From Linearity to Borrowing (Technical Report)

July 29, 2025

Contents
1 Syntax 1
2 Statics 2
3 Dynamics 3
4 Logical Relation 4
5 Model 4
6 Theorems, Lemmas, Proofs 6
6.1 Standard Lemmas e 6
6.2 Non-standard Lemmas 8
6.3 Frame and Anti-Frame 22
6.4 Standard Entailments 27
6.5 Non-standard Entailments e e 29
6.6 Reborrowing Entailments o L 32
6.7 Weakest Precondition Rules 35
6.8 Fundamental Property 40
1 Syntax
VAR 5 x,v,.
Loc 5 /
VAL 5 w = ()| (v1,v2) |injyv|injyv|Az.e|Ae|l]|p
PRIM 5 p z= alloc | free | load | store | store v
EXPR 5 e s= x|v|(er,e2) |injelinjye]er;es]let(z,y) =eq in eq
| casee {inj; z.e1 |injyy.ea} | ea 1
LIFEVAR 3> 'a,'b,...
LIFE 5 @Qa,@b... == '|T|Qau@b|Qqn Q@b
LireCTX 3> A : LIFEVAR — LIFE
TYPE > T u=]1|T1 ®T2|T1 ®T2|T1—0T2|RefT|[@a]T

| Imm @Qa T'| Mut Qa T | V'ac @b.T | Unk

2 Statics

ID 11 1E

A;Tyre:1 A;Tgren: T
AT, Torep;en: T

Asx:Trax:T Ajer():1

®E
A Tprep,:Th Ty AT,z :Th,x0:To-e:T

AT, Trlet(zy,z0) =ep; e: T

ok
A;Tsres:ThoTy A;T ap:Tyrep:T for be {1,2}

A; T, T+ matcheg {zy = e1,m0 = ex}: T

— B VI
A;F1|—61:T1 A;FQI—EQZTl—OTQ A,('a:@b);Fl—e:T

A; T, Toreg eg: Ty A;T+-Ae:V'ac@b. T

(]I [l]E

®1
A;Fll—eliTl A;FQI—BQZTQ

AT, To - (e1,e2): Th @ T

ol
A;Tre: T, ie{l,2}

AT rie:Ti Ty

—I

AT e:Ti-e: Ty
A; T Axe: Ty —T,

VE
A;T+e:V'ac@b. T AEQac@b

A;Trel]: T[Qa/'a]

A;Tre:T Ael'aQa A;T+De: [Qa]T alloc free
A;T+oe: [Qa]T A;Tr+oe:T A; et alloc: T — Ref T A; e+ free:Ref T+ T
c Imm c Mut

A;Tre:lmm@ T AEQac@b

A;T-e:Mut@ T AEQac@b

A;TrHe:lmm@b T

Presumes £ A

A;T+-e:Mut @ T

ArTy ArTh ArTy ArTh ATy ArTy A-T A(lac@b)-T AEQb
A1 A+-T T ArTi0Ty A-T; T, A+ Ref T AI—V(,aE@b).T
AT AEQaq A+T AEQa A+T AEQa
A+ [Qa]T Arlmm Qa T A+ Mut Qo T

Presumes £ A and A E Qq

ArTi2Qa ArTy,2Qa ArTi;2Qa A+Ty3Qa Ar+Ta2Qq
A+13Qq A+T;®T 3Qq ArT 0T, 3Qq A+ Ref T 2Qa
AE@QbaQa A E@Q@QbaQa A E@QbaQa

A+ [@b]T 2 @a A+ lmm @b T 2@Qa

A+ Mut @b T 2 Qqa

A+ swap Ref Ty -+ T5 —+ Ref To @ T}
A+ copy Imm @Qa T'— Imm Qa T'® Imm Qqa T'
A+ forget Imm Qa T — 1
Mut Qa T — 1
Unk — 1
A+ withbor Ref 77 = (V'acMA. Imm 'a Ty = ['a] T3) = Ref T1 ® Ty
Ref T7 — (V'aEI—IA. Mut 'a T} — ['a]T2)4* Ref T3 ® To Ar+T; Qb
Mut Qa T7 —* (V'b: MA. Mut 'b Ty — [‘b] TQ)‘* Mut Qa T7 ® To
A+ withload Imm Qa Ty - (V'be [MA. Imm 'b Th — ['b] T2) = Ty
A+~ withswap Mut Qa Ty — (T7 = T1 ® Tp) = Mut Qa T} ® T
Imm'b1=1 Imm 'b (71 & T5) 21lmm 0 Ty & Imm 'b T Imm 'b (77 @ T2) 2 Imm '0 T} ® Imm 'b Tp
Imm 'b (T} = T») = Unk Imm 'b (Ref T) 2 Ilmm 'b T Imm 'b (Imm @Qa T') 2 Imm Qa T
Imm 'b ([Qa]T) 2 Imm 'b T Imm 'd (V'.ac@a.T) = Unk

LSUB 5 ¢ : LIFEVAR — Life

[A] £ {6 | dom(A) c dom(d) AV 'a e dom(A). §('a) = A('a)d}

EAz[A] #o
4('a) ,Qa="a
Qs = T ,Qa =T

@b16 M @b25 ,@a = @b1 (] @bg
@b U Qbyd ,Qa = Qby U Qby

AEQa=2V{e[A]. Qad defined

AEQac@b=2Vée[A]. Qadc @b

3 Dynamics

MEM >

KoNnT 35> K
i

= [](K,e) | (v,K) |let(z,y) = K in e|case K {inj; z.eq | injyy.es} |e K| K v

Loc — VAL

(n.e) = (w'se) || (me) = ('s€)

- 1 ®
(n.e) = ('s¢)
(n, K[e]) = (', K[€']) (1, O); €)= (pe) (. let (z1,22) = (v1,v2) in e) > (u,e[v1/z1,v2/22])

@ — —o> alloc —

(,u,case (inj; v) {inj; .e1 | injy y.eg}) > (u,ei[v/xi]) (u, (Az.e) v) ~ (,u,e[v/x]) (,u,alloc v) - (u TR U,E)

free — load — store
w(l) =v £ e dom(p)
(el v, free £) > (p,v) (p,load) & (p,v) (p,store £ v) = ([t~ v],())
swap 2 Az \y.letz = load z; store x y; (z,y)
copy 2) z.(x,x)

forget 2 z.()

withbor 2 Az A f.(z, f x)

withload = Az Af.(z, f (load x))

withswap = Az \Af.let (y,z) = f(load z); store = y; (x, 2)

4 Logical Relation

V[1]s(v) = =()

VI[T1 ® T>] 5 (v) 2 3Jv1,v2. v = (v1,v2) " * V[T1]5(v1) * V[T2]5(v2)

V[[Tl @Tg]]é(v) 2 (3 (5 r’U = injl ’Ul‘l * V[[Tﬂ]é(vl)) \% (3 V3. r’U = inj2 ’UQ1 * V[[Tgﬂé(vg))
V[T —T>]5(v) 2 V' V[T]5(v") =+ E[T2]5(v v")

V[V'ac @b. T|s(v) =Vaec@bd E[T];(v ()

V[[Qa] T];(v) = [Qad] V[T s(v)

V[Ref TT;(v) 2300 Tv=L0 %l 0" * V[T]5(v")

V[imm Qa Ts(v) 230 "v=0"x{~Imm Qad V[T];
V[Mut Qa T|s(v) 230 "v=0" %L+~ Mut Qad V[T];

V[Unk]s(v) £ emp
E[T],(v) =wp (e) {V[T]s}
D[A](6) =6 e[A]
gIri¢) 2 "dom(I") € dom(0)" * ®edom(r) VIT'(2)]5(7(2))
Asl'ee:T 2V d,7. D[A](6) = G[T15(v) = E[TT5(7(e))
5 Model
SPror, = REs,—>P
REs, 2 Loc — CELL,
CELL, = own(VAL)+imm(IMM,) + mut(MuT,)
IMM,, £ {(@:p*(LIFE),v: VAL,p: RES g) |n@ > a}
Mut, = {(B2a,v:VAL,p:RESg, P: VAL - SPROPg) | P(v)(p)}
P e SPrOP = RES—>P
p € REs + Loc -~ CrLL
P e CELL 2 Uy CELL,
o,B3 € LIFE £ (N,E2> U2 min,M2max,T20)

Qy

la

1 >ty
1 > o
1 @Yy

1 0 1o

p1 > P2
P10 P2
ol.
ex(p)e

ag(p)e

(o)
vp

[¥]

[r]
P17 p2

P17 P2

rebq (p)

1>

L (L (L |3

1>

1>

1>

L L L T 1 2

1>

1>

1>

1>

1>

T, 1) = own

a? /(/) = mUt(a?—ﬂ—’—)

Haa 1/):imm(a,777,7)
I_Iq/)ecod(p) @w

a+1
Hailaai?avﬂp' 1/)1 = imm(mavap) /\1/)2 = imm(@avvp)
¢1 >4 ¢2 Vv Eliya7ﬁavap7p' {¢1,¢2} € {imm(a,v,p),own(v),mut(ﬂ,v,p, P)}

{imm(oTonTg,v,p), Y1 =imm(ag, v, p) Athe = imm(azg,v, p)

Y1, Y1 =12

1 @ 1o, (A

mut(an B,v,p, P A Q) o, B,0,p, P, Q. 1y = mut(a, v, p, 15) Athg = mut(B,v, p, Q)

05 Ja,v,p, Py = mut(aw,p,ﬁ) A3y = own(v)

05 3@, B, v, p, P. ; =imm(@,v, p) A s € {own(v), mut(3,v, p, P)}

V¢ e dom(p1) ndom(ps). p1(£) » p2(¥f)
p1/dom(pz) @ pafdom(pr) & [£ > by ey | pr(€) = Y1 A p2(€) = 2], p1 > p2
[l |pll)=¢=1u(...)], t¢e{own, mut,imm}
Plown © plmut © ©{ex(p")o | 3L p(€) =mut(_, _,p",_)}
Plimm © O{ag(p") [3. p(£) = mut(_, _,p’,)} o O{ex(p)o o ag(p') | 3£ p(€) =imm(_, _,p")}

ex(p)e ® ag(p)
(o) defined

v, Y=own(v)vey=mut(_,v, ,)ve=imm(_,v,)
Ueo|[p)(O]=v] vp
p1 ¥ pa AV (p1 e p2)

Yl o, B, p, P.
|((]/)1D(€) = mUt(O‘fvivP) g (]p2l)(£) = mui(aafa — P))
A (0) = imm(B,0.p) <= (pa)(0) = mut(Bv,0)), o Ao

{p' |@paan3m:dom(p) > RES. p> @ pcqom(n) T(£) AV Ledom(m),v, p". £ € dom(7(£))
Ap(0) =own(v) = p'(£) =imm({a},v,7(£) /L)
Ap(0) =mut(_,v,p",)= p () =imm({a},v,p") Adom(n(£)) = {{}
Ap(l) =imm(_, _,) = p'(£) = p(¢) A dom(m(¢)) = {f}}

{—v
v Imma P

(p={+~ own(v)

(
(>Muta P (p)

(

(

38,0, p=Lrimm(B,v,p') A P(0)(p') haE B
A2 a,v,p". p=L mut(f,v,p, P)
P(p)n@paa

Yooy #p. 30 % pr, 0" # (prep'),v.

([os ® pl.€) =* (Ips o p' @ p*l,v) Ap < p’ @ p* A p*lown = B A Q(v)(p')

> >

[a]P
wp () {Q}

S
N—’
(1L (L

"Patera (p) = p=APuem

P> P (p) = 3p1,p2. p=p1ep2nPi(p1) A Pa(p2)
Py = Py (p) = Vp1,p2. Pi(p1) = pep1=p2= Pr(p2)
emp £ 7

P £ empAP

T (p) = T

L (p) = L

Py APy (p) = Pi(p)~Pa(p)

Pyv Py (p) = Pi(p)Vv Pap)

P = P (p) = Pi(p) = P(p)

vpP (p) = Ya.P(z)(p)

ir (p) = 3Fx.P(z)(p)

np £ JBVacpB.[a] P(a)

O,.P (p) = 3p'ereba(p). P(p')

6 Theorems, Lemmas, Proofs

6.1 Standard Lemmas

There’s no strict definition, but lemmas feel “standard” when their statement doesn’t unfold resources or definitions,
and don’t include any particularly unusual/custom operations.

Lemma 6.1. p; » pg = py ™ py
Proof. By definition, and the fact that » is commutative on cells:
e In the case of », commutativity is immediate
o In the case of =, the first case is just the previous, and the second case is immediate since sets are unordered.
O
Lemma 6.2. p; © ps = py 0 py

Proof. The composability follows from lemma 6.1. The rest follows from the fact that composition on cells is
commutative:

e in the case of e, it’s immediate because U is commutative

 in the case of o, the first two cases are immediate, and the second two follow from noting); is invariant under
changing the order of cells.

O
Lemma 6.3. p; © (p2 € p3) =p1 ©paops
Proof. Unfolding e, the only interesting case is when £ € dom(p;) ndom(p2) Nndom(ps).

e In the e case, associativity follows from the associativity of u.

e In the o case, split on ps o p3. The first case is immediate.
The second case follows from noting that imm always are preserved by o.

In the third case, if p1(¢) is owned, then the mut is the result, if it is mut then we use associativity of M and
A, and if it is imm then the result is imm either way.

In the fourth case, if p;(£) is owned, then the mut is the result, if it is mut then it’s immediate, and if it is
imm then the result is imm either way.

And in the fifth case, if p;(£) is owned, then the imm is the result, if it is mut then it’s the imm, and if it is
imm then the imms are combined.

O
Lemma 6.4. poe@=p
Proof. By definition, dom(p) n @ = @, so » holds immediately, and the result is trivially p. O
Lemma 6.5. If v p then p # &
Proof. Immediate by definition. O
Lemma 6.6. p; # po if and only if pa # p1
Proof. Follows from lemma 6.2 and by unfolding (- with lemmas 6.20 and 6.18. O

Lemma 6.7. If p; # po then [p1 ® p2] = [p1] U [p2]-

Proof. By lemmas 6.20 and 6.18, along with lemma 6.36, for every £ € dom([p; ® p2]), £ € dom(ex(p1)s), £ €
dom(ex(pz2).), or £ € dom(ag(p1) o ag(p2)). In either of the first two cases, we're done. In the second case,
we're done if £ ¢ dom(ag(p1)) ndom(ag(p2)). When ¢ € dom(ag(p1)) ndom(ag(p2)), then we get by the definition
of o that [ag(p1)(¢)] = [ag(p2)(£)], so we're done. O

Lemma 6.8. If [p2] = [p3] and p1 # p2 and p1 # p3 then [p1 o pa] = [p1 @ p3]

Proof. Immediate by lemma 6.7, and rewriting with [p2] = [ps]- O
Lemma 6.9. p; »« ps iff p; e ps is defined.

Proof. By definition. O
Lemma 6.10. If v'(p; e p2) then v p; and v po

Proof. By unfolding and applying theorems 6.18 and 6.20. O

Lemma 6.11. If p; e ps # p3 then py # p3 and ps # p3

Proof. Definedness of p; e p3 and py e p3 follow from unfolding definitions; v (p1 @ p3) and v'(p2 e p3) follow from
theorem 6.10 applied to v (p1 @ p2 ® p3). O

Lemma 6.12. If p; e ps and p; p3 and py o p3 are all defined, then so is p1 e (p2 © p3).

Proof. The own-or-mut cells of p; are disjoint from the own-or-mut cells of p; and p3, hence also disjoint from the
own-or-mut cells of ps o p3, because o does not introduce new own-or-mut cells. For any location £ with (ps o p3)(¢)
an imm cell, it must be that either (1) p;(¢) = imm(«y,v,p) and p2(£) = imm(asg, v, p) for some aq, as,v, p, in which
case (p2 o p3)(£) = imm(a; Uag,v,p) and is hence composable with p1(€) by p1 »« pa, or (2) one of pa(€) or ps(£)
is an imm and the other is an own-or-mut—without loss of generality suppose it is ps that is own-or-mut—in which
case £ ¢ dom(p;) and hence £ is not in the overlap of p; and ps o p3. It follows that the imm cells of p; agree on
overlap with the imm cells of ps o p3 up to lifetimes. O

Lemma 6.13. If p; e po and p; e p3 and ps e p3 are all defined, then so is p; ® pa @ p3.

Proof. The own-or-mut cells of p1, p2, p3 are all pairwise-disjoint, hence mutually disjoint, and the imm cells pairwise
agree up to lifetimes, hence mutually agree up to lifetimes. O

Lemma 6.14. If p; o po and p; o p3 and ps o p3 are all defined, then so is py o p3 © p3.

Proof. Analogous to theorem 6.13. The only wrinkle is that o, unlike e, merges imm cells with own and mut cells;
however, it only does so when the given own-or-mut cell has the same value and subresource inside of it, so the
resulting composites still agree on overlapping imm cells up to lifetimes. O

Lemma 6.15. If p; # po and po # p3 and p; # p3 then py # pa e p3.

Proof. The composite p; e py e p3 is defined by theorem 6.13, so it only remains to show v (p; e po e p3). By
theorems 6.18 and 6.20, this amounts to showing definedness of ex(p1). ® ex(p2)e ® ex(ps3)e ® (ag(p1) o ag(pz) ©
ag(ps)) By assumption we have that

(o1 @ p2) = ex(p1)e ® ex(p2)e ® (ag(p1) © ag(p2))
(o1 ® p3) = ex(p1)s @ ex(p3)e @ (ag(p1) © ag(ps))
(02 ® p3) = ex(p2)e @ ex(p3)e @ (ag(p2) o ag(ps))

are all defined. Hence ex(p1).,ex(p2)s,ex(p3)e are pairwise-composable with respect to e. Similarly, we also have
that ag(p1)e,ag(p2)e,ag(ps)e are pairwise-composable with respect to o. So, by theorems 6.13 and 6.14, this gives
definedness of the triple composites ex(p1)e ® ex(p2)s ® ex(ps3)e and ag(p1) o ag(ps2) o ag(ps). It only remains to
show that these triple composites are themselves composable. By two applications of theorem 6.12, this reduces to
showing the following three composites are defined:

ex(p1)e @ ex(p2)e @ ex(p3)e ® ag(p1)
ex(p1)e @ ex(p2)e @ ex(p3)e @ ag(p2)
ex(p1)e ® ex(p2)e @ €x(p3)e @ ag(ps)

The first composite ex(p1)e ® ex(p2)e ® ex(p3)e ® ag(p1) is defined because ex(p1)e and ex(p2)e ® ex(p3)s and ag(p1)
are pairwise-composable by assumption, hence the triple composite is defined by theorem 6.13. The analogous
arguments show that the second and third composites are defined as well. O

6.2 Non-standard Lemmas

Lemma 6.16. If p e (o) defined then p e p’ defined.

