
From Linearity to Borrowing (Technical Report)

July 29, 2025

Contents
1 Syntax 1

2 Statics 2

3 Dynamics 3

4 Logical Relation 4

5 Model 4

6 Theorems, Lemmas, Proofs 6
6.1 Standard Lemmas . 6
6.2 Non-standard Lemmas . 8
6.3 Frame and Anti-Frame . 22
6.4 Standard Entailments . 27
6.5 Non-standard Entailments . 29
6.6 Reborrowing Entailments . 32
6.7 Weakest Precondition Rules . 35
6.8 Fundamental Property . 40

1 Syntax
Var ∋ x, y, . . .
Loc ∋ ℓ
Val ∋ v ∶∶= () ∣ (v1, v2) ∣ inj1 v ∣ inj2 v ∣ λx.e ∣ Λ.e ∣ ℓ ∣ p
Prim ∋ p ∶∶= alloc ∣ free ∣ load ∣ store ∣ store v
Expr ∋ e ∶∶= x ∣ v ∣ (e1, e2) ∣ inj1 e ∣ inj2 e ∣ e1; e2 ∣ let (x, y) = e1 in e2

∣ case e{inj1 x.e1 ∣ inj2 y.e2} ∣ e2 e1
LifeVar ∋ 'a, 'b, . . .
Life ∋ @a,@b . . . ∶∶= ' ∣ ⊺ ∣ @a ⊔@b ∣ @a ⊓@b
LifeCtx ∋ ∆ ∶ LifeVar⇀ Life
Type ∋ T ∶∶= 1 ∣ T1 ⊕ T2 ∣ T1 ⊗ T2 ∣ T1⊸T2 ∣ Ref T ∣ [@a]T

∣ Imm @a T ∣Mut @a T ∣ ∀ 'a ⊏ @b. T ∣ Unk

1

2 Statics
∆; Γ ⊢ e ∶ T

id

∆; x ∶ T ⊢ x ∶ T

1I

∆; ● ⊢ () ∶ 1

1E
∆; Γ1 ⊢ e1 ∶ 1 ∆; Γ2 ⊢ e2 ∶ T

∆; Γ1,Γ2 ⊢ e1; e2 ∶ T

⊗I
∆; Γ1 ⊢ e1 ∶ T1 ∆; Γ2 ⊢ e2 ∶ T2
∆; Γ1,Γ2 ⊢ (e1, e2) ∶ T1 ⊗ T2

⊗E
∆; Γp ⊢ ep ∶ T1 ⊗ T2 ∆; Γ, x1 ∶ T1, x2 ∶ T2 ⊢ e ∶ T

∆; Γp,Γ ⊢ let (x1, x2) = ep; e ∶ T

⊕I
∆; Γ ⊢ e ∶ Ti i ∈ {1,2}
∆; Γ ⊢ i e ∶ T1 ⊕ T2

⊕E
∆; Γs ⊢ es ∶ T1 ⊕ T2 ∆; Γ, xb ∶ Tb ⊢ eb ∶ T for b ∈ {1,2}

∆; Γs,Γ ⊢ match es {x1 ⇒ e1, x2 ⇒ e2} ∶ T

⊸I
∆; Γ, x ∶ T1 ⊢ e ∶ T2
∆; Γ ⊢ λx.e ∶ T1⊸T2

⊸E
∆; Γ1 ⊢ e1 ∶ T1 ∆; Γ2 ⊢ e2 ∶ T1⊸T2

∆; Γ1,Γ2 ⊢ e1 e2 ∶ T2

∀ I
∆, ('a ⊏ @b); Γ ⊢ e ∶ T
∆; Γ ⊢ Λ.e ∶ ∀ 'a ⊏ @b. T

∀E
∆; Γ ⊢ e ∶ ∀ 'a ⊏ @b. T ∆ ⊧ @a ⊏ @b

∆; Γ ⊢ e[] ∶ T [@a/'a]

[l] I
∆; Γ ⊢ e ∶ T ∆ ⊧ Γ ⊐ @a

∆; Γ ⊢ ◻e ∶ [@a]T

[l]E
∆; Γ ⊢ ◻e ∶ [@a]T

∆; Γ ⊢ ◻e ∶ T

alloc

∆; ● ⊢ alloc ∶ T –⋆ Ref T

free

∆; ● ⊢ free ∶ Ref T –⋆ T

⊑ Imm
∆; Γ ⊢ e ∶ Imm @b T ∆ ⊧ @a ⊑ @b

∆; Γ ⊢ e ∶ Imm @b T

⊑Mut
∆; Γ ⊢ e ∶Mut @b T ∆ ⊧ @a ⊑ @b

∆; Γ ⊢ e ∶Mut @b T

∆ ⊢ T Presumes ⊧∆

∆ ⊢ 1
∆ ⊢ T1 ∆ ⊢ T2
∆ ⊢ T1 ⊗ T2

∆ ⊢ T1 ∆ ⊢ T2
∆ ⊢ T1 ⊕ T2

∆ ⊢ T1 ∆ ⊢ T2
∆ ⊢ T1 –⋆ T2

∆ ⊢ T
∆ ⊢ Ref T

∆, (′a ⊏ @b) ⊢ T ∆ ⊧ @b
∆ ⊢ ∀ (′a ⊏ @b).T

∆ ⊢ T ∆ ⊧ @a
∆ ⊢ [@a]T

∆ ⊢ T ∆ ⊧ @a
∆ ⊢ Imm @a T

∆ ⊢ T ∆ ⊧ @a
∆ ⊢Mut @a T

∆ ⊢ T ⊐ @a Presumes ⊧∆ and ∆ ⊧ @a

∆ ⊢ 1 ⊐ @a
∆ ⊢ T1 ⊐ @a ∆ ⊢ T2 ⊐ @a

∆ ⊢ T1 ⊗ T2 ⊐ @a
∆ ⊢ T1 ⊐ @a ∆ ⊢ T2 ⊐ @a

∆ ⊢ T1 ⊕ T2 ⊐ @a
∆ ⊢ T ⊐ @a

∆ ⊢ Ref T ⊐ @a

∆ ⊧ @b ⊐ @a
∆ ⊢ [@b]T ⊐ @a

∆ ⊧ @b ⊐ @a
∆ ⊢ Imm @b T ⊐ @a

∆ ⊧ @b ⊐ @a
∆ ⊢Mut @b T ⊐ @a

2

∆ ⊢ swap ∶ Ref T1 –⋆ T2 –⋆ Ref T2 ⊗ T1
∆ ⊢ copy ∶ Imm @a T –⋆ Imm @a T ⊗ Imm @a T
∆ ⊢ forget ∶ Imm @a T –⋆ 1

Mut @a T –⋆ 1
Unk –⋆ 1

∆ ⊢ withbor ∶ Ref T1 –⋆ (∀ 'a ⊏ ⊓∆. Imm 'a T1 –⋆ ['a]T2) –⋆ Ref T1 ⊗ T2
Ref T1 –⋆ (∀ 'a ⊏ ⊓∆. Mut 'a T1 –⋆ ['a]T2) –⋆ Ref T1 ⊗ T2 ∆ ⊢ T1 ⊐ @b
Mut @a T1 –⋆ (∀ 'b ⊏ ⊓∆. Mut 'b T1 –⋆ ['b]T2) –⋆Mut @a T1 ⊗ T2

∆ ⊢ withload ∶ Imm @a T1 –⋆ (∀ 'b ⊏ ⊓∆. Imm 'b T1 –⋆ ['b]T2) –⋆ T2
∆ ⊢ withswap ∶ Mut @a T1 –⋆ (T1 –⋆ T1 ⊗ T2) –⋆Mut @a T1 ⊗ T2

Imm 'b 1 ≜ 1 Imm 'b (T1 ⊕ T2) ≜ Imm 'b T1 ⊕ Imm 'b T2 Imm 'b (T1 ⊗ T2) ≜ Imm 'b T1 ⊗ Imm 'b T2

Imm 'b (T1 –⋆ T2) ≜ Unk Imm 'b (Ref T) ≜ Imm 'b T Imm 'b (Imm @a T) ≜ Imm @a T

Imm 'b ([@a]T) ≜ Imm 'b T Imm 'b (∀ '. a ⊏ @a. T) ≜ Unk

LSub ∋ δ ∶ LifeVar⇀ Life

J∆K ≜ {δ ∣ dom(∆) ⊆ dom(δ) ∧ ∀ 'a ∈ dom(∆). δ('a) ⊏∆('a)δ}

⊧∆ ≜ J∆K ≠ ∅

@aδ ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δ('a) ,@a = 'a
⊺ ,@a = ⊺
@b1δ ⊓@b2δ ,@a = @b1 ⊔@b2
@b1δ ⊔@b2δ ,@a = @b1 ⊔@b2

∆ ⊧ @a ≜ ∀ δ ∈ J∆K. @aδ defined
∆ ⊧ @a ⊏ @b ≜ ∀ δ ∈ J∆K. @aδ ⊏ @bδ

3 Dynamics
Kont ∋ K ∶∶= [] ∣ (K,e) ∣ (v,K) ∣ let (x, y) =K in e ∣ caseK {inj1 x.e1 ∣ inj2 y.e2} ∣ e K ∣K v
Mem ∋ µ ∶ Loc⇀Val

3

(µ, e)→ (µ′, e′) (µ, e)↦ (µ′, e′)

→
(µ, e)↦ (µ′, e′)

(µ,K[e])→ (µ′,K[e′])

1↦

(µ, (); e)↦ (µ, e)

⊗↦

(µ, let (x1, x2) = (v1, v2) in e)↦ (µ, e[v1/x1, v2/x2])

⊕↦

(µ, case (inji v) {inj1 x.e1 ∣ inj2 y.e2})↦ (µ, ei[v/xi])

⊸↦

(µ, (λx.e) v)↦ (µ, e[v/x])

alloc↦

(µ, alloc v)↦ (µ ⊎ ℓ↦ v, ℓ)

free↦

(µ ⊎ ℓ↦ v, free ℓ)↦ (µ, v)

load↦
µ(ℓ) = v

(µ, load ℓ)↦ (µ, v)

store↦
ℓ ∈ dom(µ)

(µ, store ℓ v)↦ (µ[ℓ↦ v], ())

swap ≜ λx.λy.let z = load x; store x y; (x, y)
copy ≜ λx.(x,x)
forget ≜ λx.()
withbor ≜ λx.λf.(x, f x)
withload ≜ λx.λf.(x, f (load x))
withswap ≜ λx.λf.let (y, z) = f(load x); store x y; (x, z)

