.P); fix](P)) ∈ EXJτ ′K�
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which is immediate from the definition of VXJ(τ1, . . . , τn)
�→ τ ′K.

0.6.8 Finally, soundness

To account for our new extension, we need to update our existing proof of

the fundamantal property for FunLang to include the boundary term for

X. The proof itself, of course, still simply dispatches to the appropriate

compatibility lemma.

Theorem 0.6.32 (fundamental property). If I; Γ ` e : τ then JI; Γ ` e+ :

τK.

Proof. As before, by induction over the typing derivation, using a corre-

sponding compatibility lemma for each typing rule.

Type soundness again is a corollary, and thus follows from our re-proven

fundamental property:

Corollary 0.6.33 (type soundness). If I; · ` e : τ then given libraries γI
S

(where ((k, ∅), ∅, γI
S

) ∈ GSJISK) and γI
X

(where ((k, ∅), ∅, γI
X

) ∈ GXJIXK),

for any heap H, stack S, if 〈H # S #γI
S

(γI
X

(e+))〉 ∗→ 〈H′ # S′ # P′〉 then one of:

• P′ = · and S′ = Fail c and c ∈ OkErr

• P′ = · and S′ = S, v and ∃j. (j, v) ∈ VλJτK

• ∃H∗ S∗ P∗. 〈H′ # S′ # P′〉 → 〈H∗ # S∗ # P∗〉

Proof. This is simply a combination of the fundamental property with the

definition of EλJτK.
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