Proof. The composite p o (o) is well-defined if and only if p and (p’) have disjoint own-or-mut cells and imm cells
that agree up to lifetimes. Unravelling the definition of (-) reveals that the cells of p" are a subset of those of (-,
so the same condition holds of p and p'. O

Lemma 6.17. If p # ¢ —~ mut(c, v, p,, P) then p »« p, o £ = own(v)

Proof. Let p, = £ — own(v) and p,, = £ ~ mut(,v,p,, P). By theorem 6.9, it’s enough to show p e p, e p, is
well defined. By assumption, it holds that v p e p,,, 80 (p ® pm) = ex(p)e ® (Pm @ ex(py)e) ® (ag(p) o ag(p,)) is
well-defined. Hence, ignoring ex(p)s and ag(p) in this composite, we have that p,, ® ex(py)e ® ag(py) = pm @ (o)
is well-defined. This implies ¢ ¢ dom(p,)), so p, ® (p.) well-defined, so p, ® p, well-defined by theorem 6.16. Well-
definedness of ag(p) o ag(p,) implies p and p, agree on imm cells up to lifetimes, hence the same of p and p, ® p,
(since p, contains no imm cells). Well-definedness of ex(p)e ® (pm ® ex(py)e) implies p and p,, ® p, have disjoint
own-or-mut cells, hence the same of p and p, e p, (since p, and p,, have the same own-or-mut cells). Putting these
together shows p and p, e p, are composable as needed. O

Lemma 6.18. If p; »« py then ex(p; ® p2)e and ex(p1). @ ex(p2)e are Kleene-equal (the left-hand side is defined iff
the right-hand side is, and in case both are defined they are equal).

Proof. Since p; » po, it must be that p; and p have disjoint own-or-mut cells. Hence, writing p;5 for the composite
p1 ® p2, the following string of Kleene-equalities holds:

eX(P12)o = ,012|own L4 plQ‘mut L4 . ex(p’).
mut(_,_,p’,_)epi2
= (1lown ® p2lown) ® (1lmut ® p2lmic) o | @ ex(p)e] o @ ex(p)s
mut(_, ,p',)epr mut(_, ,p’,)epo
= p1|own L4 p1|mut i . eX(PI). L4 p2|own L4 p2|mut L4 . eX(p,).
mut(_,_,p’,_)ep1 mut(_,_,p’,_)ep2

=ex(p1)e ® ex(p2)e O
Definition 6.1. Let (p)o := ag(p) o ex(p)o.
Lemma 6.19. If (p), defined then (p) and (o). o (o). are Kleene-equal.
Proof. By induction on p, mutual with the statement that ag(p) and ag(p) o ag(p) are Kleene equal. O

Lemma 6.20. If p; »« ps then ag(p; @ p2) and ag(p1) o ag(p2) are Kleene-equal.

Proof. Since p; » ps, it holds that the mut cells of p; and ps are disjoint and the imm cells of p; and ps agree up
to lifetimes. Hence, writing pio for the composite p; o p2,

ag(p1 ® p2) = p12limm © O ag(p') ° O (]P,Do
mut(_,_,p",_)ep12 imm(_,_,p")ep12
= (p1|imm o p2|imm) o (O ag(p,) © O ag(p,)) ° O qp,l)o'
mut(_,_,p’,_)ep1 mut(_,__,p/,_)ep2 imm(_,__,p")ep12

Now consider the final term in this equation, the big composite pag := Oimm(_, p")eprs (P')o- It has one component
for each imm cell (_, ,p’) in p12. The composition o operates cellwise, and the imm cells of p15 are the union (up
to lifetimes) of the imm cells of p; and the imm cells of ps, so by inclusion-exclusion p,g is equal to

(Do © O (Do © O (0o

imm(_, ,p')epi\p2 imm(_,_,p’")ep2~p1 imm(_,__,p’)ep1np2

By theorem 6.19, we have that

o - O (Gp’Doodp’l)o):(o qp'oo)o(o Gp’Do)-
imm(__,_,p")ep1np2 imm(__,_,p")ep1np2 imm(__,_,p’)ep1np2 imm(_,_,p’)ep1np2

Hence,

Pag = O (7 O (P')o o O (0')o
imm(_,_,p’)ep1 \p2 imm(_,_,p’")ep2~p1 imm(_,__,p’)ep1np2

O (0o o O (p')o o (O dp’l)o) o (O (lp'l)o)
imm(_,_,p’)ep1~\p2 imm(_,_,p’)ep2~p1 imm(_,_,p’)ep1Np2 imm(_,__,p’)ep1np2

(p'Do O (0o

imm(_,_,p")ep1 imm(_,__,p")ep2

Putting this all together,

ag(p1 ® p2)
= (p1|imm o p2|imm) o (O ag(p,) o O ag(p,)) ° pag
mut(_,_,p’,_)ep1 mut(_,_,p’,_)€p2
/

=<p1|immop2|imm>o(O w)e O ag(p’))o(o 1
mut(_,_,p’,_)ep2 imm(_, ,p")epy

o0 O (lp'Do)
mut(_, p’,)ep1 imm(_,_,p")ep2

:(plhmmo O w)e O GP'Do)O(chmmo O e O dp’l)o)

mut(_,_,p’',_)ep1 imm(_,__,p")ep1 mut(__,_,p’,_)ep2 imm(_,_,p")ep2
=ag(p1) o ag(p2)
as needed. O

Lemma 6.21. If p # p, e £~ own(v) then p »« £+ mut(a,v, py, P)

Proof. The hypothesis implies the composite p e p, (£ = own(v)) is well-defined, which implies £ ¢ dom(p), which
implies p v« £ — mut(a, v, p,, P) as needed. O

Lemma 6.22. If p # { » mut(c, v, py, P) then p # p, £~ own(v)

Proof. Let p, = £~ own(v) and p,, = £ rput(am,pv,f?), so we have p # p,, with aim to show p # p, ® p,. Our
hypothesis implies v'(p ® £ » mut(«,v, py, P)), which amounts to well-definedness of the following composite:

Phyp = €X(p)e ® eX(y)e ® prm @ (ag(p) 0 ag(pv))-

We have that p » p, ® p, by theorem 6.17, so it only remains to show v'(p e p, e p,), which amounts to showing
well-definedness of the following composite:

Pgoal = €X(p ® py)e ® po ® ag(p ® py).

By theorem 6.17, it holds that p e p, e p, is well-defined, hence also that p e p, is well-defined. This implies, by
theorems 6.18 and 6.20, that well-definedness of pgoal is equivalent to well-definedness of

(ex(p)e @ ex(pv)s) ® po @ (ag(p) © ag(pv))
Since p, contains a single own cell, this composite is well-defined if and only if the same composite is defined when
Po is replaced by py,; this is precisely well-definedness of phyp. O

Lemma 6.23. If p # p, e { » own(v) then p # ¢ — mut(a, v, p,, P)

Proof. Analogous to theorem 6.22. Let p, = £~ own(v) and p,, = £ = mut(a, v, p,,, P), so we have p # p, ® p, with
aim to show p # p,,,. We have p » p,,, by theorem 6.21, so it only remains to show v (p e p,,), which amounts to
showing well-definedness of

Pgoal = ex(p)- L4 eX(Pv)o ® Om ® (ag(p) o ag(pv))
given well-definedness of
Phyp = €x(p ® py)e ® po @ ag(p e py).

We have by the assumption p # p, ® p, that p e p, defined, so by theorems 6.18 and 6.20 the well-definedness of phyp
is equivalent to well-definedness of

ex(p ® pu)e ® po @ ag(p e pu).

Since p, contains a single own cell, this composite is well-defined if and only if the same composite is defined when
Po is replaced by py,; this is precisely well-definedness of pgoal, which is what we wanted to show. O

Lemma 6.24. p # { — mut(a,v, py, P) iff p # p, e £+ own(v)
Proof. Combine theorems 6.22 and 6.23. O

Lemma 6.25. Assuming all resources and composition are defined, [[E ~ mut(n,v, py, 13)]] = [py @ £ —» own(v)]

Proof. By unfolding. O
Lemma 6.26. Assuming all resources and composition are defined, [¢ —~ imm(«,v, p,)] = [pv ® £ — own(v)]

Proof. By unfolding. O
Lemma 6.27. If Gp > a and p e £ > mut(a, v, py, P) « p’ then p’ = p' [0 o £ mut(a, V', pl,, P)

Proof. Let pp, = £+ mut(c, v, p,, P). By assumption, (p e p,,) and (o) have the same borrows. This implies there
must be a mut cell in (p’) matching ¢ » mut(a, v, p,,, P), which amounts to a v’, p!, such that (£~ mut(e, v’ pl,, P)) €
(p'). Furthermore, since @p 3 @, all borrows in (p) other than (¢ ~ mut(e,v’,p,, P)) must be disjoint from a,
which by well-formedness of the resource p’ implies that the cell (¢ = mut(a,v’,p),, P)) cannot be in any p” for
any mut(_, ,p",) or imm(_, ,p") in p/. Hence it must be that p'(£) = mut(a,v’,p!,, P), so p’' = p'[l e {
mut(a,v’,p;,ﬁ’) as needed. O

10

Lemma 6.28. Assuming all compositions are defined and valid, p e £ — mut(«, v, py,]5) « p' o L mut(a,v’, pl,]5)
iff pol—own(v)ep, «rp el own(v')epl

Proof. We have the following string of iffs: p e £ — mut(«a, v, p,]5) « p' o L mut(a, v, pl, 15) if and only if

ex(p)e @ (£ mut(,v,p,,P)) o ex(pu)e ® (38(p) © ag(py))
and

ex(p')e o (£ mut(e,0, p),,P)) e ex(p),)s ® (ag(p') o ag(p),))

have the same borrows (by unravelling definitions), if and only if

ex(p)e ® (£ own(v)) e ex(py)e @ (ag(p) o ag(py))
and

ex(p)e o (L own(v')) e ex(p,)e @ (ag(p’) © ag(py,))
have the same borrows (by exclusivity of £), if and only if p e £~ own(v) e p, «» p’ @ £+ own(v") e p!. O

Lemma 6.29. If Qp o2 « and p # p, ® £ — own(v) and p e £ — imm({a},v,p,) <« p’ then p' = p'/l ¢ {
imm({a}, v, py).

Proof. Let p; = £ — imm({a},v, p,). By assumption, (p e p;) and (p’) have the same borrows. And by assumption,
p# py el own(v),sol¢dom((p)). This implies there must be an imm cell in (p’) matching p; exactly, ie (p')(¢) =
imm({a},v, p,). Furthermore, since @p 2 v, all borrows in (jp’) other than p; must be disjoint from «, which by well-
formedness of the resource p’ implies that the cell (imm({a}, v, p,, P)) cannot be in any p” for any mut(_, ,p”,) or
imm(_,_,p") in p'. Hence it must be that p'(£) = imm({a},v, py,), s0 p' = p'/l « £ — imm({a}, v, p,) as needed. [

Lemma 6.30. If p »« (p1 0 p2) and plinm = @ then p »« p; and p » po

Proof. Since plimm = @, the fact that p »« (p1 o p2) implies dom(p) Nndom(p; o p3) = @.
Unfolding o, dom(p; o p2) = dom(p;) U dom(ps). Therefore, dom(p) n (dom(p;) U dom(pz)) = @, and therefore
dom(p) ndom(p;) = @ and dom(p) Nndom(ps) = @. Therefore by definition, p »« p; and p »< ps. O

Lemma 6.31. If p »« p' then pop' =pep.
Proof. Tt suffices to show for any cells ¥ and ¢, if 1 »« 2’ then 1) o 1)’ = 1) e 1)’. Unfolding 1) o 1)’, we have that either
e Y= and Yo =
o Y=y, and e Y 50 ot =1 ey
o The last case is unreachable.
1 o 1" only disagrees with ¢ when ¢ =" =own(_) or mut(_, , ,). But this is impossible since 1) »«)’ O
Lemma 6.32. If ex(p). defined, then ex(p)e = ex(p)o.
Proof. By induction on p, unfolding ex, and repeatedly applying lemma 6.31. O
Lemma 6.33. If (p) defined, then (p) = (o).
Proof. By unfolding (-) and (-)., and applying lemmas 6.31 and 6.32. O

Lemma 6.34. If p # p, ¢ £ — own(v) and Qp, 2 « then p # £ — imm(a, v, py)

11

Proof. By lemma 6.11, we have p # p, and p # ¢ » own(v). Unfolding these, we have £ ¢ dom((p e p,)), and by
lemmas 6.20, 6.18, 6.31, and 6.32 the following are all defined and equal

(p®po) =ex(pep,)eoag(pepy)
=ex(p)e ® ex(py)e @ (ag(p) o ag(py))
=ex(p)e ® (ex(py)e 0 ag(p) o ag(pv))
=ex(p)e o (ex(py)o 0 ag(p) o ag(pv))
=ex(p)e @ ((pu)o 0 ag(p))

—~ — — —

The last equality, with the fact that £ is not in the domain, is sufficient to complete the proof. O
Lemma 6.35. If (p e p') is defined then (p) and (p’) are defined.

Proof. Unfolding (-) in the hypothesis and applying lemmas 6.20 and 6.18, we get the following are all defined and
equal:

(pep)=ex(pep)eeag(pep)
=ex(p)e o ex(p')e * (ag(p) © ag(p'))

We can finish the proof by noting the following composability constraints:
e ex(p)e @ ex(p’)e » ag(p) by lemmas 6.30 and 6.36
o ex(p)e > ag(p) by the previous constraint, which implies (p) is defined
o ex(p)e o ex(p)e » ag(p’) by lemmas 6.30 and 6.36

o ex(p')e » ag(p’) by the previous constraint, which implies (p') is defined

Lemma 6.36. If ex(p)e is defined then ex(p)olimm = @.
Proof. By induction on p and unfolding ex, noting at each level only mut and own are kept. O
Lemma 6.37. If p »« p; and p »« py and py > py then p »< py o po.

Proof. Unfolding the definition of »«, we have for any £ € dom(p) n dom(p1), p(¢) = imm(_,p,v) and pi(¢) =
imm(_, p,v), and similarly for ps. By the definition of o, if ¢’ € dom(p) N dom(p;) Nndom(pz), then (p1 o p2)(¥) =
imm(__, p,v), which is sufficient to complete the proof. O

Lemma 6.38. If

e pHp, el own(v)(Hl)

o o #p

. @pa o(H3)

. @y 51

H5)

+ —
e p |own =

o peleimm({a},v,p,) < p' o T

then p’ e p™ [0 # p, @ £ own(v)(Gl)

12

Proof. By lemma 6.29 with H3 and H1 and H6, p’ e p* = (p' e p*)/l e L~ imm({a}7v,pv)(H7).
By H4 and H7, p" e p* = p' @ p* [l @ L = imm({a},v,p,).
Then in order to show G1, it suffices to show (p’ e p*/l e p, ® £~ own(v)) is defined. By unfolding (-|) and applying
lemmas 6.18 and 6.20, the following are Kleene-equal, so it suffices to show any are defined to get all are defined:
(0 @ p*[C e pyoliown(v))=ex(p e p*[lep,eli>own(v))s eag(p e p*/lep, el own(v))
=ex(p')e e ex(p" /L) @ ex(py)e ® L own(v) o (ag(p’) o ag(p" /) © ag(p,))

Applying similar reasoning to p’ e p* /¢ e £ — imm({a},v, p,) with H2, we get the following are all defined and equal:

(p" o p™ /0ol —imm({a},v,p,)) =ex(p" o p* [l e L —imm({a},v,p,))s e ag(p" ® p* [l e L —imm({a},v,p,))
=ex(p')e @ ex(p*/0)e @ (ag(p’) 0 ag(p™/€) o ag(€ = imm({a}, v, py)))
=ex(p')e @ ex(p*/l)s @ (ag(p’) 0 ag(p*/€) o L= imm({a}, v, py) © (pu)o)

By lemma 6.35 with H1, we have (p,) is defined. Then by lemma 6.33, (p,) = (pu)o. Therefore, we have the following
are defined and equal:
o o " [0 0 0> imm({a}, v, p)) = ...

=ex(p')e @ ex(p"/0)s o (ag(p’) 0 ag(p" /L) o L > imm({a}, v, py) o (pu))

=ex(p')s e ex(p"/0)s @ (ag(p') 0 ag(p" /L) o £ > imm({a}, v, py) © (ex(pv)e @ ag(pv)))

By lemma 6.31, we get the following are defined and equal:

(0 e p* [l ol —imm({a},v,p,))=...
=ex(p')e @ ex(p"/0)s » (ag(p) 0 ag(p" /) o £ = imm({a}, v, pu) o ex(py)e © 2g(pv))

Applying lemmas 6.30 and 6.36 multiple times, we get:
o ex(p')e e ex(p"[l)s >« (ag(p’) o ag(p" /() © ag(pv))
o ex(p)a o ex(p" /). < ex(p0)s
o ex(p')e @ ex(p*/l)e » £ = imm({a},v,p,), which implies ex(p')e ® ex(p™/l)e »« £~ own(v).
With these facts, it suffices to show ex(p,)e ® £ > own(v) » (ag(p’) o ag(p*/f) o ag(p,)). And by lemma 6.37 with

(pv ® £~ own(v))) defined from lemma 6.35 with H1, it suffices to show ex(p,)e ® £ — own(v) »« (ag(p’) o ag(p*/f)).
By lemma 6.36, (ex(py)e ® £ = own(v))|imm = &, so it suffices to show

dom(ex(py)s @ £+ own(v)) ndom(ag(p) © ag(p"/{)) = @

Assume for sake of contradiction that ¢/ € dom(ex(py,)e ® £ = own(v)) and ¢ € dom(ag(p’) o ag(p*/¢)). By the
definition of ag, ¢' € dom(p'|imm), ¢’ € dom(p*/limm), or there are some ¢ p!’ such that (ag(p’) o ag(p*/¢))(¢") =
imm(_,_,pl) and ¢' € dom((p)/)o). In either of the first two cases, by H6, £’ € (o) limm, which is a contradiction with
the fact that p # p, @ £ — own(v) from H1. And in the third, by the same reasoning about update, £ € dom((p)|imm);
and therefore ¢’ € dom(ag(p)), which again is a contradiction for the same reason. O

Definition 6.2. Let ¢ ~ ¢ := (¢ = mut(a, _, ,P) Ay’ =mut(e, , ,P))v (¢ =4¢"=imm(a,v,p)).