4 Logical Relation
VJ1Kδ(v) ≜ ⌜v = ()⌝
VJT1 ⊗ T2Kδ(v) ≜ ∃ v1, v2. ⌜v = (v1, v2)⌝ ⋆ VJT1Kδ(v1) ⋆ VJT2Kδ(v2)
VJT1 ⊕ T2Kδ(v) ≜ (∃ v1. ⌜v = inj1 v1⌝ ⋆ VJT1Kδ(v1)) ∨ (∃ v2. ⌜v = inj2 v2⌝ ⋆ VJT2Kδ(v2))
VJT1⊸T2Kδ(v) ≜ ∀ v′. VJT1Kδ(v′) –⋆ EJT2Kδ(v v′)
VJ∀ 'a ⊏ @b. T Kδ(v) ≜ ∀α ⊏ @bδ. EJT Kδ(v ())
VJ[@a]T Kδ(v) ≜ [@aδ]VJT Kδ(v)
VJRef T Kδ(v) ≜ ∃ ℓ, v′. ⌜v = ℓ⌝ ⋆ ℓ↦ v′ ⋆ VJT Kδ(v′)
VJImm @a T Kδ(v) ≜ ∃ ℓ. ⌜v = ℓ⌝ ⋆ ℓ↦ Imm @aδ VJT Kδ
VJMut @a T Kδ(v) ≜ ∃ ℓ. ⌜v = ℓ⌝ ⋆ ℓ↦Mut @aδ VJT Kδ
VJUnkKδ(v) ≜ emp
EJT Kδ(v) ≜ wp (e) {VJT Kδ}
DJ∆K(δ) ≜ ⌜δ ∈ J∆K⌝
GJΓK(γ) ≜ ⌜dom(Γ) ⊆ dom(δ)⌝ ⋆ ⍟x∈dom(Γ) VJΓ(x)Kδ(γ(x))
∆;Γ ⊧ e ∶ T ≜!∀ δ, γ. DJ∆K(δ) –⋆ GJΓKδ(γ) –⋆ EJT Kδ(γ(e))

5 Model
SPropα ≜ Resα → P
Resα ≜ Loc⇀ Cellα
Cellα ≜ own(Val) + imm(Immα) +mut(Mutα)
Immα ≜ {(α ∶ ℘+(Life), v ∶ Val, ρ ∶ Res⊔α) ∣ ⊓α ⊐ α}
Mutα ≜ {(β ⊐ α, v ∶ Val, ρ ∶ Resβ , P̂ ∶ Val→ SPropβ) ∣ P̂ (v)(ρ)}

P ∈ SProp ≜ Res→ P
ρ ∈ Res ≜ Loc⇀fin Cell
ψ ∈ Cell ≜ ⋃αCellα
α,β ∈ Life ≜ (N,⊑≜>,⊔ ≜min,⊓ ≜max,⊺ ≜ 0)

4

@ψ ≜

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⊺, ψ = own
α, ψ = mut(α,_,_,_)
⊓α, ψ = imm(α,_,_,_)

@ρ ≜ ⊓ψ∈cod(ρ)@ψ
↓α ≜ α + 1
ψ1 ▸◂ ψ2 ≜ ∃α1, α2, v, ρ. ψ1 = imm(α1, v, ρ) ∧ ψ2 = imm(α2, v, ρ)
ψ1 ▷◁ ψ2 ≜ ψ1 ▸◂ ψ2 ∨ ∃ i, α, β, v, ρ, P̂ . {ψ1, ψ2} ∈ {imm(α, v, ρ),own(v),mut(β, v, ρ, P̂)}
ψ1 ● ψ2 ≜ {imm(α1 ∪ α2, v, ρ), ψ1 = imm(α1, v, ρ) ∧ ψ2 = imm(α2, v, ρ)

ψ1 ○ ψ2 ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1, ψ1 = ψ2

ψ1 ● ψ2, ψ1 ▸◂ ψ2

mut(α ⊓ β, v, ρ, P̂ ∧ Q̂) ∃α,β, v, ρ, P̂ , Q̂. ψ1 = mut(α, v, ρ, P̂) ∧ ψ2 = mut(β, v, ρ, Q̂)
ψi ∃α, v, ρ, P̂ . ψi = mut(α, v, ρ, P̂) ∧ψ3−i = own(v)
ψi ∃α,β, v, ρ, P̂ . ψi = imm(α, v, ρ) ∧ ψ3−i ∈ {own(v),mut(β, v, ρ, P̂)}

ρ1 ▸◁ ρ2 ≜ ∀ ℓ ∈ dom(ρ1) ∩ dom(ρ2). ρ1(ℓ) ▸◁ ρ2(ℓ)
ρ1 G# ρ2 ≜ {ρ1/dom(ρ2) ⊎ ρ2/dom(ρ1) ⊎ [ℓ↦ ψ1 G# ψ2 ∣ ρ1(ℓ) = ψ1 ∧ ρ2(ℓ) = ψ2], ρ1 ▸◁ ρ2
ρ∣ι ≜ {[ℓ↦ ψ ∣ ρ(ℓ) = ψ = ι(. . .)], ι ∈ {own,mut, imm}
ex(ρ)G# ≜ ρ∣own G# ρ∣mut G# G#{ex(ρ′)G# ∣ ∃ ℓ. ρ(ℓ) = mut(_,_, ρ′,_)}
ag(ρ)G# ≜ ρ∣imm ○ ○{ag(ρ′) ∣ ∃ ℓ. ρ(ℓ) = mut(_,_, ρ′,_)} ○ ○{ex(ρ′)○ ○ ag(ρ′) ∣ ∃ ℓ. ρ(ℓ) = imm(_,_, ρ′)}LρM ≜ ex(ρ)● ● ag(ρ)
✓ρ ≜ LρM definedJψK ≜ {v, ψ = own(v) ∨ ψ = mut(_, v,_,_) ∨ ψ = imm(_, v,_)JρK ≜ {[ℓ↦ v ∣ JLρM(ℓ)K = v] ✓ρ
ρ1 # ρ2 ≜ ρ1 ▸◂ ρ2 ∧✓(ρ1 ● ρ2)

ρ1 ↭ ρ2 ≜

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∀ ℓ, α, β, v, ρ, P̂ .
(Lρ1M(ℓ) = mut(α,_,_, P̂)⇔ Lρ2M(ℓ) = mut(α,_,_, P̂))
∧(Lρ1M(ℓ) = imm(β, v, ρ)⇔ Lρ2M(ℓ) = mut(β, v, ρ)), ✓ρ1 ∧✓ρ2

rebα(ρ) ≜ {ρ′ ∣ @ρ ⊐ α ∧ ∃π ∶ dom(ρ′)→ Res. ρ ≥●ℓ∈dom(π) π(ℓ) ∧ ∀ ℓ ∈ dom(π), v, ρ′′. ℓ ∈ dom(π(ℓ))
∧ρ(ℓ) = own(v)⇒ ρ′(ℓ) = imm({α}, v, π(ℓ)/ℓ)
∧ρ(ℓ) = mut(_, v, ρ′′,_)⇒ ρ′(ℓ) = imm({α}, v, ρ′′) ∧ dom(π(ℓ)) = {ℓ}
∧ρ(ℓ) = imm(_,_,_)⇒ ρ′(ℓ) = ρ(ℓ) ∧ dom(π(ℓ)) = {ℓ}}

5

ℓ↦ v (ρ) ≜ ρ = ℓ↦ own(v)
ℓ↦ Imm α P̂ (ρ) ≜ ∃β, v, ρ′. ρ = ℓ↦ imm(β, v, ρ′) ∧ P̂ (v)(ρ′) ∧ α ⊑ ⊔β
ℓ↦Mut α P̂ (ρ) ≜ ∃β ⊒ α, v, ρ′. ρ = ℓ↦ mut(β, v, ρ′, P̂)
[α]P (ρ) ≜ P (ρ) ∧@ρ ⊐ α
wp (e) {Q̂} (ρ) ≜ ∀ρf # ρ. ∃ρ′ # ρf , ρ

+ # (ρf ● ρ′), v.
(Jρf ● ρK, e)→∗ (Jρf ● ρ′ ● ρ+K, v) ∧ ρ↭ ρ′ ● ρ+ ∧ ρ+∣own = ∅ ∧ Q̂(v)(ρ′)

⌜PMeta⌝ (ρ) ≜ ρ = ∅ ∧ PMeta
P1 ⋆ P2 (ρ) ≜ ∃ρ1, ρ2. ρ = ρ1 ● ρ2 ∧ P1(ρ1) ∧ P2(ρ2)
P1 –⋆ P2 (ρ) ≜ ∀ρ1, ρ2. P1(ρ1)⇒ ρ ● ρ1 = ρ2 ⇒ P2(ρ2)
emp ≜ ⌜⊺⌝
!P ≜ emp ∧ P
⊺ (ρ) ≜ ⊺
� (ρ) ≜ �
P1 ∧ P2 (ρ) ≜ P1(ρ) ∧ P2(ρ)
P1 ∨ P2 (ρ) ≜ P1(ρ) ∨ P2(ρ)
P1 ⇒ P2 (ρ) ≜ P1(ρ)⇒ P2(ρ)
∀ P̂ (ρ) ≜ ∀x.P̂ (x)(ρ)
∃ P̂ (ρ) ≜ ∃x.P̂ (x)(ρ)

N̂P ≜ ∃β.∀α ⊏ β.[α] P̂ (α)
↺αP (ρ) ≜ ∃ρ′ ∈ rebα(ρ). P (ρ′)

6 Theorems, Lemmas, Proofs
6.1 Standard Lemmas
There’s no strict definition, but lemmas feel “standard” when their statement doesn’t unfold resources or definitions,
and don’t include any particularly unusual/custom operations.

Lemma 6.1. ρ1 ▸◁ ρ2 = ρ2 ▸◁ ρ1

Proof. By definition, and the fact that ▸◁ is commutative on cells:

• In the case of ▸◂, commutativity is immediate

• In the case of ▷◁, the first case is just the previous, and the second case is immediate since sets are unordered.

Lemma 6.2. ρ1 G# ρ2 = ρ2 G# ρ1

Proof. The composability follows from lemma 6.1. The rest follows from the fact that composition on cells is
commutative:

• in the case of ●, it’s immediate because ∪ is commutative

• in the case of ○, the first two cases are immediate, and the second two follow from noting ψi is invariant under
changing the order of cells.

Lemma 6.3. ρ1 G# (ρ2 G# ρ3) = ρ1 G# ρ2 G# ρ3

Proof. Unfolding G#, the only interesting case is when ℓ ∈ dom(ρ1) ∩ dom(ρ2) ∩ dom(ρ3).

• In the ● case, associativity follows from the associativity of ∪.

6

• In the ○ case, split on ρ2 ○ ρ3. The first case is immediate.
The second case follows from noting that imm always are preserved by ○.
In the third case, if ρ1(ℓ) is owned, then the mut is the result, if it is mut then we use associativity of ⊓ and
∧, and if it is imm then the result is imm either way.
In the fourth case, if ρ1(ℓ) is owned, then the mut is the result, if it is mut then it’s immediate, and if it is
imm then the result is imm either way.
And in the fifth case, if ρ1(ℓ) is owned, then the imm is the result, if it is mut then it’s the imm, and if it is
imm then the imms are combined.

Lemma 6.4. ρ G# ∅ = ρ

Proof. By definition, dom(ρ) ∩ ∅ = ∅, so ▸◁ holds immediately, and the result is trivially ρ.

Lemma 6.5. If ✓ρ then ρ# ∅

Proof. Immediate by definition.

Lemma 6.6. ρ1 # ρ2 if and only if ρ2 # ρ1

Proof. Follows from lemma 6.2 and by unfolding L−M with lemmas 6.20 and 6.18.

Lemma 6.7. If ρ1 # ρ2 then Jρ1 ● ρ2K = Jρ1K ∪ Jρ2K.
Proof. By lemmas 6.20 and 6.18, along with lemma 6.36, for every ℓ ∈ dom(Jρ1 ● ρ2K), ℓ ∈ dom(ex(ρ1)●), ℓ ∈
dom(ex(ρ2)●), or ℓ ∈ dom(ag(ρ1) ○ ag(ρ2)). In either of the first two cases, we’re done. In the second case,
we’re done if ℓ /∈ dom(ag(ρ1)) ∩ dom(ag(ρ2)). When ℓ ∈ dom(ag(ρ1)) ∩ dom(ag(ρ2)), then we get by the definition
of ○ that Jag(ρ1)(ℓ)K = Jag(ρ2)(ℓ)K, so we’re done.

Lemma 6.8. If Jρ2K = Jρ3K and ρ1 # ρ2 and ρ1 # ρ3 then Jρ1 ● ρ2K = Jρ1 ● ρ3K
Proof. Immediate by lemma 6.7, and rewriting with Jρ2K = Jρ3K.
Lemma 6.9. ρ1 ▸◂ ρ2 iff ρ1 ● ρ2 is defined.

Proof. By definition.

Lemma 6.10. If ✓(ρ1 ● ρ2) then ✓ρ1 and ✓ρ2
Proof. By unfolding and applying theorems 6.18 and 6.20.

Lemma 6.11. If ρ1 ● ρ2 # ρ3 then ρ1 # ρ3 and ρ2 # ρ3

Proof. Definedness of ρ1 ● ρ3 and ρ2 ● ρ3 follow from unfolding definitions; ✓(ρ1 ● ρ3) and ✓(ρ2 ● ρ3) follow from
theorem 6.10 applied to ✓(ρ1 ● ρ2 ● ρ3).

Lemma 6.12. If ρ1 ● ρ2 and ρ1 ● ρ3 and ρ2 ○ ρ3 are all defined, then so is ρ1 ● (ρ2 ○ ρ3).

Proof. The own-or-mut cells of ρ1 are disjoint from the own-or-mut cells of ρ2 and ρ3, hence also disjoint from the
own-or-mut cells of ρ2 ○ ρ3, because ○ does not introduce new own-or-mut cells. For any location ℓ with (ρ2 ○ ρ3)(ℓ)
an imm cell, it must be that either (1) ρ1(ℓ) = imm(α1, v, ρ) and ρ2(ℓ) = imm(α2, v, ρ) for some α1, α2, v, ρ, in which
case (ρ2 ○ ρ3)(ℓ) = imm(α1 ∪ α2, v, ρ) and is hence composable with ρ1(ℓ) by ρ1 ▸◂ ρ2, or (2) one of ρ2(ℓ) or ρ3(ℓ)
is an imm and the other is an own-or-mut—without loss of generality suppose it is ρ2 that is own-or-mut—in which
case ℓ ∉ dom(ρ1) and hence ℓ is not in the overlap of ρ1 and ρ2 ○ ρ3. It follows that the imm cells of ρ1 agree on
overlap with the imm cells of ρ2 ○ ρ3 up to lifetimes.

Lemma 6.13. If ρ1 ● ρ2 and ρ1 ● ρ3 and ρ2 ● ρ3 are all defined, then so is ρ1 ● ρ2 ● ρ3.

Proof. The own-or-mut cells of ρ1, ρ2, ρ3 are all pairwise-disjoint, hence mutually disjoint, and the imm cells pairwise
agree up to lifetimes, hence mutually agree up to lifetimes.

7

Lemma 6.14. If ρ1 ○ ρ2 and ρ1 ○ ρ3 and ρ2 ○ ρ3 are all defined, then so is ρ1 ○ ρ2 ○ ρ3.

Proof. Analogous to theorem 6.13. The only wrinkle is that ○, unlike ●, merges imm cells with own and mut cells;
however, it only does so when the given own-or-mut cell has the same value and subresource inside of it, so the
resulting composites still agree on overlapping imm cells up to lifetimes.

Lemma 6.15. If ρ1 # ρ2 and ρ2 # ρ3 and ρ1 # ρ3 then ρ1 # ρ2 ● ρ3.

Proof. The composite ρ1 ● ρ2 ● ρ3 is defined by theorem 6.13, so it only remains to show ✓(ρ1 ● ρ2 ● ρ3). By
theorems 6.18 and 6.20, this amounts to showing definedness of ex(ρ1)● ● ex(ρ2)● ● ex(ρ3)● ● (ag(ρ1) ○ ag(ρ2) ○
ag(ρ3)) By assumption we have that

Lρ1 ● ρ2M = ex(ρ1)● ● ex(ρ2)● ● (ag(ρ1) ○ ag(ρ2))Lρ1 ● ρ3M = ex(ρ1)● ● ex(ρ3)● ● (ag(ρ1) ○ ag(ρ3))Lρ2 ● ρ3M = ex(ρ2)● ● ex(ρ3)● ● (ag(ρ2) ○ ag(ρ3))
are all defined. Hence ex(ρ1)●, ex(ρ2)●, ex(ρ3)● are pairwise-composable with respect to ●. Similarly, we also have
that ag(ρ1)●, ag(ρ2)●, ag(ρ3)● are pairwise-composable with respect to ○. So, by theorems 6.13 and 6.14, this gives
definedness of the triple composites ex(ρ1)● ● ex(ρ2)● ● ex(ρ3)● and ag(ρ1) ○ ag(ρ2) ○ ag(ρ3). It only remains to
show that these triple composites are themselves composable. By two applications of theorem 6.12, this reduces to
showing the following three composites are defined:

ex(ρ1)● ● ex(ρ2)● ● ex(ρ3)● ● ag(ρ1)
ex(ρ1)● ● ex(ρ2)● ● ex(ρ3)● ● ag(ρ2)
ex(ρ1)● ● ex(ρ2)● ● ex(ρ3)● ● ag(ρ3)

The first composite ex(ρ1)● ● ex(ρ2)● ● ex(ρ3)● ● ag(ρ1) is defined because ex(ρ1)● and ex(ρ2)● ● ex(ρ3)● and ag(ρ1)
are pairwise-composable by assumption, hence the triple composite is defined by theorem 6.13. The analogous
arguments show that the second and third composites are defined as well.

6.2 Non-standard Lemmas
Lemma 6.16. If ρ ● Lρ′M defined then ρ ● ρ′ defined.

Proof. The composite ρ ● Lρ′M is well-defined if and only if ρ and Lρ′M have disjoint own-or-mut cells and imm cells
that agree up to lifetimes. Unravelling the definition of L−M reveals that the cells of ρ′ are a subset of those of L−M,
so the same condition holds of ρ and ρ′.

Lemma 6.17. If ρ# ℓ↦ mut(α, v, ρv, P̂) then ρ ▸◂ ρv ● ℓ↦ own(v)

Proof. Let ρo = ℓ ↦ own(v) and ρm = ℓ ↦ mut(α, v, ρv, P̂). By theorem 6.9, it’s enough to show ρ ● ρv ● ρo is
well defined. By assumption, it holds that ✓ρ ● ρm, so Lρ ● ρmM = ex(ρ)● ● (ρm ● ex(ρv)●) ● (ag(ρ) ○ ag(ρv)) is
well-defined. Hence, ignoring ex(ρ)● and ag(ρ) in this composite, we have that ρm ● ex(ρv)● ● ag(ρv) = ρm ● LρvM
is well-defined. This implies ℓ ∉ domLρvM, so ρo ● LρvM well-defined, so ρo ● ρv well-defined by theorem 6.16. Well-
definedness of ag(ρ) ○ ag(ρv) implies ρ and ρv agree on imm cells up to lifetimes, hence the same of ρ and ρo ● ρv
(since ρo contains no imm cells). Well-definedness of ex(ρ)● ● (ρm ● ex(ρv)●) implies ρ and ρm ● ρv have disjoint
own-or-mut cells, hence the same of ρ and ρo ● ρv (since ρo and ρm have the same own-or-mut cells). Putting these
together shows ρ and ρo ● ρv are composable as needed.

Lemma 6.18. If ρ1 ▸◂ ρ2 then ex(ρ1 ● ρ2)● and ex(ρ1)● ● ex(ρ2)● are Kleene-equal (the left-hand side is defined iff
the right-hand side is, and in case both are defined they are equal).

8

Proof. Since ρ1 ▸◂ ρ2, it must be that ρ1 and ρ2 have disjoint own-or-mut cells. Hence, writing ρ12 for the composite
ρ1 ● ρ2, the following string of Kleene-equalities holds:

ex(ρ12)● = ρ12∣own ● ρ12∣mut ● ●
mut(_,_,ρ′,_)∈ρ12

ex(ρ′)●

= (ρ1∣own ● ρ2∣own) ● (ρ1∣mut ● ρ2∣mut) ● (●
mut(_,_,ρ′,_)∈ρ1

ex(ρ′)●) ● (●
mut(_,_,ρ′,_)∈ρ2

ex(ρ′)●)

= (ρ1∣own ● ρ1∣mut ● ●
mut(_,_,ρ′,_)∈ρ1

ex(ρ′)●) ● (ρ2∣own ● ρ2∣mut ● ●
mut(_,_,ρ′,_)∈ρ2

ex(ρ′)●)

= ex(ρ1)● ● ex(ρ2)●
Definition 6.1. Let LρM○ ∶= ag(ρ) ○ ex(ρ)○.
Lemma 6.19. If LρM○ defined then LρM○ and LρM○ ○ LρM○ are Kleene-equal.
Proof. By induction on ρ, mutual with the statement that ag(ρ) and ag(ρ) ○ ag(ρ) are Kleene equal.