Lemma 6.39. If

e p#L—own(v)e pU(Hl)

o p'# Ll —own(v)e p, 112

13

o pel—imm(q,v,p,) «rp el imm(a,upv)(HS)

then p e £~ own(v) e p, «» p' e £~ own(v) e p,

/

Proof. By H1 and H2, we have p,f = (p e £ = own(v) e p,) and p[,; = (p" ® £ > own(v) e p,) are defined. We want to

)(GQ)

show dom(po flimm,mut) = dom(p:)fhmm,mut)(Gl) and V£ € dom(poflimm,mut)- Pof(£) ~ pf)f(ﬁ . By lemmas 6.18 and

6.20, we have all of the following are defined and equal:
Pos = (p e L own(v) e py)
—ex(p e £ own(v) « py)a @ ag(p e £r> own(v) = p,)

= ex(p)a o ex(¢ > own(v)). o ex(py)o » (ag(p) © ag(¢ = own(v)) o ag(p.))
= (> own(v) » ex(p)e o ex(p,)a * (ag(p) © ag(p.)

/
pof =...
=L own(v) e ex(p')e o ex(py)e © (ag(p’) o ag(pv))
By H3, we also have p;f = (p o { = imm(@, v, py)) and p}; = (o’ ® £ imm(@, v, p,)) are defined, and

dom(p; flimm,mut) = dom(p;f\imm,mut)(m)- Applying similar reasoning to above:

pif = (p e~ imm(a,v,py))
=ex(p o L —imm(a,v,p,))e ® ag(p e L = imm(@,v, py))

=ex(p)e @ ex(£ = imm(@, v, py))e ® (ag(p) © ag(¢ = imm(@, v, p,)))
=ex(p)e o (L= imm(@,v, p,) o ag(p) o (pu)o)

Pip =
ex(p)o o (£ imm(@. 0. 1) o 28(0') © (pu))

By lemma 6.10 with H1, v'p,. Then by lemma 6.35, (p,) = (pu)o. Rewriting, unfolding (-), and using lemma 6.31
in the previous equalities:

Pif=-..
=ex(p)e o (£ imm(a, v, py) © ag(p) ° (pu))
=ex(p)s @ (L= imm(a, v, pu) © ag(p) o (ex(pu)e @ ag(pv)))
=ex(p)e o (£ = imm(Q,v, py) o ag(p) o ex(pv)e © ag(pv))
=ex(p)e ® (ex(pv)e © (L= imm(@, v, py) © (ag(p) © ag(pv))))

Pif =
=ex(p')e @ (ex(p)e o (£ imm(@, v, pu) o (ag(p) © ag(pv))))

Note we have the following composability statements:
* ex(py)e >4 ag(py), from v'p,
o ex(py)e » ag(p), from the rewritten form of p,; with lemmas 6.30 and 6.36.
o ex(py)e > ag(p’), similarly from the rewritten form of p;,, with lemmas 6.30 and 6.36.

o ex(py)e » £ —imm(a,v,p,), since ex(py)e ¢ £~ own(v) and ex(py)elimm = @ by lemma 6.36.

14

With these statements and lemmas 6.37 and 6.31, we get:

Pif =---
ex(p)e @ (ex(pv)e © (£ imm(@, v, py) o (ag(p) © ag(pv))))
=ex(p)e e ex(py)e o (£ = imm(a@, v, p,) o (ag(p) © ag(pv)))

=
=ex(p')e @ ex(py)e o (£ imm(@, v, p,) o (ag(p’) © ag(p.)))

By the rewritings of p,r and pf)f7 we have:

£ own(v) > ex(p)e @ ex(py)e ® (ag(p) © ag(pv))
€~ own(v) »« ag(p) o ag(py)

> own(v) s ex(p')e @ ex(py)e ¢ (ag(p") © ag(pv))
£+~ own(v) » ag(p') o ag(py)

Therefore, ¢ ¢ dom(ag(p) o ag(p,)) and similarly for p’, so:
C—imm(a, v, py) » ag(p) © ag(py)
£ imm(@, v, p,) » ag(p) o ag(pw)

With these and lemma 6.31, we get:

Pif =

=ex(p)s e ex(py)s @ (L imm(a, v, py) o (ag(p) o ag(py)))
={ imm(&,v,pv) L] eX(p)- o eX(Pv)- L4 (ag(p) ° ag(p’u))

p;f =...
=0~ imm(@,v,pu) @ ex(p')s @ ex(pv)s ® (ag(p") © 2g(pyv))
Now the only difference between p,y and p;y, as well as p;,; and pj;, is £ = own(v) vs £ = imm(@,v, p,), and we
additionally know ¢ ¢ dom(ag(p) o ag(py)), and £ ¢ dom(ag(p’) o ag(p,)). Therefore we have G1 and G2:
dom(pof)|imm,mut = dom(p;f)hmm,mut = dom(pifhmm,mut)/g = dom(pgfhmm,mut)/g

pof|imm,mut = pif|imm,mut/£
’ ’
pof|imm,mut = pif|imm,mut/£

O
Lemma 6.40. ¢ — own(vy) # p if any only if £ — own(vy) # p
Proof. By the definition of #, £ ¢ (p)), so the condition follows immediately. O
Lemma 6.41. If /— own(-) » p, then £ ¢ p.
Proof. By definition. O
Lemma 6.42. If ¢ — mut(-,—,—,—) »« p, then £ ¢ p.
Proof. By definition. O
Lemma 6.43. (—imm(au B,v,p') = £+ imm(a,v,p’) e £+ imm(B3,v,p")
Proof. By definition. O

15

Lemma 6.44. If £~ imm(@, vy, p}) »« £ = imm(B,v2, py), then v; = vy and p} = ph.
Proof. By definition. O
Lemma 6.45. @Q(p; @ p2) 2« if and only if @p; 2« and py 2 a.

Proof. In either direction, this follows from noting that if £ € dom(p;) N dom(pz), then pi(£) = imm(@,v,p) and
p2(£) =imm(B,v,p), And aufBaaif @z o and 2. O

Lemma 6.46. p; # po e p3 if and only if p; e po # ps.

Proof. By unfolding # and lemma 6.3. O
Lemma 6.47. p <« p

Proof. By definition. O
Lemma 6.48. If p; # po and p; # p3 and ps «» p3, then p; e py «» p1 e p3.

Proof. By the compatibility hypotheses, we have v’ (p; ® p2) and v (p1 @ p3). It suffices to show that dom((p; e

P2D|mut7imm) = dom((p1 ® P3D|mut,imm) and for every [€ dom(ﬂpl b p2D|mut,imm)7 (]PI o P2D(€) ~ (]PI b PSD(E)-
By unfolding v/, (-), and by lemmas 6.20 and 6.18, the following equalities hold, with all resources defined:

(p1 ® pa)) = ex(p1 @ p2)e @ ag(p1 @ p2)
=ex(p1)e @ ex(p2)e @ (ag(p1) 0 ag(p2))

(o1 ® p3) = ex(p1 ® p3)e ® ag(p1 ® p3)
=ex(p1)e @ ex(p3)e ¢ (3g(p1) © ag(ps))

From unfolding ps «» ps, we get that dom((p2)|mutimm) = dom((o3)|mut,imm). Therefore the domain constraint
follows immediately from the equalities above.

Let £ € dom((p1 ® p2|mut,imm). We want to show (p1 ® pa)(£) ~ (p1 ® p3)(£). By lemma 6.36, all of the domains of
ex resources contain no imms, and therefore we get that the domains of ex(p1), ex(p2), and ag(p;) o ag(p2) are all
disjoint, and similarly for ps. Then there are 3 cases:

o Cedom(ex(p1)). Then ex(p1)(£) = (p1 ® p2)(€) = (p1 p3)(£)

o ¢ e dom(ex(pz2)). Then from our update hypothesis, we have (p2))(£) ~ (p3)(£), which is sufficient since (p; o
p2)(£) = (p2)(€) and (p1 & p3)(£) = (ps) (£)-

e ¢ e dom(ag(p1) o ag(pz2)). If £ ¢ dom(ag(p1)) Nndom(ag(ps2)), then we are done by similar reasoning to the
previous cases. Otherwise, by the definition of ag, either ¢ € dom(piimm) or there are some ¢’ p’ such that
ag(p1) (@) =imm(_,_,p') and £ € dom((p’).), and similarly for py. Otherwise, unfolding o, there are 4 cases:

— ag(p1)(€) = ag(p2)(¢). Then (p1 @ p2)(€) = (p1 @ ps (£).

— ag(p1)(€) »« ag(p2)(£). Then there are @,,v,p such that ag(p:)(¢) = imm(@,v,p) and ag(p2)(£) =
imm(f, v, p). From the update hypothesis, we get ag(p2)(¢) = ag(ps)(£), which is sufficient with the above
to show (p1 @ p2) (€) ~ (p1 @ p3)(£).

— Ja, 8,0, pi, P,Q such that ag(p1)(f) = mut(a,}),pi,ﬁ) and ag(p2)(¢) = mut(ﬁ,v,pi,Q). By the update
hypothesis, we have ag(ps)(£) = mut(8, , ,Q). And furthermore, by the definition of ag, there must
exist ¢, p" such that ag(p2)(¢) = imm(_, ,p") and ag(p2)(£) = (p')o(¢). By the update hypothesis,
we also have ag(p3)(¢') = ag(p2)(¢'), which implies ag(p3)(£) = mut(3,v,pi, Q). Therefore, ag(p1)({) o
ag(p2)(£) = ag(p1)(¢) o ag(ps)(£) = mut(ern B, v, pi, P A Q).

16

— Ja,v, p;, P such that ag(p;)(¢) = mut(e, v, p;, P) and ag(ps—;)(¢) = own(v). If i = 1 then we’re done, be-
cause (p1 o pa) (£) = (p1 ® ps)(£) = (p1) (¢). Otherwise, by the update hypothesis, (ps)(¢) = mut(a, , ., P).
By the definition of ag(ps), there are ¢, p’ such that (p2)(£") = imm(_, ,p") and ¢ € dom((p’),). Then
by the update relation, (ps)(¢) = imm(_, ,p'), and therefore ag(ps)(¢) = mut(a,v, p;, P). And finally,

ag(p2)(¢) = ag(p3)(0), so (p1 @ p2) (£) = (p1 ® p3)(£).

— 3@, B, v, ps, P such that ag(p;)(¢) = imm(@, v, p;) and ag(ps_;)(¢) € {own(v), mut(B,v,p’, P)}. If i = 1,
then we’re done because ag(p1)(¢) = (p1 ® p2)(€) = (p1 ® p3)(£). Otherwise, by the update hypothesis,
ag(p2)(0) = ag(p3)(0) = (p1 & p2)(£) = (p1 ® p3) ().

O
Lemma 6.49. If p; «» ps and py <~ p3, then p; «» p3.

Proof. Follows from noting that ~ is transitive, since imms are required to be equal and muts are required to have
the same lifetime and predicates O

Lemma 6.50. If @Qp 3« and p « p/, then Qp’ 2 a.

Proof. Follows from unfolding the update relation and noting that all borrows must have the same lifetime before
and after updating. O

Lemma 6.51. If (p)(¢) = imm(@, p;,v) and (p’)(¢) = imm(B, p;,v) and p # p’ then (p e p')(¢) = imm(au B, p;,v)

Proof. Follows by lemma 6.20, noting that by the definition of o and e, imm(@, p;,v) o imm(3, p;,v) = imm(@, p;,v) o
imm(ﬁapiav):imm(a.ﬂ7pi7v)' [

Definition 6.3. pE o’ £ plown,mut ® p” where
o P lown,mut =2
o 0" < plimm
o if £ e dom(plimm) ~ dom(p’) then £ € dom(p”)
e if £ € dom(plimm) Nndom(p’) and p(¢) = imm(@, p;,v) and p’(£) = imm(B, p;,v) then

—ifa~ B =g, then £ ¢p",
— if @\ B #@, then p'(¢) =imm(a~ B, p;,v)

Intuitively, p& p’ is p without the immutable borrows in p’. But since immutable borrows can alias at the same
location, “without” means removing the lifetimes of borrows from p’, but keeping the lifetimes only in p. One could
define 8 so that p’ can contain own/mut as well, but it doesn’t seem useful to do so.

This subtraction operation is used below, particularly in the following lemma, which is the foundation for the
reborrow wp rule. When we run with the reborrowed resource, in order to simulate the run with the borrowed
resource, we need to “perform surgery” on the resource to remove traces of the reborrow. In the frame rules
this surgery is “easy” (haha...), because we originally have an owned resource. Here, every location is immutably
borrowed and may be freely aliased, so the best we can do is remove the fresh parts of the reborrow. By subtracting
the reborrowed resource, we get exactly the “leftovers” we need to keep with the immutable borrow to complete the
proof.

Lemma 6.52. Let preb = plaom(p! meo)- L £ € reba(p;) and p e pe «» p’ @ p* and @p, 3 and @Qp’ 2 v
then p* = (p* B prep) @ preb and Q(p* B prep) 3

Proof. Unfolding reb in p € reby(p}), we get plown,mut = @, p; = a, and for every ¢ € dom(p}|mut,own), if £ € dom(p),
then there are py, vy such that p(¢) = imm({a}, p¢,ve).

Let ¢ € dom(pf|mut,own) N dom(p). By the update hypothesis, there is a 8, such that (p e pc)(£) = (p" ® p*)(¥£) =
imm(Be, pe, ve) and « € B;. Since p’ 3 o, it must be the case that there is a 8 € B¢ such that (p*)(€) = imm (B}, pe,ve),
with a € Big And since p}, p. 7 «, there are no borrows, mutable or immutable, at any lifetime shorter than «, so

17

there cannot be any borrow that contains p(¢) = £ — imm({a}, pe, ve).

Therefore, p* = (p* 8¢~ imm({a},ps,ve)) @ L~ imm({a},pgmg)(Hl).

Note that

Preb = . p(f)

Ledom (pf |mut,own)Ndom(p)

Rewriting with H1 for every £ € dom(p}|mut,own) N dom(p), gives us the equality p* = (p* B preb) ® Preb-
The outlives constraint @(p* B prep) 3 @ follows from noting that all parts of the resource outlive o except for the
locations in p that are mut or own in pf. O

Lemma 6.53. If p e rebg(p’) and py # £~ imm(@, p’,v) then p; » p.

Proof. Note dom(p) € dom(p"), and plown,mut = @. For any ¢ € dom(py) ndom(p), the only way for ps(¢) to not be
composable with p(£) is for ps(¢) to be own or mut. But since py # ¢ — imm(@, p’,v), we know after unfolding and
applying lemmas 6.18 and 6.20 and 6.30, that ex(ps)s »« (p')o, which means overlapping with an own or mut can
never happen. O

Lemma 6.54. If p e rebg(p’') and v’ ¢ —» imm(@, p’,v) then dom(ag(p)) c dom((p')o)
Proof. By unfolding p € rebg(p’), we get that
o dom(p) c dom(p’)

° p|dom(p’|imm) = p,|imm|d0m(p)

o for every ¢ € dom(p) N dom(p|own,mut), there is a p” such that p(¢) = imm(_,p"”,) and either p” < p', or
p'(£) =mut(_,p",_,_), and therefore dom((p")o) € dom((p’)s).

Collecting all of these, we get that every immutable borrow in p is in (o)., and every witness is also in (p))o. O

Lemma 6.55. If p e rebg(p’) and py # £ —» imm(@, p’,v) then p; # p.
As a corollary, p # ¢~ imm(@, p,v), which follows from setting py = ¢ — imm(@, p’, v).

Proof. Let p; = imm(@, p’,v). By lemma 6.53, py »« p. It suffices to show that (p; e p) is defined. Unfolding the
hypothesis py # ¢ — imm(@, p’,v) applying lemmas 6.20 and 6.18, and unfolding the definitions of ex and ag, we get
the following are all defined and equal:

(py ® pi) = ex(ps @ pi)e ® ag(ps ® pi)
=ex(pf)e o ex(pi)e @ (ag(pyr) o ag(p:))
=ex(pr)e @ (agpy) o pio (0')o)

By lemma 6.30 applied to the last equation, with lemma 6.36, we get ex(pr)e » pi © (p')o, €x(ps)e » p;, and

ex(pyr)e < (p)o-
By unfolding our goal, applying lemmas 6.20 and 6.18, unfolding the definitions of ex and ag, and noting that
dom(plown,mut) = &, we get that if one of the following are defined, then all are defined and equal.

(py o p) =ex(ps ®p)e ®ag(psep)

=ex(pr)e o ex(p)e @ (ag(pys) o ag(p))
=ex(ps)e o (ag(py) o ag(p))

By lemma 6.37 applied to the last equation, it suffices to show ag(py) > ag(p) and ex(pr)e »« ag(p). By lemma 6.54,
dom(ag(p)) € dom((p'),). Now we can complete the proof:

« ag(py) = ag(p): For any location £ € dom(ag(ps)) ndom(ag(p)), it suffices to show ag(ps)(£) = ag(p)(¢). We
have ag(py) = (p)o. This follows by unfolding reb, and noting p and p’ differ only by potentially changing
from own or mut to imm, but witnesses and values always stay the same.