Lemma 6.20. If ρ1 ▸◂ ρ2 then ag(ρ1 ● ρ2) and ag(ρ1) ○ ag(ρ2) are Kleene-equal.
Proof. Since ρ1 ▸◂ ρ2, it holds that the mut cells of ρ1 and ρ2 are disjoint and the imm cells of ρ1 and ρ2 agree up
to lifetimes. Hence, writing ρ12 for the composite ρ1 ● ρ2,

ag(ρ1 ● ρ2) = ρ12∣imm ○ ◯
mut(_,_,ρ′,_)∈ρ12

ag(ρ′) ○ ◯
imm(_,_,ρ′)∈ρ12

Lρ′M○
= (ρ1∣imm ○ ρ2∣imm) ○ (◯

mut(_,_,ρ′,_)∈ρ1
ag(ρ′) ○ ◯

mut(_,_,ρ′,_)∈ρ2
ag(ρ′)) ○ ◯

imm(_,_,ρ′)∈ρ12
Lρ′M○.

Now consider the final term in this equation, the big composite ρag ∶= ◯imm(_,_,ρ′)∈ρ12 Lρ′M○. It has one component
for each imm cell (_,_, ρ′) in ρ12. The composition ○ operates cellwise, and the imm cells of ρ12 are the union (up
to lifetimes) of the imm cells of ρ1 and the imm cells of ρ2, so by inclusion-exclusion ρag is equal to

◯
imm(_,_,ρ′)∈ρ1∖ρ2

Lρ′M○ ○ ◯
imm(_,_,ρ′)∈ρ2∖ρ1

Lρ′M○ ○ ◯
imm(_,_,ρ′)∈ρ1∩ρ2

Lρ′M○.
By theorem 6.19, we have that

◯
imm(_,_,ρ′)∈ρ1∩ρ2

Lρ′M○ = ◯
imm(_,_,ρ′)∈ρ1∩ρ2

(Lρ′M○ ○ Lρ′M○) = (◯
imm(_,_,ρ′)∈ρ1∩ρ2

Lρ′M○) ○ (◯
imm(_,_,ρ′)∈ρ1∩ρ2

Lρ′M○) .
Hence,

ρag = ◯
imm(_,_,ρ′)∈ρ1∖ρ2

Lρ′M○ ○ ◯
imm(_,_,ρ′)∈ρ2∖ρ1

Lρ′M○ ○ ◯
imm(_,_,ρ′)∈ρ1∩ρ2

Lρ′M○
= ◯

imm(_,_,ρ′)∈ρ1∖ρ2
Lρ′M○ ○ ◯

imm(_,_,ρ′)∈ρ2∖ρ1
Lρ′M○ ○ (◯

imm(_,_,ρ′)∈ρ1∩ρ2
Lρ′M○) ○ (◯

imm(_,_,ρ′)∈ρ1∩ρ2
Lρ′M○)

= ◯
imm(_,_,ρ′)∈ρ1

Lρ′M○ ○ ◯
imm(_,_,ρ′)∈ρ2

Lρ′M○.
Putting this all together,

ag(ρ1 ● ρ2)

= (ρ1∣imm ○ ρ2∣imm) ○ (◯
mut(_,_,ρ′,_)∈ρ1

ag(ρ′) ○ ◯
mut(_,_,ρ′,_)∈ρ2

ag(ρ′)) ○ ρag

= (ρ1∣imm ○ ρ2∣imm) ○ (◯
mut(_,_,ρ′,_)∈ρ1

ag(ρ′) ○ ◯
mut(_,_,ρ′,_)∈ρ2

ag(ρ′)) ○ (◯
imm(_,_,ρ′)∈ρ1

Lρ′M○ ○ ◯
imm(_,_,ρ′)∈ρ2

Lρ′M○)
= (ρ1∣imm ○ ◯

mut(_,_,ρ′,_)∈ρ1
ag(ρ′) ○ ◯

imm(_,_,ρ′)∈ρ1
Lρ′M○) ○ (ρ2∣imm ○ ◯

mut(_,_,ρ′,_)∈ρ2
ag(ρ′) ○ ◯

imm(_,_,ρ′)∈ρ2
Lρ′M○)

= ag(ρ1) ○ ag(ρ2)

as needed.

9

Lemma 6.21. If ρ# ρv ● ℓ↦ own(v) then ρ ▸◂ ℓ↦ mut(α, v, ρv, P̂)

Proof. The hypothesis implies the composite ρ ● ρv ● (ℓ ↦ own(v)) is well-defined, which implies ℓ ∉ dom(ρ), which
implies ρ ▸◂ ℓ↦ mut(α, v, ρv, P̂) as needed.

Lemma 6.22. If ρ# ℓ↦ mut(α, v, ρv, P̂) then ρ# ρv ● ℓ↦ own(v)

Proof. Let ρo = ℓ ↦ own(v) and ρm = ℓ ↦ mut(α, v, ρv, P̂), so we have ρ # ρm with aim to show ρ # ρv ● ρo. Our
hypothesis implies ✓(ρ ● ℓ↦ mut(α, v, ρv, P̂)), which amounts to well-definedness of the following composite:

ρhyp ∶= ex(ρ)● ● ex(ρv)● ● ρm ● (ag(ρ) ○ ag(ρv)).

We have that ρ ▸◂ ρv ● ρo by theorem 6.17, so it only remains to show ✓(ρ ● ρv ● ρo), which amounts to showing
well-definedness of the following composite:

ρgoal ∶= ex(ρ ● ρv)● ● ρo ● ag(ρ ● ρv).

By theorem 6.17, it holds that ρ ● ρv ● ρo is well-defined, hence also that ρ ● ρv is well-defined. This implies, by
theorems 6.18 and 6.20, that well-definedness of ρgoal is equivalent to well-definedness of

(ex(ρ)● ● ex(ρv)●) ● ρo ● (ag(ρ) ○ ag(ρv)).

Since ρo contains a single own cell, this composite is well-defined if and only if the same composite is defined when
ρo is replaced by ρm; this is precisely well-definedness of ρhyp.

Lemma 6.23. If ρ# ρv ● ℓ↦ own(v) then ρ# ℓ↦ mut(α, v, ρv, P̂)

Proof. Analogous to theorem 6.22. Let ρo = ℓ ↦ own(v) and ρm = ℓ ↦ mut(α, v, ρv, P̂), so we have ρ # ρv ● ρo with
aim to show ρ # ρm. We have ρ ▸◂ ρm by theorem 6.21, so it only remains to show ✓(ρ ● ρm), which amounts to
showing well-definedness of

ρgoal ∶= ex(ρ)● ● ex(ρv)● ● ρm ● (ag(ρ) ○ ag(ρv))

given well-definedness of
ρhyp ∶= ex(ρ ● ρv)● ● ρo ● ag(ρ ● ρv).

We have by the assumption ρ# ρv ● ρo that ρ ● ρv defined, so by theorems 6.18 and 6.20 the well-definedness of ρhyp
is equivalent to well-definedness of

ex(ρ ● ρv)● ● ρo ● ag(ρ ● ρv).

Since ρo contains a single own cell, this composite is well-defined if and only if the same composite is defined when
ρo is replaced by ρm; this is precisely well-definedness of ρgoal, which is what we wanted to show.

Lemma 6.24. ρ# ℓ↦ mut(α, v, ρv, P̂) iff ρ# ρv ● ℓ↦ own(v)

Proof. Combine theorems 6.22 and 6.23.

Lemma 6.25. Assuming all resources and composition are defined,
r
ℓ↦ mut(n, v, ρv, P̂)

z
= Jρv ● ℓ↦ own(v)K

Proof. By unfolding.

Lemma 6.26. Assuming all resources and composition are defined, Jℓ↦ imm(α, v, ρv)K = Jρv ● ℓ↦ own(v)K
Proof. By unfolding.

Lemma 6.27. If @ρ ⊐ α and ρ ● ℓ↦ mut(α, v, ρv, P̂)↭ ρ′ then ρ′ = ρ′/ℓ ● ℓ↦ mut(α, v′, ρ′v, P̂)

Proof. Let ρm = ℓ ↦ mut(α, v, ρv, P̂). By assumption, Lρ ● ρmM and Lρ′M have the same borrows. This implies there
must be a mut cell in Lρ′M matching ℓ↦ mut(α, v, ρv, P̂), which amounts to a v′, ρ′v such that (ℓ↦ mut(α, v′, ρ′v, P̂)) ∈Lρ′M. Furthermore, since @ρ ⊐ α, all borrows in Lρ′M other than (ℓ ↦ mut(α, v′, ρ′v, P̂)) must be disjoint from α,
which by well-formedness of the resource ρ′ implies that the cell (ℓ ↦ mut(α, v′, ρ′v, P̂)) cannot be in any ρ′′ for
any mut(_,_, ρ′′,_) or imm(_,_, ρ′′) in ρ′. Hence it must be that ρ′(ℓ) = mut(α, v′, ρ′v, P̂), so ρ′ = ρ′/ℓ ● ℓ ↦
mut(α, v′, ρ′v, P̂) as needed.

10

Lemma 6.28. Assuming all compositions are defined and valid, ρ ● ℓ↦ mut(α, v, ρv, P̂)↭ ρ′ ● ℓ↦ mut(α, v′, ρ′v, P̂)
iff ρ ● ℓ↦ own(v) ● ρv ↭ ρ′ ● ℓ↦ own(v′) ● ρ′v

Proof. We have the following string of iffs: ρ ● ℓ↦ mut(α, v, ρv, P̂)↭ ρ′ ● ℓ↦ mut(α, v′, ρ′v, P̂) if and only if

ex(ρ)● ● (ℓ↦ mut(α, v, ρv,P̂)) ● ex(ρv)● ● (ag(ρ) ○ ag(ρv))
and

ex(ρ′)● ● (ℓ↦ mut(α, v′, ρ′v,P̂)) ● ex(ρ′v)● ● (ag(ρ′) ○ ag(ρ′v))

have the same borrows (by unravelling definitions), if and only if

ex(ρ)● ● (ℓ↦ own(v)) ● ex(ρv)● ● (ag(ρ) ○ ag(ρv))
and

ex(ρ′)● ● (ℓ↦ own(v′)) ● ex(ρ′v)● ● (ag(ρ′) ○ ag(ρ′v))

have the same borrows (by exclusivity of ℓ), if and only if ρ ● ℓ↦ own(v) ● ρv ↭ ρ′ ● ℓ↦ own(v′) ● ρ′v.

Lemma 6.29. If @ρ ⊐ α and ρ # ρv ● ℓ ↦ own(v) and ρ ● ℓ ↦ imm({α}, v, ρv) ↭ ρ′ then ρ′ = ρ′/ℓ ● ℓ ↦
imm({α}, v, ρv).

Proof. Let ρi = ℓ ↦ imm({α}, v, ρv). By assumption, Lρ ● ρiM and Lρ′M have the same borrows. And by assumption,
ρ# ρv ● ℓ↦ own(v), so ℓ /∈ dom(LρM). This implies there must be an imm cell in Lρ′M matching ρi exactly, ie Lρ′M(ℓ) =
imm({α}, v, ρv). Furthermore, since @ρ ⊐ α, all borrows in Lρ′M other than ρi must be disjoint from α, which by well-
formedness of the resource ρ′ implies that the cell (imm({α}, v, ρv, P̂)) cannot be in any ρ′′ for any mut(_,_, ρ′′,_) or
imm(_,_, ρ′′) in ρ′. Hence it must be that ρ′(ℓ) = imm({α}, v, ρv,), so ρ′ = ρ′/ℓ ● ℓ↦ imm({α}, v, ρv) as needed.

Lemma 6.30. If ρ ▸◂ (ρ1 ○ ρ2) and ρ∣imm = ∅ then ρ ▸◂ ρ1 and ρ ▸◂ ρ2

Proof. Since ρ∣imm = ∅, the fact that ρ ▸◂ (ρ1 ○ ρ2) implies dom(ρ) ∩ dom(ρ1 ○ ρ2) = ∅.
Unfolding ○, dom(ρ1 ○ ρ2) = dom(ρ1) ∪ dom(ρ2). Therefore, dom(ρ) ∩ (dom(ρ1) ∪ dom(ρ2)) = ∅, and therefore
dom(ρ) ∩ dom(ρ1) = ∅ and dom(ρ) ∩ dom(ρ2) = ∅. Therefore by definition, ρ ▸◂ ρ1 and ρ ▸◂ ρ2.

Lemma 6.31. If ρ ▸◂ ρ′ then ρ ○ ρ′ = ρ ● ρ′.

Proof. It suffices to show for any cells ψ and ψ′, if ψ ▸◂ ψ′ then ψ ○ ψ′ = ψ ● ψ′. Unfolding ψ ○ ψ′, we have that either

• ψ = ψ′ and ψ ○ ψ′ = ψ

• ψ ≠ ψ′, and ψ ▸◂ ψ′ so ψ ○ ψ′ = ψ ● ψ′

• The last case is unreachable.

ψ ○ ψ′ only disagrees with ● when ψ = ψ′ = own(_) or mut(_,_,_,_). But this is impossible since ψ ▸◂ ψ′.

Lemma 6.32. If ex(ρ)● defined, then ex(ρ)● = ex(ρ)○.

Proof. By induction on ρ, unfolding ex, and repeatedly applying lemma 6.31.

Lemma 6.33. If LρM defined, then LρM = LρM○.
Proof. By unfolding L−M and L−M○, and applying lemmas 6.31 and 6.32.

Lemma 6.34. If ρ# ρv ● ℓ↦ own(v) and @ρv ⊐ α then ρ# ℓ↦ imm(α, v, ρv)

11

Proof. By lemma 6.11, we have ρ # ρv and ρ # ℓ ↦ own(v). Unfolding these, we have ℓ /∈ dom(Lρ ● ρvM), and by
lemmas 6.20, 6.18, 6.31, and 6.32 the following are all defined and equal

Lρ ● ρvM = ex(ρ ● ρv)● ● ag(ρ ● ρv)
= ex(ρ)● ● ex(ρv)● ● (ag(ρ) ○ ag(ρv))
= ex(ρ)● ● (ex(ρv)● ○ ag(ρ) ○ ag(ρv))
= ex(ρ)● ● (ex(ρv)○ ○ ag(ρ) ○ ag(ρv))
= ex(ρ)● ● (LρvM○ ○ ag(ρ))

The last equality, with the fact that ℓ is not in the domain, is sufficient to complete the proof.

Lemma 6.35. If Lρ ● ρ′M is defined then LρM and Lρ′M are defined.

Proof. Unfolding L−M in the hypothesis and applying lemmas 6.20 and 6.18, we get the following are all defined and
equal:

Lρ ● ρ′M = ex(ρ ● ρ′)● ● ag(ρ ● ρ′)
= ex(ρ)● ● ex(ρ′)● ● (ag(ρ) ○ ag(ρ′))

We can finish the proof by noting the following composability constraints:

• ex(ρ)● ● ex(ρ′)● ▸◂ ag(ρ) by lemmas 6.30 and 6.36

• ex(ρ)● ▸◂ ag(ρ) by the previous constraint, which implies LρM is defined

• ex(ρ)● ● ex(ρ′)● ▸◂ ag(ρ′) by lemmas 6.30 and 6.36

• ex(ρ′)● ▸◂ ag(ρ′) by the previous constraint, which implies Lρ′M is defined

Lemma 6.36. If ex(ρ)G# is defined then ex(ρ)G#∣imm = ∅.

Proof. By induction on ρ and unfolding ex, noting at each level only mut and own are kept.

Lemma 6.37. If ρ ▸◂ ρ1 and ρ ▸◂ ρ2 and ρ1 ▷◁ ρ2 then ρ ▸◂ ρ1 ○ ρ2.

Proof. Unfolding the definition of ▸◂, we have for any ℓ ∈ dom(ρ) ∩ dom(ρ1), ρ(ℓ) = imm(_, ρ, v) and ρ1(ℓ) =
imm(_, ρ, v), and similarly for ρ2. By the definition of ○, if ℓ′ ∈ dom(ρ) ∩ dom(ρ1) ∩ dom(ρ2), then (ρ1 ○ ρ2)(ℓ) =
imm(_, ρ, v), which is sufficient to complete the proof.

Lemma 6.38. If

• ρ# ρv ● ℓ↦ own(v)(H1)

• ρ′ # ρ+
(H2)

• @ρ ⊐ α(H3)

• @ρ′ ⊐ α(H4)

• ρ+∣own = ∅(H5)

• ρ ● ℓ↦ imm({α}, v, ρv)↭ ρ′ ● ρ+(H6)

then ρ′ ● ρ+/ℓ# ρv ● ℓ↦ own(v)(G1)

12

Proof. By lemma 6.29 with H3 and H1 and H6, ρ′ ● ρ+ = (ρ′ ● ρ+)/ℓ ● ℓ↦ imm({α}, v, ρv)(H7).
By H4 and H7, ρ′ ● ρ+ = ρ′ ● ρ+/ℓ ● ℓ↦ imm({α}, v, ρv).
Then in order to show G1, it suffices to show Lρ′ ● ρ+/ℓ ● ρv ● ℓ↦ own(v)M is defined. By unfolding L−M and applying
lemmas 6.18 and 6.20, the following are Kleene-equal, so it suffices to show any are defined to get all are defined:

Lρ′ ● ρ+/ℓ ● ρv ● ℓ↦ own(v)M = ex(ρ′ ● ρ+/ℓ ● ρv ● ℓ↦ own(v))● ● ag(ρ′ ● ρ+/ℓ ● ρv ● ℓ↦ own(v))
= ex(ρ′)● ● ex(ρ+/ℓ)● ● ex(ρv)● ● ℓ↦ own(v) ● (ag(ρ′) ○ ag(ρ+/ℓ) ○ ag(ρv))

Applying similar reasoning to ρ′ ● ρ+/ℓ ● ℓ↦ imm({α}, v, ρv) with H2, we get the following are all defined and equal:

Lρ′ ● ρ+/ℓ ● ℓ↦ imm({α}, v, ρv)M = ex(ρ′ ● ρ+/ℓ ● ℓ↦ imm({α}, v, ρv))● ● ag(ρ′ ● ρ+/ℓ ● ℓ↦ imm({α}, v, ρv))
= ex(ρ′)● ● ex(ρ+/ℓ)● ● (ag(ρ′) ○ ag(ρ+/ℓ) ○ ag(ℓ↦ imm({α}, v, ρv)))
= ex(ρ′)● ● ex(ρ+/ℓ)● ● (ag(ρ′) ○ ag(ρ+/ℓ) ○ ℓ↦ imm({α}, v, ρv) ○ LρvM○)

By lemma 6.35 with H1, we have LρvM is defined. Then by lemma 6.33, LρvM = LρvM○. Therefore, we have the following
are defined and equal:

Lρ′ ● ρ+/ℓ ● ℓ↦ imm({α}, v, ρv)M = . . .
= ex(ρ′)● ● ex(ρ+/ℓ)● ● (ag(ρ′) ○ ag(ρ+/ℓ) ○ ℓ↦ imm({α}, v, ρv) ○ LρvM)
= ex(ρ′)● ● ex(ρ+/ℓ)● ● (ag(ρ′) ○ ag(ρ+/ℓ) ○ ℓ↦ imm({α}, v, ρv) ○ (ex(ρv)● ● ag(ρv)))

By lemma 6.31, we get the following are defined and equal:

Lρ′ ● ρ+/ℓ ● ℓ↦ imm({α}, v, ρv)M = . . .
= ex(ρ′)● ● ex(ρ+/ℓ)● ● (ag(ρ′) ○ ag(ρ+/ℓ) ○ ℓ↦ imm({α}, v, ρv) ○ ex(ρv)● ○ ag(ρv))

Applying lemmas 6.30 and 6.36 multiple times, we get:

• ex(ρ′)● ● ex(ρ+/ℓ)● ▸◂ (ag(ρ′) ○ ag(ρ+/ℓ) ○ ag(ρv))

• ex(ρ′)● ● ex(ρ+/ℓ)● ▸◂ ex(ρv)●

• ex(ρ′)● ● ex(ρ+/ℓ)● ▸◂ ℓ↦ imm({α}, v, ρv), which implies ex(ρ′)● ● ex(ρ+/ℓ)● ▸◂ ℓ↦ own(v).

With these facts, it suffices to show ex(ρv)● ● ℓ ↦ own(v) ▸◂ (ag(ρ′) ○ ag(ρ+/ℓ) ○ ag(ρv)). And by lemma 6.37 withLρv ● ℓ ↦ own(v)M defined from lemma 6.35 with H1, it suffices to show ex(ρv)● ● ℓ ↦ own(v) ▸◂ (ag(ρ′) ○ ag(ρ+/ℓ)).
By lemma 6.36, (ex(ρv)● ● ℓ↦ own(v))∣imm = ∅, so it suffices to show

dom(ex(ρv)● ● ℓ↦ own(v)) ∩ dom(ag(ρ′) ○ ag(ρ+/ℓ)) = ∅

Assume for sake of contradiction that ℓ′ ∈ dom(ex(ρv)● ● ℓ ↦ own(v)) and ℓ′ ∈ dom(ag(ρ′) ○ ag(ρ+/ℓ)). By the
definition of ag, ℓ′ ∈ dom(ρ′∣imm), ℓ′ ∈ dom(ρ+/ℓ∣imm), or there are some ℓ′′, ρ′′v such that (ag(ρ′) ○ ag(ρ+/ℓ))(ℓ′′) =
imm(_,_, ρ′′v) and ℓ′ ∈ dom(Lρ′′v M○). In either of the first two cases, by H6, ℓ′ ∈ LρM∣imm, which is a contradiction with
the fact that ρ# ρv ● ℓ↦ own(v) from H1. And in the third, by the same reasoning about update, ℓ′′ ∈ dom(LρM∣imm),
and therefore ℓ′ ∈ dom(ag(ρ)), which again is a contradiction for the same reason.