18

o ex(pr)e >« ag(p): Since ex(pf)e »« (p')o, and ex(pf)elimm = &, we have that dom(ex(py)s) ndom((p')s) = @.
By unfolding the definition of »«, it suffices to show dom(ex(ps).) N dom(ag(p)) = @, which is implied by

dom(ag(p)) € dom((p'o).
O
Lemma 6.56. If p € rebg(p’) and v (£ = imm(@, p’,v)) then [plaom(p/ o) ® £ = imm(@, p',v)] = [€ = imm(@, p’,v)]

Proof. By lemma 6.55, p # { ~ imm(@, p’,v). Then by lemma 6.11, plaom(p/[me.om) # £ = imm(@, p’,v). For any ¢,
it suffices t0 Show [pldom(p/meowm) ® £~ imm(@, p’,v)] (€) = [¢ = imm(a, p’,v)](¢). By unfolding [-], (-), ex and ag,
and by lemma 6.20, the following are all defined and equal:

(Pldom (o lmc.ow) ® £ = TMM(@, p',0)) = 38(Pldom (p/mut o) ® £ = IMM(@, p',)
= ag(p|d0m(p’\mut,own)) o ag(g g Imm(aa ,0,, U))
= a8 (plaom(p/mu.oum)) © £ = Imm(@, 0, 0) © (o)

By lemma 6.54, dom((plaom(p/|me.own))) € dom((p’)). Since values and witnesses must agree because of the fact that
Pldom(p/[mt.om) 7 £ = Imm(@, p’,v), we have that the erasures must agree. O

Lemma 6.57. Let p; =~ imm(@, p},v). If p e rebg(p;), then (olaom(p}mm) ® Pi) = (pi)

Proof. By unfolding reb, we have that plaom(p![mm) < Pilimm, a0d pldom(p!) Imut,own = @. Therefore, unfolding (-, ex,
ag, and applying lemma 6.20, we have the following are equal:

(]P|dom(p;|imm) *pi) = ex(p|dom(p’i\;mm) *pi)ee ag(p|dom(p’i|;mm) *pi)
= ag(ﬂ|dom(p;|imm) i)
= ag(Plaom(p! fimm)) © 28(Pi)
= ag(Plaom(p! fimm)) © Pi © (P50
= ag(P|dom(p;|imm)) ° (]p;|immDo °pio (]p(i|mut,ownl)o
= (pilimmDo © pi © (P}]mut.own)o

N

Lemma 6.58. Let p; = ¢~ imm(@, p},v). If
o perebg(p])
s pepyerpep
s Qpyap
. @' ap
o pv# pi
« plept#pi

then [p e p, @ p;]| = [pp ® pi] and [p’ e p* e p;] = [[p’ * (P B pldom(p! lmut.own)) ® Pi]]

19

(H1)
Proof. By lemma 6.56, [[p|dom(p;\mut,own) . pi]] =[p:] . Note dom(p) € dom(p}) by unfolding reb. By lemma 6.8 and
rewriting with H1, we have:

[pepi= [[P|d0m(p;|imm) o P|dom(p;|mut,own) i Pz‘]]

= [[p|dom(p;|imm) ° Pz]]

By lemma 6.57 (i) = (pldom(p!|mm) ® Pi), which implies [p;] = [{P|dom(p;|xmm) . pi]], which combined with the equation
H2
above [p e p;] = [[p\dom@;\imm) . Pi]] , means [p o p;] = [p:]).
To show [p e py, @ p;] = [pb ® pi]], by lemma 6.8, it suffices to show [p e p;] = [[p:], which we have by H2.
By lemma 6.52, p™ = (0" B plaom(p! nutom)) ® Pldom(p!me,om)- REWriting with this equation, we have the following
are equal:

[p e p™epi] = [[P' * (0" 8 Plaom (0! mut.own)) ® Pldom(p! m.omn) ® pi]]

To show [p’ e p* e p;] = [[p’ * (P B Pldom(p!murom)) ® pi]], by the previous equation and lemma 6.8, it suffices to show
|:|:p|d0m(p;|mut‘own) o pi]] = [p:], which we have by H1. O
Lemma 6.59. Let p; = £~ imm(@, p},v). If

* perebg(p;)

s pepyrpept

e Qpyaf3

. @328

o pb# pi

o plepT#pi
then p; e py «» p" & (p* B plaom(p)ms.oun)) ® Pi

Proof. Let prep = P|dom(p;|mut,own)~ By lemma 6.52, p* = (p* 8 preb) ® preb, and Q(p* B prep) 3 8. And note by unfolding
reb, p = p|dom(P limm) ® Preb- Rewriting with these two equations in the update hypothesis, we get

p|dom(p;|imm) ® Dreb ® Pp <7 p, ° (p+ = preb) ® Dreb-
By lemma 6.57, (pldom(p!}mm) ® Pi) = (pi). Unfolding, this additionally implies ag(pldom(p!}mm) ® £i) = ag(pi). Note
that (pp ® p;) is defined by the hypothesis. Unfolding (-), ex, and applying lemmas 6.18 and 6.20, we get

(i ® pu) = ex(pi ® pv)e ® ag(p; ® p1)
=ex(pi)e ® ex(pp)e @ ag(p;) © ag(py)
=ex(pp)e @ ag(pi) © ag(ps)
=ex(pb)e ® 3g(Plaom(p!imm) ® Pi) © 28(Pb)
=ex(pp)e ® 38(Pldom(p!) ® Pi ® Pb)
= (Pldom(p!fmm) ® Pi ® PB)

Rewriting with this equation, it suffices to show plqom Plimm) @ Pi ® Pb < p o (p* B prep) ® p;. Unfolding, it suffices to
show dom((]p|d0m(pﬂimm) e 0i ® pp)limm,mut) = dom((p’ ® (p* B preb) ® Pi)limm.mut) and for every £ € dom((]p|d0m(pﬂimm) .
Pi ® polimm,mut)s (Pldom(p!fmm) ® Pi ® PE)(E) ~ (p" @ (p™ B preb) ® pi)(¢). By the rewritten update hypothesis above,
we have (]p'donl(p’ilimm) e preb ® Pp)(£) ~ (p" @ (p* B preb) ® Preb)(£). If £ ¢ dom(preb), then this is immediate, by the
hypothesis and unfolding reb. If £ € dom(prep), then since all components of the composition besides for pe, outlive
B, neither have the immutable borrow at g from pyep, and both get the borrow from p;. O

20

Lemma 6.60. If A - T 3 @q and ¢ € [A]], and p € V[T]; then @Qp 5 Qad

Proof. Proceed by induction on the derivation A + T 2 Qa:

Ar+123Qq

T =1. Then p = @, so we're done.

ArT;3Qa ArTy,3Qa
ArTi®T, 2Qa

T =T, ® T>. Then there are p, pa such that p = p1 ® pa, p1 € V[T1], and ps € V[T3]5. By the IH, Qp; 2 Qad,
and @Qp, 2 @ad, which by [] * completes the case.

A+T;2Q@a ArTy3Qq
ArTieT, 2Qqa

T =T, ®T5. Then either p e V[T1];, or pe V[T5];. In either case, by the IH, @p 2 Qaé.

A+T 3Qqa
A+ Ref T 2Qqa

T = Ref T. Then there is a v, ¢, pr such that p = £+ own(v) e pr and pp € V[T];(v). By the IH, Qpr 3 Qad,
and @Q(¢ — own(v)) 3 @Qad, which by []* completes the case.

AE@b>@Qq
A+ [@b]T 2 Qa

T =[@b]T. Then p e [@bS] V[T],. Unfolding, we have @p = @bs. And by the hypothesis, @bj = @ad. Therefore
@p 2 Qad.

A E@Qbz2Qa
A+Imm Qb T 2 Qq

T =Imm @b T. Then there is an ¢ such that p € £+ Imm @b5 V[T],. Unfolding, we have that there are 3, v, p’
such that p = £ = imm(B,v,p’) and V[T]s(v) and @b5 = ||3. And by the hypothesis, @b§ 3 @ad. Therefore
@p 2 Qad.

A E@QbaQa
A+ Mut Qb T 3 Qa

T = Mut @b T. Then there is an ¢ such that p € £ » Mut @bd V[T]s. Unfolding, we have that there are
£ 2@Qbé, v, p’ such that p =€~ mut(5,v,p’,V[T]s). And by the hypothesis, @b 3 @Qad. Therefore Qp 3 Qad.

21

Lemma 6.61. If p} € reb, (p1), p € rebs(p2), and py »« pa, then pf o p € reby(p1 ® p2).

Proof. Unfolding the definition of reb, the only interesting cases are locations ¢ that are in both p] and pj. By the
definition of reb, p! |mut,own = Po|mut,onn = @. And by the definition of e, p1|mut,own is disjoint from p2|mut,own- Therefore,
any overlapping locations of p| and p} are in (p1 ® p2)|imm, Wwhich means (p] e p5)(£) = (p1 ® p2)(¢), which is sufficient
to complete the proof. O

Lemma 6.62. If A T 3 @qa and § € [A], then G[I'];(7) £ [Qad] G[T]()-
Proof. Let p e g[[r]]5(7)(H1). We want to show [@Qad] g[[F]]S('y)(Gl). Unfolding [@ad], we want to show @p 5 @ad(©?).

Unfolding G in H1, we get p € "dom(I") € dom(d)" * @ cdom(r) V[[F(x)]](;('y(m))(m). Unfolding further, there exists py

such that p = @ ;™ and ¥z ¢ dom(T). p, € V[[F(x)]]é(v(a:))(m).
By []*, it suffices to show Va € dom(I"). @p, 3 @Qad. Let z € dom(T"). By lemma 6.60, it suffices to show
A ET(z)2Qa. and § € [A], both of which follow from the hypotheses. O

Lemma 6.63. a2 |«

Proof. Unfolding the definition of |, la=a+1,and a<a+1,s0 aza+1. O

6.3 Frame and Anti-Frame
Theorem 6.64 (Imm Frame). ¢~ v+ P(v) « (Na. Imm o P — wp (e) {[a] (¢ v— P(v) ~ Q)}) Ewp (e) {Q}

Proof. Let p el v P(v) « (Wo. Imm a P — wp (e) {[a] (0> v—= P(v) = Q)})(Hl).

By Lemma 6.112, Viav. p € £ = v« P(v) » (Imm o P — wp (e) {[e] (¢ v— P(v) = Q)})
~ (G ;
We want to show p € wp (e) {Q}(1). Unfolding wp, let p; # o) We want to show 3 p’ # pf(G2)7p+ #p' e pf(Gd),v.

(H2)

e ([prople) b (Lps e p o p*],0) Y

e perpe p+(G5)

_ (CO)

+
e p |own

. (@)
e P eQ(v)
Unfolding W in H2, 38. Vac B. pe[a] (U v P(v) » (Imm o P — wp (e) {la] (£ v—~ P(v) = Q)}))

Let « be some lifetime where a c g (19 Such an « always exists because for any lifetime, the set of lifetimes shorter
than it is infinite. Then specializing to «, we have

pela](tmvxP(v)*(Imm o P wp(e) {[a] (0> v— P(v) = Q)}))
(H6)

Applying Lemma 6.104, we have p € [a] £ v * [a] P(v) * [a] (Imm o P — wp (e) {[a] (L v P(v) = Q)}) .
Unfolding * and [a] in H6, 3pe,Pp(yy Po- Such that

(H5)

. p:pf'pﬁ(y).pb

Dy el M7

. (HB)
. pf:'(v) € P('U)

e pp€lmm a P~ wp (e) {[a] (L v P(U) —* Q)}(Hg)

. @PP(U) 5 o(H10)

. @py 2D

22

Suppose we have p; = £ -~ imm({a}, v,pﬁ,(v)). This resource is well formed by H10.
We establish a bunch of compatibility conditions with our starting resources and the “fictional” p;:

o ppHpre pP(v)(le): by definition of p, p, »« py @ Pp vy SO We just need v p, which follows by lemma 6.10 with
v peps from H3.

o pp # p;"™M®: by lemma 6.34 with H12 and H10.

« ppH#ope pp(v)(H14): by lemma 6.11 with H3.

o prF# pi(H15): by lemma 6.34 with H14 and H10.

o pr# pb(HIG): by lemma 6.11 with H3.

e« pp # pp o pi™D: by lemma 6.15 with H15 and H16 and H13.

By the definition of -+ and H9 and H13, p; p; € wp (¢) {[a] (0> v~ P(v) = Q)}
Unfolding wp, and setting py = py and p = p; ® p; with H13 and H17 for the compatibility requirements, 3 p" # py

pt# e ps T 0,

(H18)

)

e (Ipsepvepilie) b ([osop opt] o)™

. pyepierp .p+(H21)
_ H22)

+
LY |own

- A H
e pela] (v P(v)— Q)(U’)(23)
Unfolding [a] in H23, we have @' 5 a2V and g/ € £+> v — P(v) = Q') ",
By lemma 6.29 with H11 and H12 and H21, p’ e p* = (p' e p*)/l e p;.
By H24, £ ¢ dom(p'), s0 p' & p* = p' o p*[0 e p; ™).
Now we establish a bunch more compatibility results, this time for the “owned” resource after running e:

o« o # p+(H27) by lemma 6.11 with H19.

o plept/l#pe pp(v)(ms), by lemma 6.38 with H12 and H27 and H11 and H24 and H22 and H21.

o plept/lH# pf(Hzg) by lemma 6.11 with H19.

e popt/lep,e Ph(v) # pf(HBO), by lemma 6.15 with H28 and H29 and H14.
o 0 e preppgy # oY, by lemma 6.11 with H30.
« P ICHEp e piepp,y® ps . by H30.

o o H#ppe pﬁ(v)(H?)S)’ by lemma 6.11 with H28.

(H34)
By lemmas 6.26 and 6.8 with H12 and H28 and H20, ([ps e p],¢) | ([[pf epept/lep,e pﬁ,(v)ﬂ,v')

By lemma 6.39 with H12 and H28 and H21, p«» p’ e p* [l e ps e pP(v)(Hgs).

N H
By the definition of —, p’ e p e pp, € Q)™

Now we can prove our goals, setting p' =p’ e p, @ Pp(yy> and pt=p"/L,
e G2: plepye Ph (V) # py by H31

o G3: p*[U# p" e poeppy e py by H32.

23

Ga: (Log @ o)) b ([or o 0/ o 07 /00 e wppy | 07) by H34

Gb5: perp'ep*/lepyepp., by H35
e G6: p*|own = @ by H22

o GT: pleppe Ph(v) € Q(v") by H36

Theorem 6.65 (Mut Frame). If P e [B] P, then
(v x P(v) » (M. Mut o« P — wp (e) {[a] Vo' o = P(v') Q}) Ewp (e) {Q}

Proof. Let p el v P(v) (Wo. Mut o P — wp (e) {[a] (0> v— P(v) = Q)})(Hl).
(H2)

By Lemma 6.112, Na.pe £ — v % P(v) * (Mut « P wp (e) {[a] (0—>v— p(v) . Q)}) '
We want to sh D i (H3) ; (G2) 4 , (@3)
o show p e wp (e) {Q} . Unfolding wp, let py # p . We want to show 3 p" # py o FHp epy , .

e (Ipseple) U (Tpgep op] o)

o perp .p+(G5)

o P7lown = Q(GG)
;A (GT)
¢ P eQ(v)
Unfolding W in H2, 37. Vacy. pe[a] (¢~ v P(v) * (Mut a P — wp (e) {[a] (0> v P(v) = Q)}))

Let « be some lifetime where avcyn ﬂ(H4). Such an « always exists because for any lifetime, the set of lifetimes
shorter than it is infinite. Then specializing to «, we have

pela] (Lo vx Po)» (Mut @ P—wp (e) {[a] (£ v~ P(v) = Q)}))

Applying Lemma 6.104, we have p € [a] £ — v * [a] P(v) * [a] (Mut a@ P — wp (e) {[a] (¢ v— P(v) = Q)})
Unfolding * and [«] in H6, 3P, Pp (s Pv- Such that

(H5)

(H6)

* P=PLOPpy) ® Py

) el M7

5, (H8)
* Pp) € P(v)

o ppeMut a P—wp (e) {[a] (f v P(U) —* Q)}(Hg)

. @pﬁ(v) 2 o(H10)

. @p, 3D

Suppose we have p,, = £~ mut(a,v, Ph(v): P). This resource is well formed by H4.
We establish a bunch of compatibility conditions with our starting resources and the “fictional” p,,:

o ppHpre pP(u)(le): by definition of p, p, »« py @ Pp(vyr SO We just need v p, which follows by lemma 6.10 with
v pepy from H3.

o Py H pm(Hl?’): by lemma 6.24 with H12 and H10.

o prHpre pp(v)(HM): by lemma 6.11 with H3.

o prF# pm(H15): by lemma 6.24 with H14 and H10.

24

o prH# pb(Hw): by lemma 6.11 with H3.
« ps# pp o pr ™7 by lemma 6.15 with H15 and H16 and H13.

By the definition of -« and H9 and H13, py, p,,, € wp (e) {[a] (0> v— P(v) = Q)}

Unfolding wp, and setting py = py and p = p, ® p,, with H13 and H17 for the compatibility requirements,
’ (H18) 4+ ’ (H19)
Ap" # pf T F# P e py e

« (Ips e oo o pmlie) U ([os o o' o p*],0")

H21
i pb‘pm"“’p’./ﬁ()
. p+|own _ Q(HQZ)

o pelal (U v— P(v) = Q)w)"™

Unfolding [a] in H23, we have @Qp’ = a2 and pl el v+ P(v) = Q(v’)(ms).

By lemma 6.27 with H11 and H21, p' e p* = (p" e p*)/l e p,.
By H24, £ ¢ dom(p), s0 p' e p* = p' & p* [& p, "*V
Now we establish a bunch more compatibility results, this time for the “owned” resource after running e:

o poept/l#ppe plg(v)(m?), by lemma 6.24 with v p’ e p* from H19 and H26.
o plept/lH# pf(H28) by lemma 6.11 with H19.

e popt/lep,e Ph(v) # pf(Hzg), by lemma 6.15 with H27 and H28 and H14.
o« P epieppy # pr ™39 by lemma 6.11 with H29.

o P ICFEp e pieppi,y® ps . by H29.
o o H#ppe pﬁ(v)(Hsz)’ by lemma 6.11 with H27.

(H33)
By lemmas 6.25 and 6.8 with H12 and H27 and H20, ([ps e p],¢) | ([[pf epept/lep,e pﬁ,(v)ﬂ,v')

By lemma 6.28 with H12 and H27 and H21, p«» p’ e p* [l e ps e pP(v)(H34).
(H35)

By the definition of —, p’ e p; @ Pp(v) € Q")
Now we can prove our goals, setting p' =p’ e p, @ Pp(y)> and pt=p"/L,
e G2: plepye Ph(v) # py by H30

o G3: p™ft#p epse Ppvy ® Pf by H31.

o Gi (I o ploe) b (s o 0" 97100 pro ppi,y | 07) by 33
« Gb: perp'ep™/lepsepp, by H34

o G6: p*lown = @ by H22

e GT: plepye Pp(v) € Q(v') by H35

Theorem 6.66 (Anti Frame). R o R
(> Muta Px(You. £mv—P(v)=wp(e){3v. £ v P(v)* (£~ Muta P—+Q)})=wp(e){Q}

25

Proof. Let pel > Mut o P (V. f»v—*]s(v)—*wp(e){ﬂv. (e vxP(w)* (£~ Mut a P Q)})(Hl).
A1 (G
We want to show p € wp (e) {Q}(1). Unfolding wp, let p; # o2 We want to show 3 p/ # pf(G2),p+ #p e pf(G3),U.

e (Ipseple) h (Tpgep p]o)

o P4 ple p+(G5)

_ 5(©0)

+
e p |own

A0 ((GT)
¢ ' eQ(v)
Unfolding * in H1, 3 pp,, pa.

* P=Pm®Pa

e pm el Mut o P(Hg)

e paEVU. L v P(v)—*wp(e){ﬂv.KHU*P(U)*(EHMutaP—* Q)}(H4)

Unfolding £~ Mut in H3, 382 a,v,pp(, € P). pm =L+ mut(ﬁ,v,pp(v),P)(HS)

Specializing H4 to v, p, € £+ v —+ P(v) = wp (e) {3v. b v« P(v) * (£ > Mut a P~ Q)}(HG).