Definition 6.2. Let ψ ∼ ψ′ ∶= (ψ = mut(α,_,_, P̂) ∧ ψ′ = mut(α,_,_, P̂)) ∨ (ψ = ψ′ = imm(α, v, ρ)).

Lemma 6.39. If

• ρ# ℓ↦ own(v) ● ρv(H1)

• ρ′ # ℓ↦ own(v) ● ρv(H2)

13

• ρ ● ℓ↦ imm(α, v, ρv)↭ ρ′ ● ℓ↦ imm(α, v, ρv)(H3)

then ρ ● ℓ↦ own(v) ● ρv ↭ ρ′ ● ℓ↦ own(v) ● ρv

Proof. By H1 and H2, we have ρof = Lρ ● ℓ ↦ own(v) ● ρvM and ρ′of = Lρ′ ● ℓ ↦ own(v) ● ρvM are defined. We want to
show dom(ρof ∣imm,mut) = dom(ρ′of ∣imm,mut)(G1) and ∀ ℓ ∈ dom(ρof ∣imm,mut). ρof(ℓ) ∼ ρ′of(ℓ)

(G2). By lemmas 6.18 and
6.20, we have all of the following are defined and equal:

ρof = Lρ ● ℓ↦ own(v) ● ρvM
= ex(ρ ● ℓ↦ own(v) ● ρv)● ● ag(ρ ● ℓ↦ own(v) ● ρv)
= ex(ρ)● ● ex(ℓ↦ own(v))● ● ex(ρv)● ● (ag(ρ) ○ ag(ℓ↦ own(v)) ○ ag(ρv))
= ℓ↦ own(v) ● ex(ρ)● ● ex(ρv)● ● (ag(ρ) ○ ag(ρv))

ρ′of = . . .
= ℓ↦ own(v) ● ex(ρ′)● ● ex(ρv)● ● (ag(ρ′) ○ ag(ρv))

By H3, we also have ρif = Lρ ● ℓ↦ imm(α, v, ρv)M and ρ′if = Lρ′ ● ℓ↦ imm(α, v, ρv)M are defined, and
dom(ρif ∣imm,mut) = dom(ρ′if ∣imm,mut)(H4). Applying similar reasoning to above:

ρif = Lρ ● ℓ↦ imm(α, v, ρv)M
= ex(ρ ● ℓ↦ imm(α, v, ρv))● ● ag(ρ ● ℓ↦ imm(α, v, ρv))
= ex(ρ)● ● ex(ℓ↦ imm(α, v, ρv))● ● (ag(ρ) ○ ag(ℓ↦ imm(α, v, ρv)))
= ex(ρ)● ● (ℓ↦ imm(α, v, ρv) ○ ag(ρ) ○ LρvM○)

ρ′if = . . .
= ex(ρ′)● ● (ℓ↦ imm(α, v, ρv) ○ ag(ρ′) ○ LρvM○)

By lemma 6.10 with H1, ✓ρv. Then by lemma 6.35, LρvM = LρvM○. Rewriting, unfolding L−M, and using lemma 6.31
in the previous equalities:

ρif = . . .
= ex(ρ)● ● (ℓ↦ imm(α, v, ρv) ○ ag(ρ) ○ LρvM)
= ex(ρ)● ● (ℓ↦ imm(α, v, ρv) ○ ag(ρ) ○ (ex(ρv)● ● ag(ρv)))
= ex(ρ)● ● (ℓ↦ imm(α, v, ρv) ○ ag(ρ) ○ ex(ρv)● ○ ag(ρv))
= ex(ρ)● ● (ex(ρv)● ○ (ℓ↦ imm(α, v, ρv) ○ (ag(ρ) ○ ag(ρv))))

ρ′if = . . .
= ex(ρ′)● ● (ex(ρv)● ○ (ℓ↦ imm(α, v, ρv) ○ (ag(ρ′) ○ ag(ρv))))

Note we have the following composability statements:

• ex(ρv)● ▸◂ ag(ρv), from ✓ρv

• ex(ρv)● ▸◂ ag(ρ), from the rewritten form of ρof with lemmas 6.30 and 6.36.

• ex(ρv)● ▸◂ ag(ρ′), similarly from the rewritten form of ρ′of with lemmas 6.30 and 6.36.

• ex(ρv)● ▸◂ ℓ↦ imm(α, v, ρv), since ex(ρv)● ▸◂ ℓ↦ own(v) and ex(ρv)●∣imm = ∅ by lemma 6.36.

14

With these statements and lemmas 6.37 and 6.31, we get:

ρif = . . .
= ex(ρ)● ● (ex(ρv)● ○ (ℓ↦ imm(α, v, ρv) ○ (ag(ρ) ○ ag(ρv))))
= ex(ρ)● ● ex(ρv)● ● (ℓ↦ imm(α, v, ρv) ○ (ag(ρ) ○ ag(ρv)))

ρ′if = . . .
= ex(ρ′)● ● ex(ρv)● ● (ℓ↦ imm(α, v, ρv) ○ (ag(ρ′) ○ ag(ρv)))

By the rewritings of ρof and ρ′of , we have:

ℓ↦ own(v) ▸◂ ex(ρ)● ● ex(ρv)● ● (ag(ρ) ○ ag(ρv))
ℓ↦ own(v) ▸◂ ag(ρ) ○ ag(ρv)
ℓ↦ own(v) ▸◂ ex(ρ′)● ● ex(ρv)● ● (ag(ρ′) ○ ag(ρv))
ℓ↦ own(v) ▸◂ ag(ρ′) ○ ag(ρv)

Therefore, ℓ /∈ dom(ag(ρ) ○ ag(ρv)) and similarly for ρ′, so:

ℓ↦ imm(α, v, ρv) ▸◂ ag(ρ) ○ ag(ρv)
ℓ↦ imm(α, v, ρv) ▸◂ ag(ρ′) ○ ag(ρv)

With these and lemma 6.31, we get:

ρif = . . .
= ex(ρ)● ● ex(ρv)● ● (ℓ↦ imm(α, v, ρv) ○ (ag(ρ) ○ ag(ρv)))
= ℓ↦ imm(α, v, ρv) ● ex(ρ)● ● ex(ρv)● ● (ag(ρ) ○ ag(ρv))

ρ′if = . . .
= ℓ↦ imm(α, v, ρv) ● ex(ρ′)● ● ex(ρv)● ● (ag(ρ′) ○ ag(ρv))

Now the only difference between ρof and ρif , as well as ρ′of and ρ′if , is ℓ ↦ own(v) vs ℓ ↦ imm(α, v, ρv), and we
additionally know ℓ /∈ dom(ag(ρ) ○ ag(ρv)), and ℓ /∈ dom(ag(ρ′) ○ ag(ρv)). Therefore we have G1 and G2:

dom(ρof)∣imm,mut = dom(ρ′of)∣imm,mut = dom(ρif ∣imm,mut)/ℓ = dom(ρ′if ∣imm,mut)/ℓ
ρof ∣imm,mut = ρif ∣imm,mut/ℓ
ρ′of ∣imm,mut = ρ′if ∣imm,mut/ℓ

Lemma 6.40. ℓ↦ own(v1)# ρ if any only if ℓ↦ own(v2)# ρ

Proof. By the definition of #, ℓ /∈ LρM, so the condition follows immediately.

Lemma 6.41. If ℓ↦ own(−) ▸◂ ρ, then ℓ ∉ ρ.

Proof. By definition.

Lemma 6.42. If ℓ↦ mut(−,−,−,−) ▸◂ ρ, then ℓ ∉ ρ.

Proof. By definition.

Lemma 6.43. ℓ↦ imm(α ∪ β, v, ρ′) = ℓ↦ imm(α, v, ρ′) ● ℓ↦ imm(β, v, ρ′)

Proof. By definition.

15

Lemma 6.44. If ℓ↦ imm(α, v1, ρ′1) ▸◂ ℓ↦ imm(β, v2, ρ′2), then v1 = v2 and ρ′1 = ρ′2.

Proof. By definition.

Lemma 6.45. @(ρ1 ● ρ2) ⊐ α if and only if @ρ1 ⊐ α and ρ2 ⊐ α.

Proof. In either direction, this follows from noting that if ℓ ∈ dom(ρ1) ∩ dom(ρ2), then ρ1(ℓ) = imm(α, v, ρ) and
ρ2(ℓ) = imm(β, v, ρ), And α ∪ β ⊐ α iff α ⊐ α and β ⊐ α.

Lemma 6.46. ρ1 # ρ2 ● ρ3 if and only if ρ1 ● ρ2 # ρ3.

Proof. By unfolding # and lemma 6.3.

Lemma 6.47. ρ↭ ρ

Proof. By definition.

Lemma 6.48. If ρ1 # ρ2 and ρ1 # ρ3 and ρ2 ↭ ρ3, then ρ1 ● ρ2 ↭ ρ1 ● ρ3.

Proof. By the compatibility hypotheses, we have ✓(ρ1 ● ρ2) and ✓(ρ1 ● ρ3). It suffices to show that dom(Lρ1 ●
ρ2M∣mut,imm) = dom(Lρ1 ● ρ3M∣mut,imm) and for every ℓ ∈ dom(Lρ1 ● ρ2M∣mut,imm), Lρ1 ● ρ2M(ℓ) ∼ Lρ1 ● ρ3M(ℓ).

By unfolding ✓, L−M, and by lemmas 6.20 and 6.18, the following equalities hold, with all resources defined:

Lρ1 ● ρ2M = ex(ρ1 ● ρ2)● ● ag(ρ1 ● ρ2)
= ex(ρ1)● ● ex(ρ2)● ● (ag(ρ1) ○ ag(ρ2))

Lρ1 ● ρ3M = ex(ρ1 ● ρ3)● ● ag(ρ1 ● ρ3)
= ex(ρ1)● ● ex(ρ3)● ● (ag(ρ1) ○ ag(ρ3))

From unfolding ρ2 ↭ ρ3, we get that dom(Lρ2M∣mut,imm) = dom(Lρ3M∣mut,imm). Therefore the domain constraint
follows immediately from the equalities above.

Let ℓ ∈ dom(Lρ1 ● ρ2M∣mut,imm). We want to show Lρ1 ● ρ2M(ℓ) ∼ Lρ1 ● ρ3M(ℓ). By lemma 6.36, all of the domains of
ex resources contain no imms, and therefore we get that the domains of ex(ρ1), ex(ρ2), and ag(ρ1) ○ ag(ρ2) are all
disjoint, and similarly for ρ3. Then there are 3 cases:

• ℓ ∈ dom(ex(ρ1)). Then ex(ρ1)(ℓ) = Lρ1 ● ρ2M(ℓ) = Lρ1 ● ρ3M(ℓ)
• ℓ ∈ dom(ex(ρ2)). Then from our update hypothesis, we have Lρ2M(ℓ) ∼ Lρ3M(ℓ), which is sufficient since Lρ1 ●
ρ2M(ℓ) = Lρ2M(ℓ) and Lρ1 ● ρ3M(ℓ) = Lρ3M(ℓ).