By lemma 6.11 with H2, p,,, # pa. Let pp = £~ own(v). Then by lemma 6.24, p, # p¢ ® pp(v)(m).

By lemma 6.11 with H2, p,,, # ps. Then by lemma 6.24, ps # pe ® pp(v)(HS).

. . ~ Ly (H9
By the definition of — with HT7, p, ® ps ® pp,) € wp (e) {EI v. L vx P(v)x (£ Mut a P— Q)}(),
Unfolding wp, and setting py = py and p=p, ® p; ® Pp () with HS8 for the compatibility requirement, 3 p" # py

pt# e p D

(H10)

V.

H12)
. ([[Pf *pa®pce pp@]‘,e) U (lps e p ep™],v")

H13
* Pa®Pr®Ppy) w pl o ptTY

. P+|own _ Q(H14)

e pedu.luvxPw)«({ > Muta P~ Q(Ul))(Hls)
Unfolding 3 and * in H15, EIU",pz',pp(v,,),pb-

H16
o 0 =] ¢ Ppmy® pp O

. pz' €l v"(H17)

. (H18)
© Ppeomy €PQY)
o« ppe(l>Mut o P Q(v'))(ng)

Let plf =0 mut(ﬁm",pﬁ,(v,,), P). Note since p, is well formed, p!", is as well.
Now we establish a bunch more compatibility results for the “mutably borrowed” resource after running e:

e ppept # p;’l(mo): by lemma 6.11 with H11, p’ # p*, and then by lemma 6.24.
o pr#Hprepe pﬁl(HQl): by H11, p" e p* # py, and therefore by lemma 6.24.

o pp F# p;;l(Hm): by lemma 6.11 with H21.

26

o ppepl # pf(H23): by lemma 6.11 with H21.

By lemmas 6.25 and 6.8 with H21 and H12, ([ps e pl,e) I ([ps ® pp ® p* o p’rfl]],v')(HM).
By lemma 6.28 with H20 and H13, p «» p, e p* @ p;;L(HQS)

By the definition of — with H22, p; e p/’, € Q(v")
Now we can prove our goals, setting p' = pp ® p// | and p* = p*,

o G2: py @ pyy, # py by H23

o G3: p* 4 py e pyy, ® ps by H21.

« G4: ([or e pl.€) U (lps po o pry, @ p7],0") by H24
o G5: p«rpyepy, ep" by H25

o G6: p*lown = @ by H14

o GT7: ppep” eQ(v') by H26

6.4 Standard Entailments
Lemma 6.67 (REFL). PE P
Proof. By inspection.

P=Q Q=R
Lemma 6.68 (TRANS). PR

Proof. Suppose P E @Q and @ = R. Let p be arbitrary such that P(p). By P Q, Q(p). By Q = R, R(p).
Lemma 6.69 (TR). P T

Proof. By inspection.

Lemma 6.70 (1L). L= P

Proof. By inspection.

PE Ql PE QQ
Lemma 6.71 (AR). PEQ1AQ2

Proof. Suppose P E Q1 and P E Q2. Let p be arbitrary such that P(p). By P Q1, Q1(p). By P E Q2, Q2(p).
Lemma 6.72 (AL). P, APy E P,

Proof. By inspection.

Lemma 6.73 (VR). P,E P, Vv P,

Proof. Let p be arbitrary such that P;(p). Since i € {1,2}, Pi(p) v P2(p).

PEQ PEQ
Lemma 6.74 (VL). P VPEQ

Proof. Suppose P = Q and P2 E Q. Let p be arbitrary such that P;(p) v P2(p). By cases on Py(p) v P2(p).

PAQER
Lemma 6.75 (=RrR). PEQ =R

Proof. Suppose P AQ = R. Let p be arbitrary such that P(p). Suppose Q(p). Immediate.

27

Lemma 6.76 (=L). PA(P=Q)EQ
Proof. By inspection. O

Va. (PEQ(x))
Lemma 6.77 (VR). PEVz. Q(x)

Proof. Suppose V. PE Q(x) Let p be arbitrary such that P(p). Let x be arbitrary. Immediate. O
P(z) = Q
Lemma 6.78 (V1). (Vz. P(z))EQ
Proof. Suppose]5(:5) E Q. Let p, x be arbitrary such that P(x)(p) Immediate. O
PEQ(x)

Lemma 6.79 (3R). PE=3Jz. Q(z)

Proof. Suppose P Q(x). Let p be arbitrary such that P(p). Choose z. Immediate. O

Lemma 6.80 (31). (3z. P(z))EQ

Proof. Suppose P(z) £ Q. Let x, p be arbitrary such that P(z)(p). Immediate. O

chta
Lemma 6.81 ("'R). PE P *"Queta

Proof. Suppose Qmeta- Let p be arbitrary such that P(p). Choose 3 p1,p2 to be p,@. Then by theorem 6.4 and
inspection. O

Pmcta = (Q E R)
Lemma 6.82 ("'L). "Ppeta *QE R

Proof. Suppose Ppeta = (Q = R). Let p be arbitrary such that p = @ e pa, Pyeta, and Q(p2) for some ps. By
theorem 6.2 and theorem 6.4, p = p. Immediate. O

PEQ
Lemma 6.83 (!MoNO). !PE!Q

Proof. Suppose P E Q. Let p be arbitrary such that (! P)(p). By unfolding, p = @ and P(@). Immediate. O
Lemma 6.84 (L). !|PEQ

Proof. By inspection. O
Lemma 6.85 (lUNR). |P=a=!P«!P

Proof. Case k. Let p be arbitrary such that p = @ and P(@). Then by choosing 3 p1, p2 to be @, @.
Case =. Let p be arbitrary such that p =g ¢ @, P(2), and P(2). Immediate. O

Lemma 6.86 (!A). (!P)AQE(1P)*Q

Proof. Let p be arbitrary such that p = @, P(@), and Q(@). Choosing 3 p1, p2 to be &, . Immediate. O
Lemma 6.87 (14). |PEe!!P

Proof. By inspection. O
Lemma 6.88 (1V). Vz. | P(z) E!Vz. P(x)

28

Proof. Suppose X # @. Let p be arbitrary such that Vz € X. p=@n P(z)(p). From X # @, it follows that p = @ and
Vz. P(z)(p). Immediate. O

Lemma 6.89 (!3). Jz. ! P(x) E!3z. P(x)

Proof. Let p be arbitrary such that p = @ and P(z)(@) for some z. Choose 3z to be z. Immediate. O
Lemma 6.90 (xcoM). PxQEQ * P

Proof. By inspection, using theorem 6.2. O
Lemma 6.91 (xAscC). (P*Q)*R=Px*(Q~*R)

Proof. By inspection, using theorem 6.3. O

PIEQ PEQ:
Lemma 6.92 (xMONO). Py« P, = Q1 x Q2

Proof. Suppose P; £ Q1 and Py E Q2. Let p be arbitrary such that p = p; e pa, Pi(p1), and Ps(p) for some p1, po.
It follows that Q1(p) and Q2(p). Choose 3 p1, p2 to be p1, po. Immediate. O

PxQEeR
Lemma 6.93 (+R). P=Q—~* R

Proof. Suppose P*@Q = R. Let p be arbitrary such that P(p). Let p1, p2 be arbitrary such that Q(p1) and p e p1 = pa.
By P~ Q= R with pe p1, R(pep1). O

Lemma 6.94 (+L). Px (P~ Q)E=Q

Proof. Let p be arbitrary such that p = p1 e pa, P(p1), (P =+ Q)(p2). By (P —+ Q)(p2) with p1, Q(p2 ® p1). By
theorem 6.2, Q(p1 ® p2). O

Lemma 6.95 (—»EX). {—>uv; x> _E1

Proof. By contradiction, using theorem 6.41. O

6.5 Non-standard Entailments
PeEQ
Lemma 6.96 ([]-MONO). [a]PE [a]@Q

Proof. Suppose P E Q. Let p be arbitrary such that P(p) and @p 3 «. By P = Q and P(p), Q(p). O
Lemma 6.97 ([]JL). [«]PEP

Proof. By inspection. O
[0]PEQ

Lemma 6.98 ([]R). [a]PE[a]Q

Proof. By inspection. O

Lemma 6.99 ([]4). [«][B]P = [aup]P

Proof. Case k. Let p be arbitrary such that P(p), @p 3 «, and @p 2 8. By lattice laws, it follows that @Qp a2 a U .
Case =. Let p be arbitrary such that P(p), @p 2 o« u 5. By lattice laws, @Qp 3 o and @Qp = 3. O

a3z f
Lemma 6.100 ([] 2). [a]PE[B]P

Proof. Suppose a 2 8. Let p be arbitrary such that P(p) and @p 2 «. By transitivity, @p a2 « 2 8. Thus, @Qpa 5. O

29

Lemma 6.101 ([]3R). PEJa.[a]P
Proof. Let p be arbitrary such that P(p). Choose 3« to be |@p. By theorem 6.63, @Qp 2 |@p. O
Lemma 6.102 ([]V). Vz. [a] P(x) == [a] V2. P(x)

Proof. Case: k. Suppose X # @. Let p be arbitrary such that Vz € X. P(z)(p) A@p = . Since X # @, it follows
that @Qpaa and Ve X. P(z)(p).
Case: =. Similar to the previous case, but without the domain restriction on . O

Lemma 6.103 ([]3). 3z. [a] P(z) == [a] Fz. P(x)

Proof. Case: E. Let p be arbitrary such that P(z)(p) for some z and @p 3 . Choose 3z to be z. Immediate.
Case: 5. Similar to previous case. O

Lemma 6.104 ([]*). [a] (P*Q) == [a] P+ [a]Q [a](P*Q) == [a]P*[a]Q

Proof. Case k. Let p be arbitrary such that p = p; e pa, P(p,), Q(p2), and Q(p; e p2) 3 . Choose I p1, p2 to be
p1, p2- 1t suffices to show that @Qp; 2 a and @Qps = o, which follows by theorem 6.45.
Case =. Similar to previous case. O

Lemma 6.105 ([]v). [a](PV Q) == [a] PV [a]Q

Proof. Case =. Let p be arbitrary such that (P(p) vQ(p)) A@Qp 2 . Tt suffices if (P(p)A@paa)Vv(Q(p)AQpaa),
which follows by De Morgan’s laws.
Case <. Similar to previous case. O

Lemma 6.106 ([]!). [a]!P =2=![a] P
Proof. By inspection. O
Lemma 6.107 ([] »). L vE[a]l—v

Proof. By inspection. O
Vac . ([a] P(a) E [a] Q(a))
Lemma 6.108 (/1-M0ONO). Na. P(a) E Na. Q(«)
Proof.
Proof step Current goal
Unfold W. 3BVYacBla]Pla)=3BVac b.[a]Q(a)
Apply IL. Choose §:= 1" on right. Fix acfng’. (Vacp.la]P(a)) = [a] Q(a)
Choose « = « on left. [a] P(a) = [a] Q@)
Follows by assumption because o = 3. O

Vac ' ([e] P(a) = Q)

Lemma 6.109 (/1L). Na. P(a) EQ

Proof.
Proof step Current goal
Unfold W. IpVacf.[a] P(a)=Q
Fix 8 arbitrary. Vacf[a]Pla)EQ
Choose arbitrary = 1 3’, always possible c is infinitely decreasing. [a] P(a) EQ
Follows by assumption because a = 3. O

Lemma 6.110 (UR). P WNa.P

30

Proof.

Proof step Current goal
Unfold W. P=3p. VacpB. [a] P

Apply []3R on left. 3JB.[B]P=3IL. YacB. [a]P

Fix 8 arbitrary. [B]PE3B. Vacb. [a]P
Choose 3 := . [B]P=YacB. [a] P
Fix o c 8 arbitrary. [B]PE[a] P
Apply [] 2 O

Lemma 6.111 (1*). Na. P(a) *x Na. Q(a) E Na. (P(a) * Q(«))

Proof.
Proof step Current goal
Unfold W. (3Bp. Vape Bp. P(ap)) » (3Bg. Yage Bg. Qlag))EIL. Vac 8. (Pla) * Q(w))
Fix arbitrary 8p, Bg. (Vapefp. P(ap)) * (YVage Bg. Qlag))EIB. Vac 8. (P(a) x Q(w))
Choose 3 :=(p I‘IﬁQ. (V apc (Bp. P(Oép)) * (V agQE ﬁQ. Q(O{Q)) EYacfp H,BQ. (P(a) * Q(Oé))
Fix ae fpnfq. (VapeBp. Plap)) x (Vaq e Bg. Q(ag)) = P(a) x Q(a)
Choose ap = o, aq = a. P(a) » Q(a) = P(a) » Q(«a)
O
Lemma 6.112 (IF). P » Na. Q(«a) = Na. ([a] P > Q(a))
Proof.
PxWNa.Q(a) =3B, [B] P Na. Q(a) by []3Rr
=38 [B][B] P+ Na. Q(a) by []4
E(38. Vac . [a][a] P) x Na. Q(«) by []-2 and monotonicity
E Wa. [a] P x Na. Q(a) definition of U
EWa. ([a] P Q(a)) by N«
O

Vou. P(v) e Q(v)
Lemma 6.113 (I-MONO). {1, PE {1, Q

Pmof Suppose V v. P(v) E Q(v) Let p be arbitrary such that p = £ —» imm(3,v, p'), P(v)(p), and & L]ﬂ for some
v, p', B. Choose 33, v, p to be B,v, p'. Tt suffices if Q(v)(p), which follows by V v. P(U) E Q(v) and P(v)(p). O

a2f
Lemma 6.114 (13). (I, PE{wIz P

Proof. Suppose a 2 3. Let p be arbitrary such that p = £+~ imm(B,v,p’), P(v)(p’), and « E~|_|B~ for some v, p', 3.
Choose 380, p’ to be B, p’. It suffices if B € | |3. By transitivity, it follows that S« £ ||3. O

Lemma 6.115 (I-AG). {1, P+l Ig Qe Lelas (PAQ)

Proof. Let p be arbitrary such that p = p1 e pa, p1 = £ |mm(61,vl,p1), P(vl)(pl) o |_|ﬂl, p2 ={
|mm(527vg,p2) Q(vg)(pz) and B & I_,/BQ for some py, pa, B1, Ba, v1, va, p, and ph. We must show 33,00 p=L+s
imm(B,v,p') A P(0) (') AQ(v)(p") naru BE LI

By definition, p = pl e py =L |mm(61,v1,p1) o (> imm(Ba,v2,p5) = £ = imm(B1 U Ba,v1,p)), v1 = va, and
P = ph. Choose 35,v,p" to be 81 U Bs2,v1,p]. All proof obligations are immediate except a3 & I_I(Bl u ﬂQ) This
follows from the lattice laws given o £ 31 and g c 52. O

Lemma 6.116 (I-DUP). { I, P (], Px (], P

Proof. Let p be arbitrary such that p = £ — imm(ﬁ,v,p’), P(v)(p’), and a c L3 for some 3, v, p'. Choose 3 p1, ps
to be p, p. It suffices if p = p @ p, which follows from theorem 6.43. O

31

Vu. P(v) 2= Q(v)
Lemma 6.117 (M-INV). {—M, P == £ =M, Q

Proof. By inspection, using functional extensionality. O

a3z p
Lemma 6.118 (M 2). (—M, PE{~Mg P

Proof. Suppose o 2 B. Let p be arbitrary such that p = £ — mut(Bo, v, p’, P) for some Sy 2 a, v, p’. Choose 38, v,p’
to be By, v, p’. It suffices if Sy 2 8. By transitivity, 8y 2 a 2 . O

Lemma 6.119 (M-EX). £ ~M,, Pxl k1

Proof. By inspection, using theorem 6.42. O

6.6 Reborrowing Entailments

_Pro
Lemma 6.120 (O-moN0). O Pk O_Q

Proof. Suppose P = Q. Let p be arbitrary such that P(p’) for some p’ € reb,(p). Choose p'. By P = Q with p’ and
P(p'), we obtain Q(p'). O

Lemma 6.121 (O). £~ v [a] P(v) £ O L1, P

Proof. Let p be arbitrary such that p = p; e pa, p1 = £~ own(v), P(v)(p2), and @p, 3 o for some p; and py. Choose
3p’ ereb,(p) to be £ — imm({a},v,p2). Choose 38, v,p" to be {a},v, pa. Most proof obligations are immediate, but
it remains to show £ — imm({a},v, p2) € reb,(p). Choose 37 to be £ p. Tt suffices if:

e @p 2 a: Since p = £+ own(v) e po, it suffices if @(¢ — own(v)) 2 @, which holds by definition, and @py 2 «,
which is immediate.

o P2 @ gom(r) m(£): Since dom(7) = {£} and 7(¢) = p, this is simply equivalent to p > p.

e V¢ edom(rm),v,p”. ...: Since dom(w) = {¢} and p(£) = own(v), this simplifies to (¢ » imm({a},v,p2))(¥) =
imm({a},v,7(£) \ £), which holds by inspection.

O
Lemma 6.122 (OM). [a] (£=Mg P)E O (£ =1, P)

Proof. Let p be arbitrary such that p = £ — mut(ﬁ,v,p’J:’) (which implies]5(11)) and @Qp 2 « for some 8 2 «, v,
and p’. Choose 3p’ € reb,(p) to be £ -~ imm({a},v,p’). Choose 35,v,p’ to be {a},v,p’. Most proof obligations are
immediate, but it remains to show £ — imm({a},v, p’) € reb,(p). Choose 37 to be £ — p. It suffices if:

e @paa: Immediate.
o P2 @ qom(r) m(£): Since dom(7) = {£} and 7(¢) = p, this is simply equivalent to p > p.

e V¢ e dom(w),v,p". ...: Since dom(w) = {¢} and p(¢) = mut(B,v,p’, P), this can be simplified to (¢ ~
imm({a},v,p"))(¢) =imm({a},v,p") Adom(nw(£)) = {£}, which holds by inspection.

O
Lemma 6.123 (O1). [o] ({~1s P)E O (=15 P)

Proof. Let p be arbitrary such that p = £ imm(S,v, P, P(v)(p) B3 I_IB, and @Qp =3 « for some B, v, and p'.
Choose 3p' € reb,(p) to be £ — |mm([3,v p'). Choose 35,v,p’" to be B,v,p". Most proof obligations are immediate,
but it remains to show £~ imm(3,v, p’) € reby(p). Choose 37 to be £ p. It suffices if:

32

e @paa: Immediate.
o P2 ®pgom(r) T(£): Since dom(7) = {£} and 7(¢) = p, this is simply equivalent to p > p.

e Vledom(nm),v,p". ...: Since dom(w) = {£} and p(¢) = imm(f3, v, p'), this simplifies to (£~ imm(8, v, p"))(£) =
p(£) Adom(w(¢)) = {¢£}, which holds by inspection.