• ℓ ∈ dom(ag(ρ1) ○ ag(ρ2)). If ℓ /∈ dom(ag(ρ1)) ∩ dom(ag(ρ2)), then we are done by similar reasoning to the
previous cases. Otherwise, by the definition of ag, either ℓ ∈ dom(ρ1∣imm) or there are some ℓ′, ρ′ such that
ag(ρ1)(ℓ′) = imm(_,_, ρ′) and ℓ ∈ dom(Lρ′M○), and similarly for ρ2. Otherwise, unfolding ○, there are 4 cases:

– ag(ρ1)(ℓ) = ag(ρ2)(ℓ). Then Lρ1 ● ρ2M(ℓ) = Lρ1 ● ρ3M(ℓ).
– ag(ρ1)(ℓ) ▸◂ ag(ρ2)(ℓ). Then there are α,β, v, ρ such that ag(ρ1)(ℓ) = imm(α, v, ρ) and ag(ρ2)(ℓ) =

imm(β, v, ρ). From the update hypothesis, we get ag(ρ2)(ℓ) = ag(ρ3)(ℓ), which is sufficient with the above
to show Lρ1 ● ρ2M(ℓ) ∼ Lρ1 ● ρ3M(ℓ).

– ∃α,β, v, ρi, P̂ , Q̂ such that ag(ρ1)(ℓ) = mut(α, v, ρi, P̂) and ag(ρ2)(ℓ) = mut(β, v, ρi, Q̂). By the update
hypothesis, we have ag(ρ3)(ℓ) = mut(β,_,_, Q̂). And furthermore, by the definition of ag, there must
exist ℓ′, ρ′ such that ag(ρ2)(ℓ′) = imm(_,_, ρ′) and ag(ρ2)(ℓ) = Lρ′M○(ℓ). By the update hypothesis,
we also have ag(ρ3)(ℓ′) = ag(ρ2)(ℓ′), which implies ag(ρ3)(ℓ) = mut(β, v, ρi, Q̂). Therefore, ag(ρ1)(ℓ) ○
ag(ρ2)(ℓ) = ag(ρ1)(ℓ) ○ ag(ρ3)(ℓ) = mut(α ⊓ β, v, ρi, P̂ ∧ Q̂).

16

– ∃α, v, ρi, P̂ such that ag(ρi)(ℓ) = mut(α, v, ρi, P̂) and ag(ρ3−i)(ℓ) = own(v). If i = 1 then we’re done, be-
cause Lρ1 ● ρ2M(ℓ) = Lρ1 ● ρ3M(ℓ) = Lρ1M(ℓ). Otherwise, by the update hypothesis, Lρ3M(ℓ) = mut(α,_,_, P̂).
By the definition of ag(ρ2), there are ℓ′, ρ′ such that Lρ2M(ℓ′) = imm(_,_, ρ′) and ℓ ∈ dom(Lρ′M○). Then
by the update relation, Lρ3M(ℓ′) = imm(_,_, ρ′), and therefore ag(ρ3)(ℓ) = mut(α, v, ρi, P̂). And finally,
ag(ρ2)(ℓ) = ag(ρ3)(ℓ), so Lρ1 ● ρ2M(ℓ) = Lρ1 ● ρ3M(ℓ).

– ∃α,β, v, ρi, P̂ such that ag(ρi)(ℓ) = imm(α, v, ρi) and ag(ρ3−i)(ℓ) ∈ {own(v),mut(β, v, ρ′, P̂)}. If i = 1,
then we’re done because ag(ρ1)(ℓ) = Lρ1 ● ρ2M(ℓ) = Lρ1 ● ρ3M(ℓ). Otherwise, by the update hypothesis,
ag(ρ2)(ℓ) = ag(ρ3)(ℓ) = Lρ1 ● ρ2M(ℓ) = Lρ1 ● ρ3M(ℓ).

Lemma 6.49. If ρ1 ↭ ρ2 and ρ2 ↭ ρ3, then ρ1 ↭ ρ3.

Proof. Follows from noting that ∼ is transitive, since imms are required to be equal and muts are required to have
the same lifetime and predicates

Lemma 6.50. If @ρ ⊐ α and ρ↭ ρ′, then @ρ′ ⊐ α.

Proof. Follows from unfolding the update relation and noting that all borrows must have the same lifetime before
and after updating.

Lemma 6.51. If LρM(ℓ) = imm(α, ρi, v) and Lρ′M(ℓ) = imm(β, ρi, v) and ρ# ρ′ then Lρ ● ρ′M(ℓ) = imm(α ∪ β, ρi, v)

Proof. Follows by lemma 6.20, noting that by the definition of ○ and ●, imm(α, ρi, v) ○ imm(β, ρi, v) = imm(α, ρi, v) ●
imm(β, ρi, v) = imm(α ● β, ρi, v).

Definition 6.3. ρ ⊟ ρ′ ≜ ρ∣own,mut ● ρ′′ where

• ρ′∣own,mut = ∅

• ρ′′ ≤ ρ∣imm

• if ℓ ∈ dom(ρ∣imm) ∖ dom(ρ′) then ℓ ∈ dom(ρ′′)

• if ℓ ∈ dom(ρ∣imm) ∩ dom(ρ′) and ρ(ℓ) = imm(α, ρi, v) and ρ′(ℓ) = imm(β, ρi, v) then

– if α ∖ β = ∅, then ℓ /∈ ρ′′,
– if α ∖ β ≠ ∅, then ρ′(ℓ) = imm(α ∖ β, ρi, v)

Intuitively, ρ ⊟ ρ′ is ρ without the immutable borrows in ρ′. But since immutable borrows can alias at the same
location, “without” means removing the lifetimes of borrows from ρ′, but keeping the lifetimes only in ρ. One could
define ⊟ so that ρ′ can contain own/mut as well, but it doesn’t seem useful to do so.

This subtraction operation is used below, particularly in the following lemma, which is the foundation for the
reborrow wp rule. When we run with the reborrowed resource, in order to simulate the run with the borrowed
resource, we need to “perform surgery” on the resource to remove traces of the reborrow. In the frame rules
this surgery is “easy” (haha...), because we originally have an owned resource. Here, every location is immutably
borrowed and may be freely aliased, so the best we can do is remove the fresh parts of the reborrow. By subtracting
the reborrowed resource, we get exactly the “leftovers” we need to keep with the immutable borrow to complete the
proof.

Lemma 6.52. Let ρreb = ρ∣dom(ρ′i∣mut,own). If ρ ∈ rebα(ρ′i) and ρ ● ρe ↭ ρ′ ● ρ+ and @ρe ⊐ α and @ρ′ ⊐ α
then ρ+ = (ρ+ ⊟ ρreb) ● ρreb and @(ρ+ ⊟ ρreb) ⊐ α

Proof. Unfolding reb in ρ ∈ rebα(ρ′i), we get ρ∣own,mut = ∅, ρ′i ⊐ α, and for every ℓ ∈ dom(ρ′i∣mut,own), if ℓ ∈ dom(ρ),
then there are ρℓ, vℓ such that ρ(ℓ) = imm({α}, ρℓ, vℓ).

Let ℓ ∈ dom(ρ′i∣mut,own) ∩ dom(ρ). By the update hypothesis, there is a βℓ such that Lρ ● ρeM(ℓ) = Lρ′ ● ρ+M(ℓ) =
imm(βℓ, ρℓ, vℓ) and α ∈ βℓ. Since ρ′ ⊐ α, it must be the case that there is a β+ℓ ⊆ βℓ such that Lρ+M(ℓ) = imm(β+ℓ , ρℓ, vℓ),
with α ∈ β+ℓ . And since ρ′i, ρe ⊐ α, there are no borrows, mutable or immutable, at any lifetime shorter than α, so

17

there cannot be any borrow that contains ρ(ℓ) = ℓ↦ imm({α}, ρℓ, vℓ).
Therefore, ρ+ = (ρ+ ⊟ ℓ↦ imm({α}, ρℓ, vℓ)) ● ℓ↦ imm({α}, ρℓ, vℓ)(H1).

Note that
ρreb = ●

ℓ∈dom(ρ′i∣mut,own)∩dom(ρ)
ρ(ℓ)

Rewriting with H1 for every ℓ ∈ dom(ρ′i∣mut,own) ∩ dom(ρ), gives us the equality ρ+ = (ρ+ ⊟ ρreb) ● ρreb.
The outlives constraint @(ρ+ ⊟ρreb) ⊐ α follows from noting that all parts of the resource outlive α except for the

locations in ρ that are mut or own in ρ′i.

Lemma 6.53. If ρ ∈ rebβ(ρ′) and ρf # ℓ↦ imm(α, ρ′, v) then ρf ▸◂ ρ.

Proof. Note dom(ρ) ⊆ dom(ρ′), and ρ∣own,mut = ∅. For any ℓ ∈ dom(ρf) ∩ dom(ρ), the only way for ρf(ℓ) to not be
composable with ρ(ℓ) is for ρf(ℓ) to be own or mut. But since ρf # ℓ ↦ imm(α, ρ′, v), we know after unfolding and
applying lemmas 6.18 and 6.20 and 6.30, that ex(ρf)● ▸◂ Lρ′M○, which means overlapping with an own or mut can
never happen.

Lemma 6.54. If ρ ∈ rebβ(ρ′) and ✓ℓ↦ imm(α, ρ′, v) then dom(ag(ρ)) ⊆ dom(Lρ′M○)
Proof. By unfolding ρ ∈ rebβ(ρ′), we get that

• dom(ρ) ⊆ dom(ρ′)

• ρ∣dom(ρ′∣imm) = ρ′∣imm∣dom(ρ)

• for every ℓ ∈ dom(ρ) ∩ dom(ρ′∣own,mut), there is a ρ′′ such that ρ(ℓ) = imm(_, ρ′′,_) and either ρ′′ ≤ ρ′, or
ρ′(ℓ) = mut(_, ρ′′,_,_), and therefore dom(Lρ′′M○) ⊆ dom(Lρ′M○).

Collecting all of these, we get that every immutable borrow in ρ is in Lρ′M○, and every witness is also in LρM○.
Lemma 6.55. If ρ ∈ rebβ(ρ′) and ρf # ℓ↦ imm(α, ρ′, v) then ρf # ρ.
As a corollary, ρ# ℓ↦ imm(α, ρ′, v), which follows from setting ρf = ℓ↦ imm(α, ρ′, v).