O
Lemma 6.124 (O ""). '"P'= O, P’

Proof. Let p be arbitrary such that p = @ and P. Choose 3p’ € reb,(p) to be @. Most proof obligations are
immediate, but it remains to show & € reb,(p). Choose 37 to be @. Since dom(@) = @, this simplifies to @z 5 «
and @ > @ jeqom () 7(£), which hold by definition. O

Lemma 6.125 (O*). O Px O, QkF O (P*Q)

Proof. Let p be arbitrary such that p = p; e pa, P(p]), and Q(p}) for some p1, pa, p| € reba(p1), and pj € reb, (p2).
By theorem 6.61, p} e p) € reb,(p1 ® pa). Choose Ip’ € reby(p) to be p) e ps. The remaining obligations are
immediate. O

Lemma 6.126 (Ov). O Pv O, Q= O (PVvQ)
Proof. Case k. Let p be arbitrary such that (3 p’ € reby(p).P(p)) v (3 p’ € rebo(p).Q(p")).
o Case: P(p') for some p’ € reb,(p). Choose 3 p’ € reb,(p) to be p’ and discharge the disjunction via the left side.

o Case: Q(p') for some p’ € reb,(p). Choose p’ € reb,(p) to be p’ and discharge the disjunction via the right
side.

Case = . Let p be arbitrary such that P(p’) v Q(p") for some p’ € reb,(p).
o Case: P(p'). Discharge the disjunction via the left side and choose 3 p’ € reb, (p) to be p'.

o Case: Q(p'). Discharge the disjunction via the right side and choose 3 p’ € reb,(p) to be p'.

Lemma 6.127 (O-wEAK). O (P*Q)E O P

Proof. Let p be arbitrary such that p’ = p] e pi and P(p]) and Q(p5) for some p’ € reb,(p), p}, and ps. Choose
Jp" ereby(p) to be p. P(p}) is immediate, but it remains to show p) € reb, (p).

Unfold p’ € reb, (p) and we obtain @p 3 o/H) | p > ®/ciom(r) W(E)(HQ), and V £ € dom(m),v,p". F(L,v,p,p',p" 7
for some 7 : dom(p’) - Res, where

)(H3)

Fl,v,p,p,p",7)="£edom(m(£)) A
(p(€) = own(v) = /(£) = imm({a}, v, x(£) ~) A
(p(0) = mut(—, v, ",) = p/(0) = imm({a}, v, p") A dom(x(£)) = {£}) A
(p(£) =imm(-, -, =) = p'(¢) = p(¢) A dom(m(¢)) = {¢})

Let 7’ be 7 with its domain restricted to dom(p}). Choose 37 to be 7’. It suffices if:
e @p 1 a: Immediate by H1.
e p2 .kdom(ﬂ") W’(()Z Since 7’ ¢ T, p2 .Kedorn(ﬂ') W(g) 2 .Zedom(w’) 7T,(ﬂ)'

e V{ e dom(7"),v,p". F(l,v,p,p1,p",7"): Let £ € dom(n'),v,p"” be arbitrary. Because ¢ € dom(7’) implies
£ € dom(w), we can instantiate H3 with £,v, p”" to obtain F(¢,v,p,p’,p”,m). By inspection of F, we observe
that all usages of 7 are of the form 7(¢). Since w(¢) = 7'(¢), we obtain F({,v,p, p},p", 7).

O

33

Lemma 6.128 (O3). 3z. O P(z) == O 3z. P(x)

Proof. Case . Let p be arbitrary such that P(z)(p’) for some z and p’ € reby(p). Choose 3z to be 2 and
3 € reby(p) to be p'. P(z)(p') is immediate.

Case . Let p be arbitrary such that P(z)(p’) for some p’ € reby(p) and z. Choose 3 p’ € reby (p) to be p’ and
3z to be z. P(x)(p') is immediate. O

Lemma 6.129 (OV). Vz. O P(z) = O VY. P(x)

Proof. Let p be arbitrary such that V2. P(z)(p’) for some p' € reby (p). Let & be arbitrary and choose 3 p’ € reby (p)
to be p'. Instantiate V z. P(z)(p’) with z to obtain P(z)(p’). O

Lemma 6.130. P+ O _emp

Proof. Suppose p € P. Then @ vacuously satisfies the conditions needed to be a reborrowed version of p, so p €
O ,emp. O

Lemma 6.131 (OV1). [0('a)]V[T];(v) & O 500 VIimm ‘a T]5(v) for all T # Unk.
Proof. By induction on T. Let §("a) =

e CaseT=1:
Goal is [a] V[1]5(v) & O VImm ‘a 1];(v).
Unfold: [a] v=()"r O, v=()"
Apply []-L and O-"".

o Case T=T1®1T5:

Goal is [a] V[T1 ® T5]5(v) £ O V[lmm ‘a Ty ® Imm 'a T3] 5(v).
Unfold.

[a]3Fv1,v2. "0 = (vi,02) " * V[T1]5(v1) * V[T2]5(v2)

F O, 3v1,v2. v = (v1,v2)" * V[Imm 'a T1]5(v1) * V[Imm ‘a T3] 5(v2).
Apply []3, 3L, []*, []L.

v = (v1,02)" * [a] V[T1]5(v1) * [a] V[To]5(v2)

E O, v, v= (1)1,’[)2) * V[Imm ‘a Ti]5(v1) * V[Imm ‘a T5] 5(v2).
Apply QEI IR, Ox, O .

w=(v1,02)" * [a] V[T1] 5(v1) * [@] V[T2]5(v2)

Ev=(v1,v2)" * O V[Imm ‘a T1]5(vy) * O V[Imm 'a T5](vs).
Apply IH.

e Case T =T) ®T5: Analogous to T =T; ® T, case, using OV in place of O *.

o Case T =T —Ts:
Goal is [a] V[Th — T3] 5(v) £ O, V[Unk]s(v).
Unfold: [a] V[T1 —T3]5(v) & O emp.
Apply theorem 6.130.

e Case T =V'ac@b.T': analogous to case T =T —Ts.

o Case T'=[Qa]T
Goal is [a] V[[Qa] T]s(v) & O VImm ‘a TT;(v).
Unfold: [a] [@ad] V[T]s(v) = O V[Imm ‘a T];(v).
Apply [|L: [a]VIT],(0) = &, Viimm ‘a 71,(0).
Apply IH.

o Case T =Ref T":
Goal is [a] V[Ref T"]5(v) & O V[lmm "a T'];(v).
Unfold: [a]34,v". "v=0" %1 0" *V[T'];(v) E O V[Imm 'a T']s(v).
Apply [13, 3L, []*, []L to get v =0" 10" * [a] V[T']5(v") & O V][Imm ‘a T"];(v).
Apply IH: "v=0"x =0« O _V[lmm ‘a T'[;(v") = O V[Imm 'a T']5(v).

34

Apply theorem 6.130: O emp* O V[Imm ‘a T'];(v") = O V[Imm ‘a T'];(v).
Apply O*: O, (emp* O, V[imm ‘a T'];(v")) ¢ O, V[Imm 'a T"];(v).
Done because emp is a unit for .

e Case T =Ilmm @b T":
Goal is [a] V[Imm @b T'];(v) = O V[Imm @b T']s(v).
Unfold: [a]3¢. "v="0"x{ =Taps V[T']s = O V[Imm Qb T'];(v).
Apply [13, (1% [L: 3 0 =€« [] (¢~ Tags VIT'L,) £ O VImm @b T7], ().
Apply OL 3. "v=0"x O =laps V[T']5) E O V[imm Qb T'](v).
Apply O 7", O*, O3: O 3L "v=L" %l =Llap V[T']s) = O VImm @b T"]s(v).
Fold the definition of V[Imm @b T"].

o Case T'=Mut Qb T
Goal is [a] V[Mut @b T"];(v) = O V[Imm a T"]5(v).
Unfold: [a]3L. "v="0"xL>Mays V[T']; & O V[Imm o T']5(v).
Apply [13, []+, [JL: 3L "0 = £ = [a] (£ = Maps V[T'],) = O, Vlimm a T']5(v).
Apply OM: 30. "v=L0"% O (=1, V[T'];) E O VIimm o T'];(v).
Apply O™, Ox, O3: O30 v=0 {1, V[T']s) E O V[Imm a T'];(v).
Fold the definition of V[Imm « T"].

e Case T = Unk: impossible.

O

Lemma 6.132 (OV,). If ‘a not free in T then V[T];(v) = Na. O V[Imm “a T] 514,07 (v)
Proof.

Proof step Current goal

Apply VIR, VIMONO and fix « © [7]§ arbitrary. [a] V[T]s(v) & [a] O VIImm ‘a Ty, 0 (0)

Apply []R. []V[T]5(v) = O VIImm ‘a Tspq0q1(v)

Have V[T]; = V[T]s[4a) because ‘a not free in T[] V[T]5p401(v) & O, V[Imm ‘a T]](; rara] (V)

Apply OV O
Lemma 6.133 (O V). If b not free in T" then £ =1, V[T k£ =1a NB. O zV[Imm ‘b T 5, 4
Proof. Apply (Vs and I-MONO. O
Lemma 6.134. "z =y Na. O V[Imm "a T5p 01 = Na. O (" =y" * V[Imm ‘a T, 0]
Proof. By unfolding and substituting for = = y. O

6.7 Weakest Precondition Rules
Lemma 6.135 (WP-BIND). wp (e) {v.wp (K[v] {Q}} Ewp (K[e]) {Q}

Proof. Let p be arbitrary such that wp (e) {v wp (K [v]) {Q}} (,0) . We must show wp (K[e]) {Q} p) . Unfold

wp in G1 and let py # p be arbitrary. Instantiate H1 w1th pf and we have ([[pf e pl,e) —* ([py o p" @ p], v)(H2)

perp op+(, pt \own—z(4 , and wp (K[v){Q} p) for some p’ #pf ,p #pfop’(H7)7v,

Instantiate H5 with ps e p*. Note that we have py o p* # p’ by H7 and theorem 6.46. Then we have
H11
(los * p* o 1 K[0]) —* (Ips o o« p*+ 0 010N 7 o g 0 0 FD 5+ | own = 210 and Qo) ()" for

some p" # pp o p* B gt 4 pre pt e pf Ty,
In G1, choose 3, p*,v to be p”, p* e p** v'. Tt suffices if:

o p" # ps: By H12 and theorem 6.11.

o ptep™ # prep’: By H13 and theorem 6.46.

35

([ps o pl. K[e]) —* ([py @ p* o p” o p™*],0"): By transitivity with H2 and HS.
o perpleptep™: By H3, H9, H13, theorem 6.48, and theorem 6.49.
o p"ep™ |own=g: By H4 and H10.

Q(v")(p"): By HIL.

Lemma 6.136 (WP-VAL). Q(v) == wp (v) {Q}

. A (H1)
Proof. Let p be arbitrary such that Q(v)(p)
suffices if:

o p# ps: By H2.

o F# psep': By definition.

. Let py # p(H2) be arbitrary. Choose 3p’, p*,v to be p,@,v. It

o ([pfepl,v) —" ([ps e pe2],v): By theorem 6.4 and reflexivity.
e p<«rpe@: By theorem 6.4 and theorem 6.47.
o @ |own =g: By definition.

Q(v)(p): By HL.

Lemma 6.137 (wp1). wp (e) {Q} Fwp (();e) {Q}

A H1
Proof. Let p be arbitrary such that wp (e) {Q} (p)(), Let py # pM? be arbitrary. Instantiate H1 with py and we

have ([ps » pl.e) — ([oy » ¢/ o 0'1.0) ™, p s /0 0" p* [own = 2 and Q(v) (") ™ for some of # p; M,
pt#pspe 0.

Choose 3p',p*,v to be p',p",v. Most of the resulting obligations are immediate, but we must show that
(Tpropl,);e) — ([py o p" ®psl,v). By the operational semantics, ([ps ® pll,();e) — ([ps @ p],€). Then by
H3 O

Lemma 6.138 (WP®). wp (e[v1/x1,v2/22]) {Q} Ewp (let (z1,22) = (v1,v2);€) {Q}

A H1
Proof. Let p be arbitrary such that wp (e[v1/x1,va/z2]) {Q} (p)(). Let p; e pM2) be arbitrary. Instantiate H1

with p; and we have ([ps o pl,e[vi/ax1,v2/22]) —* ([ps @ 0 @ p*T.0) "™, pesr p' 0 p* T ot [own = ™) and

A H6
Q) (p) ™ for some o # o0, ot ppe /M0,

Choose 3p’,p*,v to be p’,p*,v. Most of the resulting obligations are immediate, but we must show that
([pf o pl,let (z1,22) = (v1,v2);e) —* ([ps e p ®p*],v). By the operational semantics, ([p; ® p],let (z1,22) =
(v1,v2);€) — ([ps pl, e[v1/z1,v2/x2]). Then by H3. O

Lemma 6.139 (wpa). wp (e;[v/z;]) {Q} Ewp (matchiv{lz) = e | 229 = e3}) {Q}

A H1
Proof. Let p be arbitrary such that wp (e;[v/x;]) {Q} (p)(). Let py # o2 be arbitrary. Instantiate H1 with Py

~ H
and we have ([ps o ol ei[v/zi]) —* ([og o o' o 9°1,0)), ps /0 T 5 [own = 2™ and Q(v) ()™ for

some o' # py 0, ot # pp o0 oM 0,

Choose 3p’,p*,v to be p’,p*,v. Most of the resulting obligations are immediate, but we must show that
([pf ® p, matchiv{lzs = e1 | 2z2 = ea}) —* ([py @ p' @ p*],v). By the operational semantics, it follows that
([ps o p], matchiv {1zy = €1 | 222 = e2}) — ([ps @ pl, e;[v/z;]). Then by H3. O

Lemma 6.140 (WpP—). wp (e[v/z]) {Q} Ewp ((A\z.e) v) {Q}

36

Proof. Let p be arbitrary such that wp (e[v/z]) {Q} (p)(Hl). Let py # pH?) be arbitrary. Instantiate H1 with py and
we have ([ps o ol e[v/a]) —* ([os « '@ pT.0) ™, pov /0 0D o+ [own = 212 and Q(v)() ™ for some

H7 HS
o #or "0 " #pp e /™ and v,
Choose 3p’,p*,v to be p’,p*,v. Most of the resulting obligations are immediate, but we must show that

(Ios » pl, (z-e) v) —* ([py » o » p*],). By the operational semantics, ([p; »], (Az-€) v) — ([ps » pl, e[v/z]).
Then by H3. O

Lemma 6.141 (WP-ALLOC). (Y /. £ —v—+ Q(¢)) = wp (alloc v) {Q}

Proof. Let p be arbitrary such that (V£. £ — v — Q(ﬁ))(p)(Hl). Let py # pM? | Choose an £ such that £ ¢ pre P,
Instantiate H1 with ¢, £~ own(v), p ® £ ~ own(v) and we have Q(¢)(p o { own(v))(H4).

Choose 3, p*,v to be p e £~ own(v),, L. Tt suffices if:
o pel—own(v)# ps: By H2 and H3.
o F# psep': By definition.

o ([ps e pl,alloc v) —* ([ps ® p® L~ own(v)],£): According to the operational semantics, ([p; o p],alloc v) —
([ps ® pl @l v,£). By definition, [p; e p]wl v =[ps ® p] & [l own(v)] =[p; e p el own(v)].

e p«rpelrown(v): By definition, since «» ignores own cells.
e | own =g: By definition.

e Q(0)(p el own(v)): By Ha.

Lemma 6.142 (WP-FREE). £ v « Q(v) & wp (free £) {Q}

p . _ _ A (H1) (H2)
roof. Let p be arbitrary such that p = p; e pa, p1 =€~ own(v), and Q(v)(p2) for some p1, pa. Let py # p

be arbitrary. Choose 3p’, p*,v to be ps,,v. Most of the resulting proof obligations are immediate, but we must

show that ([py e £+~ own(v) e pa], free £) —* ([ps ® p2],v). By definition, [p; e £+ own(v) e pa] = [ps ® pa] Wl = v.

Then by the operational semantics, ([pf @ p2] & €= v,free £) — ([ps ® p2],v). O

Lemma 6.143 (WP-LOAD). £+ v * ({ v Q(v)) = wp (load £) {Q}

A H
Proof. Let p be arbitrary such that p = p; e pa, p1 = £ — own(v), and (£~ v— Q(v))(pg)(Y for some pi1, po.
- H
Instantiate H1 with p;, p and we have Q(’U)(p)(2).
Let py # p be arbitrary. Choose 3p’, p*,v to be p, &, v. Most of the resulting proof obligations are immediate, but
we must show ([ps @ p],load £) —* ([ps p],v). By definition, [ps @ p] = [ps @ p1 ® £ > own(v)] = [ps ® p1] W — v.
By the operational semantics, ([pr ® p1] W€~ v,load £) — ([py ® p1] Wl v,v). O

Lemma 6.144 (WP-LOAD-I). £ —Iy Px (Vu. {1, (v'."v=0"" % P(v)) =+ Q(v)) = wp (load £) {Q}

Proof. Let R = Yv. £ =1, (v'. "v=0"+ P(v)) = Q(v). Suppose p € { I, PR, s0 p=1{rimm(B,v,p,) ® pr
for some 3, v, p, such that p, € P(v) and a € |8 and pr € R. Since "v=12"" x P(v) is equivalent to P(v) for v
arbitrary, and o € L 8, we have that ¢ —imm(8,v, p,) € £ =1, (v'. v =v"" » P(v)). Hence, because pg € R and pg is
composable with £~ imm(3,v, p,) by assumption, it holds that ¢~ imm(8,v,p,) ® pr = p € Q(v).

This establishes p = wp (load ¢) {Q(v)} for any py # p, choosing p’ := p and p* := @ and v := v gives
(Ips » pll,load £) —* ([ps ® p'];v) and [ps e p] = [ps e p'] and p « p’ o p* and p*lown = @ and p’ € Q(v) as
needed. O

Lemma 6.145 (WP-STORE). £+ vy * (£ = va — Q(())) = wp (store £ v2) {Q}

37

Proof. Let p be arbitrary such that p = p; e pa3, p1 = £ — own(-), and (£~ v— Q(()))(pg)(Hl) for some p1, po.
Instantiate H1 with ¢ ~ own(v), p2 ® £~ own(v) and we have Q(())(p2 o £ own(v))(H2).

Let py # pM3) be arbitrary. Choose 30/, p*,v to be py o £ > own(v),d, (). It suffices if:

o p2 el own(v) # ps: By H3 and theorem 6.40.

o B # paepyel—own(v): By definition.

o ([ps @£~ own(-) e ps],store £ v) —* ([ps ® p2 ® £~ own(v)],()): By definition, £ € [p; @ £ — own(-) e ps].
Thus, by the operational semantics, ([ps ® £ — own (=) e ps],store £ v) — ([ps ® £ — own(=) e po][{ ~ v],()).
By definition, [p; @ £ = own(=) e p2][¢ ~ v] = [ps ® £ — own(v) e po].

o [+ own(—) e py «> py e own(v): By definition and theorem 6.47, since «» ignores own.
e @ |own =g: By definition.

e Q(()(pz + € > own(v)): By H2.

Lemma 6.146 (WP-RAMIFY). wp (€e) {]5} « (P> Q) =wp(e) {Q}

. A H2

Proof. Let p be arbitrary such that p = p1 e pa, P (p;), and (V (P —~ Q))(pg)() for some p1, pa. Let py # P
be arbitrary.

Instantiate H1 with p; e p>. Note that ps e ps # p by H3 and theorem 6.46. As a result, we obtain

. H7
that ([ps » ps @ pil,e) —" ([ps o p2 o ' ¢ p*T,0) MY, o1 oo p 0 p* D5+ [own = 20D and P(v)(p")"™" for some
/ (H8) 4+ 1(H9)
pr#prepe T, pt#Hprepzep” 7, and v.
A H1
Instantiate H2 with v, p’, ps @ p’ and we obtain Q(v)(ps ® p’)(0).

Choose 3p’, p*,v to be ps e p’, p*,v. Most proof obligations are immediate and others follow from theorem 6.46
or theorem 6.48. O

Lemma 6.147 (wWP[]). [a]wp (e) {Q} = wp (e) {[] Q}

Proof. Let p be arbitrary such that wp (e) {Q} (p)(Hl) and @Qp 2 a2 Let pr# p(H?’) be arbitrary.

’U)(H4), perple p+(H5) Q(HG)7

Instantiate H1 with py and we obtain ([ps e p],e) —* ([pf o p" ® p*], , pT | own =

. H
and Q(v)(p’)(" for some p’ # pf(H8), pH#pre p’(Hg), and v.
Choose 3, p*,v to be p’, p*,v. All proof obligations are immediate except @p’ 3 a. From theorem 6.50 with H2
and H5, we obtain @Q(p" @ p*) 2 . From theorem 6.45, we obtain @p’ 2 a. O

Lemma 6.148 (WP-M-FORGET). £ M, P * wp (¢) {Q} = wp (e) {Q}

. A A (H1)
Proof. Let p be arbitrary such that p = p; ® pa, p1 = £~ mut(S,v,p’, P), and wp (e) {Q} (p2) for some p1, p2, 5,

v, and p'. Let py # 12 be arbitrary.
Instantiate H1 with py e p;. Note that ps e py # p2 by H2 and theorem 6.46. From this, we obtain

that ([py » p1 @ pall,€) —* ([pg ® p1 o o @ p*],0) ™, py e p' 0 p* ™+ [own = g™, and Q)™ for some

H7 HS
o #pre "t #ppepre ™ and v,
Choose 3p',p*,v to be p, p* ® p1,v. Note that: p’ # p; by H7 and theorem 6.11; and p* e p; # py @ p’(Hg) by
HS8 and theorem 6.46. Most proof obligations are immediate, but observe that:

e p* e pi|own =g follows from H5 and by definition, since p; contains only a borrow; and
e p1epy«rp eptep follows from H4 and H9 and theorem 6.48.

Lemma 6.149 (WP-I-FORGET). £ I, P »wp () {Q} Ewp (e) {Q}

38

Proof. Proceeds almost identically to the proof of theorem 6.148. The reasoning depends only on the resource being
a borrow, not on it being a mutable borrow. O

Theorem 6.150 (O rule). £+~ Imm « (LS. @BP) * (NB.V v. P(v) = wp (e) {[ﬂ] Q}) = wp (e) {Q}

Proof. Let pe v Imm « (U5. OBP) « (NB.Y v. P(v) = wp (e) {18] Q})(Hl).
(G3) v

-1 (G1
We want to show p € wp (e) {Q}(). Unfolding wp, let p; # o2 We want to show 3 p’ # pf(GQ),p+ #p eps)

« (pseple)h (Tpgep op] o)

o P p' ° p+(G5)

_ (©0)

+
LY |own

A, ((GT)
¢ P eQ(v)
Unfolding in H1, 3 p;, p. such that

o p=piep,

o pielImma (M5. Oﬁ]:’)(IM)

(H5)

o ppeNB.Y . P(v) +wp(e) {[8]Q}
Unfolding Imm in H4, we get there exists @, v/, p’ such that
o pi =L imm(@,o’,)"

. o e(UB. 0,P) ()™

e o C E(HS)

Unfolding W in H7, we get there exists ; such that p' € V 8 = ;. [8] (QBI:’)(U')(HQ). Unfolding W in H5, we get there

exists 7, such that py € ¥ 3 c 5. [8] (Y v. P(v) = wp () {181 Q})(Hlo).

Let 8 be some lifetime where [c ; I‘I'yb(Hll). Such a § always exists because for any lifetime, the set of lifetimes
shorter than it is infinite. Specializing H9 and H10 to S, unfolding [3], and specializing to v’, we get

o (H12)
e pe OﬁP(’Ul) .
. @ o B(ng)

oy € P() = wp (e) {1810} ™
. @p, o 5(H15)

)(H16) (H17)

Unfolding O 4 in H12, we get there exists a Pp(v) such that Pp(ry € rebg(p’ and Ppory €]5(1;/)
By lemma 6.10 with H2, v'p, and therefore p; # pb(Hls). Then by lemma 6.55 with H16, Pp(v) # pb(ng).
By similar reasoning, we have Pp(w) Hp,eps.

By lemma 6.55, p; # Pp(v)- Therefore by lemma 6.15 with H2, Pp(vr H#piopye pf(HQO).

A4 (H21
By the definition of —, Pp(ory ® Pb € WP (e) {[ﬁ] Q}(). Unfolding wp in H21 and setting ps = p; ® py, with the com-
patibility constraint from H20, and p = Pp(ury ® Pbs We have there exists pg # p; ® pf(HQQ) and p* # pg e p; e pf(H23)
and v such that

([[.) ' . (H124)
o ([pioproppryer|.e) i ([piepsepqep]v)

39

H25
* Ppur) ® Pb T PQ @ pr (%)

_ (126)

i p+|own
« pqe[B1Q)

Unfolding [] in H27, we get pg € Qv ¥ and Qpg =3 BH29)
Let p*' = p* B pﬁ(v')|d0m(p’|mm,own)- By rewriting in H24 with lemma 6.58 applied to H16, H25, H15, H29, H18, and
H23 with lemma 6.11,

([@ pi o pul,e) U ([ps @ pq @ piep™],
By lemma 6.11 with H23, pg # pf(Hgl), and p; ® p*' # po * py

By lemma 6.59 applied to H16, H25, H15, H29, H18, and H23, p; ® p, «<r pg ® p; ® p*’
Now we can prove our goals, setting p’ = pg, and p* = p; e p*/,

« G2 PQ # Pf by H31
o G3: p;ep™ # po e ps by H32.
e G (Ips o phe) b ([os » p » pi # p*'],0") by H30

o G5: p; e py«rpgep;ep” by H33

(H27)

(H2
)

U)(H30)_
(H32)
(H33)

e G6: p*lown =@ by H26
« G7: po € Q(v) by H28

6.8 Fundamental Property
Lemma 6.151 (Fundamental Property). If A;T'+e:T then A;TEe:T.

Proof. By induction on the typing derivation and appealing to the appropriate compatibility lemma (theorem 6.152
- theorem 6.176) in each case. O

Lemma 6.152 (ID-COMPAT). WID
iz TEX:

Proof. By unfolding and WP-VAL. O

Lemma 6.153 (II.I-COMPAT). ml[

Proof. By unfolding and WP-VAL. O

AT Ee: 1 A;ngzeQ:TlE
AT, s Ee;eq: T

Lemma 6.154 (1E-COMPAT).

Proof. Suppose A;T'; Eeq : 1Y and ATy Eeq :TH2) | Let § e [A], v be arbitrary. Split 7 into 71, 2. Apply
WP-BIND. We must show:

GI1]5(71) * G[T2]5(7v2) = wp (e171) {v1- wp (vise2y2) {V[T]s}}

Apply H1, WP-FRAME, and WP-MONO for an arbitrary v;.

V[1]5(v1) * G[I2]5(v2) Fwp (vi;e272) {V[T]}
By unfolding V[1], we have v = (). Follows from wpr-1 and H2. O

40

A;FlizeliTl A;Fg'zengQ
A;Fl,rg = (61,62) T 1h

Lemma 6.155 (®]-COMPAT).

Proof. Suppose A;T'; E e 7, and A;TH Eeo T2 Let § e [A], v be arbitrary. Split 7 into 1, v2. Apply
WP-BIND. We must show:

GI1]5(71) * G2l 5(7v2) & wp (e171) {v1- wp ((v1, e272)) {V[T1 ® To] }}

Apply H1, WP-FRAME, and WP-MONO for an arbitrary v;. Apply WP-BIND. Repeat the previous with H2 for some
V2.
V[T1]5(v1) * V[T2] 5(v2) = wp ((v1,02)) {V[Th ® T2]}

Fold V[®]. Follows from WP-VAL. O
AT Eeq :Tl1 ®T12 AT, x4 :Tll,xg :T12 E e :T2®E

Lemma 6.156 (® E-COMPAT).
() AT, T Elet(z1,22) =er;e: Th

Proof. Suppose A;T'1 Ee: T ® Tf(Hl) and A;To, 2y : T 20 : T2 e :TQ(HQ). Let & € [A], v be arbitrary. Split
into 71, 2. Apply WP-BIND. We must show:

G]5(y1) * GIT2]5(72) = wp (e171) {v1. wp (let (z1,22) = v1; e272) {V[12]5}}

Apply H1, WpP-FRAME, and WP-MONO for an arbitrary v;. By unfolding V[®], there exist some v, v? such that
1,2
v1 = (v, 7).

V[T}] ;(v1) » V[TE] (v7) * G[T2l5(v2) = wp (let (w1, 32) = (v1,v7); e272) {V[T2]5}

Follows from wp-® and H2 with yo[z; = v, 25 = v?]. O

ATEee:T;
Lemma 6.157 (&/-COMPAT). ATeio T ol ol
) ve:dy 2

Proof. Suppose A;T Ee: T, Let § e [A], v be arbitrary. Apply wp-BIND. We must show:
GIrTs(v) = we (ev) {v. wp (iv) {V[T1 @ To[5}}
Apply H1 and wp-MoNoO. Fold V[&]. Follows from WP-VAL. O

AT Ee :TlleaTl2 A;Fg,xi:Tflzeé:Tg ie{l,2}

1 3 oF
A;T, Ty E matche; {1 = e3,20 = €5} : T

Lemma 6.158 (®E-COMPAT).

Proof. Suppose A;T E ey : T} @ Tf(Hl) and Vie {1,2}. A;Tg,2;: T} €} :TQ(H2). Let 0 € [A], v be arbitrary. Split
~ into 1, v2. Apply WpP-BIND. We must show:

GIT115(m) * GIT2D5(72) = wp (e171) {vi. wp (matchvy {z1 = €372, 22 = €372}) {V[T2],}}

Apply H1, wp-FRAME, and WP-MONO for an arbitrary v;. By unfolding V[@], there exists some i and v7.

V[[Tf]](;(vi) * G[T2]5(v2) & wp (match vy {21 = €32, Ty = 6%’}/2}) {V[T:]s}
Follows from wp-® and H2 with ya[z; — v1]. O

AT z:Tiee: Ty

—]
AT EAz.e: T —Ty

Lemma 6.159 (—/-COMPAT).

Proof. Suppose A;T x: T & e: T, Tet § e [A], v be arbitrary. Apply wp-vaL. Unfold V[and let v’ be
arbitrary. We must show:

GIr]s(v) *» VIT1];(v") & wp ((Az.ey) v') {V[T2] 5}
Follows from wp-— and H1. O

41

A;F1|:€11T1 A;ngzeQ:Tl—ng
Lemma 6.160 (— E-COMPAT). —F
A;Fl,rg Eeger Iy

Proof. Suppose A;Tq Eeq : Ti MY and A;To Eeg: T —ToM?) . Let § e [A], v be arbitrary. Split v into 71, v2. Apply
WP-BIND. We must show:

G 5(7) * GIT2]5(72) & wp (e1y1) {v1- wp (€272 v1) {V[T2];}}
Apply H1, wpP-FRAME, and WP-MONO for an arbitrary v;. Apply WP-BIND.
VI[T1]5(v1) = G[T2]5(v2) = wp (e272) {v2. wp (v2 v1) {V[T2]5}}
Apply H2, WP-FRAME, and WP-MONO for an arbitrary vs.
V[T1]5(v1) * V[T1 = T2](v2) = wp (v2 v1) {V[12]5}
Follows from unfolding V[]. O

A,(lac@b);TEe:T
Lemma 6.161 (V I-COMPAT). ATErc:V(acab) TVI
; e:V ('ac@p).

Proof. Suppose A, (lac @b);TEe: THD et §e [A], v be arbitrary. Apply WP-VAL. We must show:
GITT, () = VIV (ac Gb). TI,(_e)
Unfold V[V] and let a = @bd be arbitrary. By A-EXTEND, §['a = a] € [A, ("a c @b)]. Extend G[I']; with 6['a — «].

G sy (1) =W (A7) 0) {VITLspaca}

Follows from wpP-— and H1. O]

AiTee:V('ac@b). T AEQac@b
AT ee ():T[Qa/ a)

Lemma 6.162 (VY E-COMPAT).

Proof. Suppose A;T' Ee:V (‘ac @b). TEY and A £ @ac @M, Let 6 ¢ [A], v be arbitrary. Apply wp-BIND. We
must show:
GIrls(v) Ewp (ev) {v. wp (v () {V[T[Qa/ a]]5}}
Apply H1 and wp-MONO for an arbitrary v.
VIV (a=@b). T];(v) Ewp (v () {V[T[Qa/ a]] s}
Unfold V[V] and instantiate with @ad. Note that @Qad = @b by H2. Apply WP-MONO for an arbitrary v’.
VITspaas) (v)) = VIT[Gaf a]],()
Follows from A-SUBST. O

ATee:T AT a2Qa

Lemma 6.163 ([] [-COMPAT). AT Ee:[@Qa]T
; e: a

Proof. Suppose A;T' Ee: T and AT 2@aM?, Let 5 e [A], v be arbitrary. We must show:

G[rTs(v) Ewp (e) {V[[@a] T],}
Apply theorem 6.62 with H2. Unfold V[[]].

[@ad] G 5(7) = wp () {[@ad] V[T];}

Follows from wp-[], []-MONO, and HI. O

42

AT Ee:[Qa]T
Lemma 6.164 ([] E—COMPAT). ﬁ[] FE
TFe:

Proof. Suppose A;T Ee:[Qal THY et s e [A], v be arbitrary. Follows from H1, wP-MONO, unfolding V[[]], and
[]-L O

Lemma 6.165 (alloc-COMPAT). A o e alloc - T—Ref Talloc
;@ Ealloc : T—Re

Proof. Let § €[], v be arbitrary. Apply wp-vAL and unfold V[for an arbitrary v. We must show:
V[T];(v) = wp (alloc v) {V[+T];s}

Follows from wP-ALLOC and unfolding V[x*]. O

Lemma 6.166 (free-COMPAT). NI e T Tfree
; ree : Ref T —o

Proof. Let § € [@], v be arbitrary. Apply wp-VAL and unfold V[for an arbitrary v. We must show:
V[*T]s(v) = wp (free v) {V[T]s}
Follows from unfolding V[*] and WP-FREE. O

ATee:lmm @b T Ak Qac @b
Lemma 6.167 (SIMM-COMPAT). ATreorl o T CIMM
; e:lmm Qq

Proof. Suppose A;T' = e:Imm @b T and Ak @ac @M, Tet 5 e [A], v be arbitrary. We must show:
GITT5() = wp (€) (VIimm @a T],)
Apply H1 to G[I']5(7), then apply wp-MONO for an arbitrary v.
V[imm @b T](v) £ V[lmm Qa T, (v)
Unfold V[Imm [;. There exists some ¢ such that v =¢.
0 > Taps V[T], £ 3L v =0 % £ -Tags V[T],
Apply | 2 with H2. Then choose 3¢ to be £. O

ATEe:Mut@ T AEQac@b
Lemma 6.168 (EMUT-COMPAT). AT ro: Mot GaT EMUT
; e: Mut Qq

Proof. Suppose A;T i e: Mut @b TV and A = @qc @M. Let 5 e [A], v be arbitrary. We must show:
GIT]5(7) - wp () {(V[Mut @a T}
Apply H1 to G[I']5(7), then apply wp-MONO for an arbitrary v.
V[Mut @b T 5(v) £ V[Mut Qa T]4(v)
Unfold V[Mut];. There exists some ¢ such that v = /.
¢ >Maps V[T = 30 "0 =0 % £ >Mags V[T];

Apply M 2 with H2. Then choose 3¢ to be . O

43

Lemma 6.169 (swap-COMPAT).

swap
A; @ Eswap: Ref T} —Ty—Ref T ® T}

Proof. Let § € [@], v be arbitrary. Apply WpP-vAL. We must show:
E V[Ref T1 —T5—Ref Tp ® T}] ;(swap)
Unfold V[. Let v be arbitrary. Apply wp—.
V[Ref T1]5(v1) = wp (Ay.let z = load vy;store vy y; (x,2)) {V[T>—Ref Th @ T1]}

Apply wp-vaL. Unfold V[—]. Let vo be arbitrary. Apply wp—e.

V[Ref T1];(v1) * V[T2]5(v2) = wp (let z = load vy;store vy va; (v1,2)) {V[Ref To ® T1]}
Unfold let.

V[Ref T1]s(v1) * V[T2]5(v2) = wp ((Az.store vy va; (v1,2)) (load v1)) {V[Ref To ® T']}
Apply WP-BIND.

V[Ref T1];(v1) * V[T2]5(v2) = wp (load v) {vs. wp ((Az.store v1 vg; (v1,2)) vs) {V[Ref To ® T]} }
Unfold V[Ref]. There exists some ¢, v} such that v, = £.
vy * V[T1]5(v1) * V[T2]5(v2) = wp (load v) {vs. wp ((Az.store vy va; (¢,2)) v3) {V[Ref To ® T1]5}}

Apply WP-LOAD, WP—o, and WP-BIND.

O vy * V[T1]5(vy) * V[T2] 5(ve) = wp (store vg va) {_. wp ((¢,v7)) {V[Ref To ® T1]5}}
Apply WP-STORE and WP-VAL.

U vg x V[T1]5(v)) * V[T2]5(v2) F V[Ref T ® T1]5((¢,v1))

This follows from folding and unfolding V definitions.

Lemma 6.170 (copy-COMPAT). A E copy : Imm Qa T — (Imm @Qa T'® Imm Qa T).

Proof.
Proof step Current goal
Let ¢ € [A] be arbitrary. EV[Imm Qa T} — (Imm Qa T'® Imm Qa T")];(copy)

Apply WP-VAL.
Let v be arbitrary.

Apply wp—. V[Imm Qa T|s(v) £ V[Imm Qa T ® Imm Qa T, (v,v).
Unfold. V[lmm Qa T];(v) £ Jvi,ve. "(v,0) = (v1,v2)" * V[T]5(v1) * V[T2]5(v2)
Choose v = vy =v. V[imm Qa T];(v) & V[lmm Qa T];(v) * V[Imm Qa T (v)
Unfold. 30 v =0"* L ~»lags V[T] = V[Imm Qa T]s(v) * V[Imm Qa T, (v)
Substitute v = £. C=Tags V[T] E V[Imm Qa T]5(£) * V[Imm Qa T]s(¢)
Unfold and simplify. £ Tags V[T E (€ =1aas V[T]) * (€ =laes V[T])
Apply I-Dup. O

Lemma 6.171 (forget-COMPAT). A & forget: B—1 for all B € {Imm @a T, Mut @Qa T, Unk}.

Proof.
Proof step Current goal
Let § € [A] be arbitrary. E V[B—1](forget)

Apply WP-VAL.
Let v be arbitrary.

Apply wp—. V[B]s(v) =wp (()) {V[1]s}
Now there are three cases:

44

e Case B=Imm Qa T

Proof step Current goal
V[imm @a T;(v) = wp ((){V[1],}
Unfold. 30 "v=0xl=1IV[T] =wp (()){V[1]}
Substitute v = £. C=IV[T]Ewp () {V[1]5}
Apply WP-I-FORGET. £ I V[T]E{-IV[T]*xwp(()){V[1];}
Cancel ¢ =1 V[T]. emp = wp (()) {V[1]5}
Apply WP-VAL. emp = V[1];5()
Unfold. empE"()=()’
e Case B=Mut Qa T:
Proof step Current goal
V[Mut @a T[;(v) =wp () {V[L]s}
Unfold. 30 Tw=0 L =-MV[T]Ewp(()) {V[1]}
Substitute v = £. E=MY[T] = wp () {V[1]s}
Apply Wp-M-FORGET. £ ~MV[T]E{~MV[T] ~wp(()){V[1];}
Cancel £ =M V[T]. emp = wp (()) {V[1];}
Apply WP-VAL. emp = V[1]5()
Unfold. empk"()=()’
e Case B =Unk:
Proof step Current goal
V[Unk];(v) =wp () {V[1]s}
Unfold. emp = wp (()) {V[1]s}
Apply WP-VAL. emp = V[1]5()
Unfold. emp"() = ()’

Lemma 6.172 (withbor-cOMPAT1). A E withbor : Ref T} — (V'ac [[JA. Imm 'a T} —['a] Ty) —Ref T} @ Ty
Proof. Let Ty := (¥'ac [A. Imm ‘a Ty —['a]T>). Fix § € [A].
E V[Ref Ty =Ty — Ref T ® T5] s(withbor)
Apply wp-vAL,WP— and fix v, vs.
VIRef T1],(0) « VIT/l,(05) F wp (4,07 ()) {VIRef T3 & T2],)

Unfold.
(Flwp."v=L" %L v * V[T1]5(ve)) * V[Tf](vy) Ewp (v,v5 () v) {V[Ref T1 ® T>]5}

Substitute.
0 v x V[T1]5(ve) * V[Tr];(vy) & wp (Lvp () €) {V[Ref Ty ® To] s}

Apply ImmFrame.
VITt](vy) = N £ =1o V[T1] 5(ve) = wp (€05 () £) {[e] (£ = v = V[T1]5(ve) = V[Ref Ty ® To]5)}
Unfold V[Ref T} ® T5] ;.

V[Tl5(vs) £ Ve £ 1o V[Tal5(00) = wp (6o () O) {[a] (¢ = ve—= V[T1]5(ve) = P)}
where P(v') = 3wy, v5. v = (v1,v2)" * V[Ref T1]s(v1) * V[T2]5(v2)

Apply WP-BIND.

V[T¢]5(vr) & V. £ =To V[Ti]5(ve) = wp (05 () €) {va-wp (£, 02) {[@] (£ = vy = V[T1]5(ve) = P(£,02))}}
where P(v') = 3v1,v2. W' = (v1,v2)" * V[Ref T1]5(v1) * V[T]5(v2)

45

Choose vy := £, v = vs.

V[Tl (vs) = Ve £ 1o V[T1] 5 (ve) = wp (vf () £) {v2.wp (€,v2) {[a] (€ = ve = V[T1]5(ve) Q)}}
where Q = V[Ref T1]5(£) * V[T2]5(v2)

Unfold V[Ref Ti];.

V[Ty]5(vs) & V. £ =1 V[T1]5(ve) = wp (v () €) {v2.wp (£,v2) {[a] (€ = vp = V[T1]5(v0) = Q) }}
where Q(£,v2) = (3vg. £ vg * V[T1]5(ve)) * V[Ta]5(v2)

Choose vy := vy in Q
Cancel £~ v, V[T1] 5(ve).

VITy]5(vf) = Ve £ 1o V[T] 5(0e) = wp (vf () £) {v2.wp (€,v2) {(£,02). [a] V[T2]5(v2)}}

Apply WP-VAL.
VI[T¢]s(vy) E Ve £ =1 V[T] 5(ve) = wp (vy () £) {v2.[a] V[T2]5(v2)}
Unfold 7.

V[V'ac[TA Imm ‘a Ty —["a] T2 ;(vs) & Na. £ =1a V[T1]5(ve) = wp (v () €) {v2.[a] V[T2]5(v2)}

Apply R on LHS.
Fix ac [by N-MONO.
Apply +R.

V[V'ac [A Imm ‘a Ty —["a] Ta] ;(vs) * £ =1 V[T1]5(ve) = wp (vf () £) {v2.[@] V[Ta]5(v2)}
Fold and simplify, using that ‘b does not occur free in T} or T5.

V[v'ae A Imm ‘a Ty —['a] T5] (v7) * VIImm ‘@ Ty 1001 (6) = wp (7 () £) {UQ.V[[['a] TQ]](;[,M](UQ)}
Follows from Y E-COMPAT and — E-COMPAT. O
Lemma 6.173 (withbor-compaT2). If A + T 3 @b then

A i withbor : Ref Ty —(V'ac [|A. Mut ‘a Ty —['a] Ty) —Ref T} ® Tp

Proof. Let Ty = (V'a = [JA. Mut ‘a Ty — ["a]T3). Follow the proof of theorem 6.172 up to the point where
IMMFRAME is applied. The proof state is:

Cvp = V[Ta]5(ve) » V[Tl 5 (vp) = wp (6 oy () €) {V[Ref T1 © T 5}
Since A + T 3 @b, theorem 6.60 gives V[T1]s = [@QbS] V[T1]s, so MUTFRAME applies.
V[T]5(vg) = Ve £ Mg V[Ti] s = wp (607 () €) {[a] Vo' £ 0" = V[T1]5(v") = V[Ref T1 ® To] 5}
Apply WP-BIND, WP-RET.
VITy]s(vg) £ N £ »Mg V[Ti] s = wp (vg () £) {v".[a] V0. £ 0 = V[T1];(v") = V[Ref Ty ® To]5(¢,0")}
Unfold V[Ref T; ® T5]; and simplify.

V[Tr]5(vp) £ Ver. £ >Mg V[T1]5 = wp (v () £){0".[a] V0" 0" = V[T1]5(0") = P(v',0")}
where P(v',0") = Jv1,va. "(£,0") = (v1,v2)" * (Fvg. £ vg x V[T1]5(ve)) * V[To]5(v")
Choose vy = £, vy :=v" vy := 0.
V[Tr]5(vs) £ Vv £ =Mg V[T1] 5 = wp (v ()) {0".[a] V0" £~ = V[T1](v") = P(v',0")}
where P(v',0") =€ 0"« V[T1];(v") » V[T2]5(v")
Cancel £~ v, V[T1]5(v").
V[T¢]s(vp) £ Ve £ > Mg, V[T1]5 = wp (v () £) {v".[a] V[T2]5(v")}
The remainder of the proof follows the proof of theorem 6.172, from the step “Unfold T+” onwards. O

46

Lemma 6.174 (withbor-COMPAT3). A E withbor : Mut @a T} — (V'bc [[JA. Mut 'd T} —['b] T5) —Mut Qa Ty ® T
Proof. Let Ty = (¥'bc [[JA. Mut b Ty —['b] T3). Fix 6 € [A].
E V[Mut Qa Ty — Ty —Mut Qa T} ® T>];(withbor)
Apply wp-vAL,WpP— and fix v, vs.
V[Mut Qa T1]5(v) * V[Ty];(vy) & wp (v,vp () v) {V[Mut Qa Ty ® T5]s}
Unfold and let « := Qad.
30 w=0"xl->M, V[T1]5 x V[Tt](vy) = wp (v,0f () v) {V[Mut Qa Ty ® T] s}

Substitute.
=My V[Th] s * V[Tt (vs) = wp (4 v () £) {V[Mut Qa Ty ® To] 5}

Apply ANTIFRAME.

VIT/ (o) F (V”-“*H VITi5(0))

wp (4vp ()) {v".3v. b v+ V[T1]5(v) * (£ =M, V[T1]5(v) = V[Mut Qa T} ® T>];)}
Apply VR, <R.

V[T5](vp) x = v x V[Ti]5(v)
Ewp (Lup () 0){v' . 3v.l v V[T1]5(v) * (£ =My V[T1]5(v) = V[Mut Qa Ty ® To];(v"))}

Apply WP-BIND.

VITi](vg) £ v« V[T1] 5(v)
Ewp (v () €){v" . wp (£,0"){v".3v.l v+ V[T1]5(v) * (¢ =M, V[T1]5(v) = V[Mut Qa Ty ® To]5(v"))}}

Apply WP-VAL.

V[T (vg) » £~ v+ V[T1]5(v)
Ewp (v () £){v".Fv.l v *V[T1]5(v) * (£ =M, V[T1]5(v) = V[Mut Qa Ty ® To];(¢,0"))}

Simplify V[Mut Qa T} ® To]5(¢,v").

V[Ttl(vg) * £ v x V[T1]5(v)
Ewp (vy () £){v".Fv.l > vxV[T1]5(v) * ({ > M, V[T1]5(v) = £ =M, V[T1] * V[T2]s(v"))}

Cancel £ =M, V[T];(v).
V[Til(vp) = €= v V[Ta]5(0) = wp (vf () 0) {v".30. 0> v V[T1]5(v) » V[T2] (")}

Have A + T} 3 @Qa by well-formedness of the type Mut @a Ty, hence V[T1]; £ [o] V[T1]s by theorem 6.60, so
MUuTFRAME applies.

V[Tfl(vs) E Nl > M, V[T1] s = wp (vf () €) {0" [a] V' £ 0" =« V[T1]5(v") = Fv. 0 v+ V[T1]5(v) * V[To]s(v")}
In the postcondition, choose v := v" and cancel.

V[Ti1(vy) = Ve £ Mo V[Ti]s — wp (v ()) {o" [o] V[T2]5(0")}
The remainder of the proof follows the proof of theorem 6.172, from the step “Unfold 7T+” onwards. O
Lemma 6.175 (withload-COMPAT). A E withload : Imm @Qa T} — (V'be [(A. Imm 'd T} — ['b] T) — T

47

Proof. Let § € [A] be arbitrary. We must show
= V[Imm Qa Ty — (V'be [T]A. Imm 'b Ty —['b] Ty) — T3] ;(withload)
Unfold V[]. Let v be arbitrary. Apply wp— and WP-VAL.
V[imm @Qa T1];(v) = V[(V'be []A. Imm ‘b T} —['] Tg)—ng}]J(Af.f () (load v))
Unfold V[—]. Let vy be arbitrary. Apply wp—.
V[imm @a T1];(v) * V[V'be [|A. Imm b Ty —['b] Tgﬂ(s(vf) Ewp (vy () (load v)) {V[T2]s}
Unfold V[Imm]. There exists some ¢ such that v = ¢.
0 o>Taas VITiLy * Vv b2 A Imm b Ty ['5] To] ,(v7) = wp (o7 () (load 0)) (VIT:],}
Apply WP-BIND.
{~Laas V[T1]s « V[V 'be [T]A. Imm ‘b Ty — ['b] 2] ;(vf) £ wp (load £) {ve.wp (vs () ve) {V[To]5}}
Apply wP-LOAD-I. Let v, be arbitrary.
CoTaas (v (v = v0) * VITL5(0)) + V[V b= [A mm 'b Ty —['B] T3] (o) = wp (v () v0) {VT2],}
Apply OVs.
C=Tags (V. (V" = v0)*WNB. O gVIImm b Ti] s, 57 (0))* V[V b2 [T]A. Imm ‘b Ty —['0] To] s(v5) = wp (vr () ve) {V[T2] 5}
Apply theorem 6.134.
CorTas (' . O 4((v) = v0) = VImm b 71y (")) V[V b = [TA Imm b Ty — 5] To] 4 (07) = wp (o5 () v2) (VL] }
Apply theorem 6.150.
V[V'be [T]A. Imm b T} —['b] TQ]]é(vf) ENB.Vv' v =v,x V[Imm b Tlﬂg[rng](U,) —wp (vy () ") {[B]V[T=]s}
Substitute vy for v’.
VIV'oe [T]A Imm b Ty —['0] To] s(vs) & NB. V[Imm 'b T 50, 57 (ve) = wp (vf () ve) {[B]V[T2] 5}
Apply VR on the left-hand side. By I-MONO, let 8 c [T]6 be arbitrary. Apply —R.
V[v'be [T]A Imm b T1 — '] To] s(vs) * VIImm b Talsp 57 (0") £ wp (05 () ve) {[B] V[T2]5}

Have V[13]; = V[I2] 4. 5) because ‘b does not occur free in T5.
V[v'be [TA. Imm b Ty —['b] T3] ;(v) = VImm ‘b T]y, 5 (') = wp (7 () v0) {[BIVI ol |
Fold £]-].

V[v'be [TA. Imm ‘b T[] T2] , (vp) * VIimm *b Tilspi sy () = EIUD Tolspisy (o5 O)

Follows from V E-COMPAT and — E-COMPAT. O

Lemma 6.176 (withswap-COMPAT). withswap

A; @ E withswap : Mut Qa Ty — (T} — T} ® To) —=Mut Qa T @ Ty

48

Proof. Let § € [A] be arbitrary. We must show
EV[Mut Qa Ty — (T} — T ® T5) —Mut @Qa T ® T»] s(withswap)
Unfold V[]. Let vy be arbitrary.
V[Mut Qa T1]5(v1) £ wp (withswap v1) {V[(T1 —T5 ® T5) —=Mut Qa T} ® T>] 5}
Apply wp— and wp-VAL. Unfold V[—]. Let vy be arbitrary. Apply wp—e.
V[Mut Qa Ty]5(vi) * V[T1 —=T1 ® To](vy) £ wp (let (y, 2) = vy (load vy);store vy y; (v1,2)) {V[Mut Qa Ty ® T5]}
Unfold V[Mut]. There exists some ¢ such that vy = £.
->Mags V[T1] 5 * V[Th —T1 @ T>] 5(vy) = wp (let (y, z) = vy (load £);store £ y; (¢,2)) {V[Mut Qa T} ® T>] s}
Apply WP-M-ANTI-FRAME. Let vy be arbitrary.

' vg * V[[Tlﬂé(vg) * V[[Tl —-T1 ® Tzﬂﬁ(’l)f) E
wp (let (y, z) = vy (load £);store € y; (£, 2)) {Fv. £~ v+ V[T1]5(v) * (£ »Mags V[T1]5; = V[Mut Qa T; ® T5];)}

Apply wP-BIND to focus on load ¢. Apply WP-LOAD.

£ vy * V[[Tl]](s(’ljg) * V[[Tl — Ty ®T2]]§(’Uf) =
wp (let (y, z) = vy va;store £ y; (¢,2)) {Iv. L vx V[T1]5(v) » (£ »Maas V[T1]5 + V[Mut Qa T} ® T>]5)}

Instantiate VHTl -1 ® TQ]](S(’Uf) with V[[Tl]]é(vg).

U v xwp (vp v2) {V[T1 @ T2]} E
wp (let (y, z) = vy va;store £ y; (€,2)) {Iv. L vx V[T1]5(v) x (£ »Maas V[T1]5 + V[Mut Qa T} ® T>]5)}

Apply WP-BIND to focus on f vs. Apply wP-MoNO. Unfold V[®] for some vs, vy4.

C vy x V[T 5(v3) *» V[T2]5(va) &
wp (let (y, 2) = (vs, v4);store £ y; (£,2)) {Fv. £ v x V[T1]5(v) * (£ »Mags V[T1]; =+ V[Mut @a Ty ® T5]5)}

Apply wpP-Q.

L vy x V[T1]5(v3) * V[T2]5(va) E
wp (store £ v3; (£,v4)) {3v. £ v * V[T1];(v) * (£ »Maas V[T1]; ~ V[Mut Qa Ty ® T>]5) }

Apply WP-BIND to focus on store £ v3. Apply WP-STORE, WP-1, and WP-VAL.
l— V3 * V[[Tl]]é(l}g) * VHTQH5(04) Edv. fevx V[[Tl]]é(’l}) * (é —~>Maas V[[Tl]]5 —* V[[l\/lut Qa T ®T2]]6((€7 ’04)))

Choose Jv to be vs.
V[[Tg]](s(lu) * £ =>Mags V[[T1H5 = V[[Mut Qa T1 ® Tg]]é((fﬂm))

This follows from the V definitions. O

49

	Syntax
	Statics
	Dynamics
	Logical Relation
	Model
	Theorems, Lemmas, Proofs
	Standard Lemmas
	Non-standard Lemmas
	Frame and Anti-Frame
	Standard Entailments
	Non-standard Entailments
	Reborrowing Entailments
	Weakest Precondition Rules
	Fundamental Property