Proof. Let ρi = imm(α, ρ′, v). By lemma 6.53, ρf ▸◂ ρ. It suffices to show that Lρf ● ρM is defined. Unfolding the
hypothesis ρf # ℓ↦ imm(α, ρ′, v) applying lemmas 6.20 and 6.18, and unfolding the definitions of ex and ag, we get
the following are all defined and equal:

Lρf ● ρiM = ex(ρf ● ρi)● ● ag(ρf ● ρi)
= ex(ρf)● ● ex(ρi)● ● (ag(ρf) ○ ag(ρi))
= ex(ρf)● ● (ag(ρf) ○ ρi ○ Lρ′M○)

By lemma 6.30 applied to the last equation, with lemma 6.36, we get ex(ρf)● ▸◂ ρi ○ Lρ′M○, ex(ρf)● ▸◂ ρi, and
ex(ρf)● ▸◂ Lρ′M○.

By unfolding our goal, applying lemmas 6.20 and 6.18, unfolding the definitions of ex and ag, and noting that
dom(ρ∣own,mut) = ∅, we get that if one of the following are defined, then all are defined and equal.

Lρf ● ρM = ex(ρf ● ρ)● ● ag(ρf ● ρ)
= ex(ρf)● ● ex(ρ)● ● (ag(ρf) ○ ag(ρ))
= ex(ρf)● ● (ag(ρf) ○ ag(ρ))

By lemma 6.37 applied to the last equation, it suffices to show ag(ρf) ▷◁ ag(ρ) and ex(ρf)● ▸◂ ag(ρ). By lemma 6.54,
dom(ag(ρ)) ⊆ dom(Lρ′M○). Now we can complete the proof:

• ag(ρf) ▷◁ ag(ρ): For any location ℓ ∈ dom(ag(ρf))∩ dom(ag(ρ)), it suffices to show ag(ρf)(ℓ) ▷◁ ag(ρ)(ℓ). We
have ag(ρf) ▷◁ Lρ′M○. This follows by unfolding reb, and noting ρ and ρ′ differ only by potentially changing
from own or mut to imm, but witnesses and values always stay the same.

18

• ex(ρf)● ▸◂ ag(ρ): Since ex(ρf)● ▸◂ Lρ′M○, and ex(ρf)●∣imm = ∅, we have that dom(ex(ρf)●) ∩ dom(Lρ′M○) = ∅.
By unfolding the definition of ▸◂, it suffices to show dom(ex(ρf)●) ∩ dom(ag(ρ)) = ∅, which is implied by
dom(ag(ρ)) ⊆ dom(Lρ′M○).

Lemma 6.56. If ρ ∈ rebβ(ρ′) and✓(ℓ↦ imm(α, ρ′, v)) then
q
ρ∣dom(ρ′∣mut,own) ● ℓ↦ imm(α, ρ′, v)

y
= Jℓ↦ imm(α, ρ′, v)K

Proof. By lemma 6.55, ρ # ℓ ↦ imm(α, ρ′, v). Then by lemma 6.11, ρ∣dom(ρ′∣mut,own) # ℓ ↦ imm(α, ρ′, v). For any ℓ,
it suffices to show

q
ρ∣dom(ρ′∣mut,own) ● ℓ↦ imm(α, ρ′, v)

y
(ℓ) = Jℓ↦ imm(α, ρ′, v)K(ℓ). By unfolding J−K, L−M, ex and ag,

and by lemma 6.20, the following are all defined and equal:

Lρ∣dom(ρ′∣mut,own) ● ℓ↦ imm(α, ρ′, v)M = ag(ρ∣dom(ρ′∣mut,own) ● ℓ↦ imm(α, ρ′, v))
= ag(ρ∣dom(ρ′∣mut,own)) ○ ag(ℓ↦ imm(α, ρ′, v))
= ag(ρ∣dom(ρ′∣mut,own)) ○ ℓ↦ imm(α, ρ′, v) ○ Lρ′M○

By lemma 6.54, dom(Lρ∣dom(ρ′∣mut,own)M) ⊆ dom(Lρ′M). Since values and witnesses must agree because of the fact that
ρ∣dom(ρ′∣mut,own) # ℓ↦ imm(α, ρ′, v), we have that the erasures must agree.

Lemma 6.57. Let ρi = ℓ↦ imm(α, ρ′i, v). If ρ ∈ rebβ(ρ′i), then Lρ∣dom(ρ′i∣imm) ● ρiM = LρiM
Proof. By unfolding reb, we have that ρ∣dom(ρ′i∣imm) ≤ ρ′i∣imm, and ρ∣dom(ρ′i∣imm)∣mut,own = ∅. Therefore, unfolding L−M, ex,
ag, and applying lemma 6.20, we have the following are equal:

Lρ∣dom(ρ′i∣imm) ● ρiM = ex(ρ∣dom(ρ′i∣imm) ● ρi)● ● ag(ρ∣dom(ρ′i∣imm) ● ρi)
= ag(ρ∣dom(ρ′i∣imm) ● ρi)
= ag(ρ∣dom(ρ′i∣imm)) ○ ag(ρi)
= ag(ρ∣dom(ρ′i∣imm)) ○ ρi ○ Lρ′iM○
= ag(ρ∣dom(ρ′i∣imm)) ○ Lρ′i∣immM○ ○ ρi ○ Lρ′i∣mut,ownM○
= Lρ′i∣immM○ ○ ρi ○ Lρ′i∣mut,ownM○
= ρi ○ Lρ′iM○
= ag(ρi)
= LρiM

Lemma 6.58. Let ρi = ℓ↦ imm(α, ρ′i, v). If

• ρ ∈ rebβ(ρ′i)

• ρ ● ρb ↭ ρ′ ● ρ+

• @ρb ⊐ β

• @ρ′ ⊐ β

• ρb # ρi

• ρ′ ● ρ+ # ρi

then Jρ ● ρb ● ρiK = Jρb ● ρiK and Jρ′ ● ρ+ ● ρiK = r
ρ′ ● (ρ+ ⊟ ρ∣dom(ρ′i∣mut,own)) ● ρi

z

19

Proof. By lemma 6.56,
r
ρ∣dom(ρ′i∣mut,own) ● ρi

z
= JρiK(H1)

. Note dom(ρ) ⊆ dom(ρ′i) by unfolding reb. By lemma 6.8 and
rewriting with H1, we have:

Jρ ● ρiK = r
ρ∣dom(ρ′i∣imm) ● ρ∣dom(ρ′i∣mut,own) ● ρi

z
=

r
ρ∣dom(ρ′i∣imm) ● ρi

z
By lemma 6.57 LρiM = Lρ∣dom(ρ′i∣imm) ● ρiM, which implies JρiK = r

ρ∣dom(ρ′i∣imm) ● ρi
z

, which combined with the equation

above Jρ ● ρiK = r
ρ∣dom(ρ′i∣imm) ● ρi

z
, means Jρ ● ρiK = JρiK(H2).

To show Jρ ● ρb ● ρiK = Jρb ● ρiK, by lemma 6.8, it suffices to show Jρ ● ρiK = JρiK, which we have by H2.
By lemma 6.52, ρ+ = (ρ+ ⊟ ρ∣dom(ρ′i∣mut,own)) ● ρ∣dom(ρ′i∣mut,own). Rewriting with this equation, we have the following

are equal: Jρ′ ● ρ+ ● ρiK = r
ρ′ ● (ρ+ ⊟ ρ∣dom(ρ′i∣mut,own)) ● ρ∣dom(ρ′i∣mut,own) ● ρi

z
To show Jρ′ ● ρ+ ● ρiK = r

ρ′ ● (ρ+ ⊟ ρ∣dom(ρ′i∣mut,own)) ● ρi
z

, by the previous equation and lemma 6.8, it suffices to showr
ρ∣dom(ρ′i∣mut,own) ● ρi

z
= JρiK, which we have by H1.

Lemma 6.59. Let ρi = ℓ↦ imm(α, ρ′i, v). If

• ρ ∈ rebβ(ρ′i)

• ρ ● ρb ↭ ρ′ ● ρ+

• @ρb ⊐ β

• @ρ′ ⊐ β

• ρb # ρi

• ρ′ ● ρ+ # ρi

then ρi ● ρb ↭ ρ′ ● (ρ+ ⊟ ρ∣dom(ρ′i∣mut,own)) ● ρi

Proof. Let ρreb = ρ∣dom(ρ′i∣mut,own). By lemma 6.52, ρ+ = (ρ+ ⊟ ρreb) ● ρreb, and @(ρ+ ⊟ ρreb) ⊐ β. And note by unfolding
reb, ρ = ρ∣dom(ρ′i∣imm) ● ρreb. Rewriting with these two equations in the update hypothesis, we get
ρ∣dom(ρ′i∣imm) ● ρreb ● ρb ↭ ρ′ ● (ρ+ ⊟ ρreb) ● ρreb.

By lemma 6.57, Lρ∣dom(ρ′i∣imm) ● ρiM = LρiM. Unfolding, this additionally implies ag(ρ∣dom(ρ′i∣imm) ● ρi) = ag(ρi). Note
that Lρb ● ρiM is defined by the hypothesis. Unfolding L−M, ex, and applying lemmas 6.18 and 6.20, we get

Lρi ● ρbM = ex(ρi ● ρb)● ● ag(ρi ● ρb)
= ex(ρi)● ● ex(ρb)● ● ag(ρi) ○ ag(ρb)
= ex(ρb)● ● ag(ρi) ○ ag(ρb)
= ex(ρb)● ● ag(ρ∣dom(ρ′i∣imm) ● ρi) ○ ag(ρb)
= ex(ρb)● ● ag(ρ∣dom(ρ′i∣imm) ● ρi ● ρb)
= Lρ∣dom(ρ′i∣imm) ● ρi ● ρbM

Rewriting with this equation, it suffices to show ρ∣dom(ρ′i∣imm) ● ρi ● ρb ↭ ρ′ ● (ρ+ ⊟ ρreb) ● ρi. Unfolding, it suffices to
show dom(Lρ∣dom(ρ′i∣imm) ● ρi ● ρbM∣imm,mut) = dom(Lρ′ ● (ρ+ ⊟ ρreb) ● ρiM∣imm,mut) and for every ℓ ∈ dom(Lρ∣dom(ρ′i∣imm) ●
ρi ● ρbM∣imm,mut), Lρ∣dom(ρ′i∣imm) ● ρi ● ρbM(ℓ) ∼ Lρ′ ● (ρ+ ⊟ ρreb) ● ρiM(ℓ). By the rewritten update hypothesis above,
we have Lρ∣dom(ρ′i∣imm) ● ρreb ● ρbM(ℓ) ∼ Lρ′ ● (ρ+ ⊟ ρreb) ● ρrebM(ℓ). If ℓ /∈ dom(ρreb), then this is immediate, by the
hypothesis and unfolding reb. If ℓ ∈ dom(ρreb), then since all components of the composition besides for ρreb outlive
β, neither have the immutable borrow at β from ρreb, and both get the borrow from ρi.

20

Lemma 6.60. If ∆ ⊢ T ⊐ @a and δ ∈ J∆K, and ρ ∈ VJT Kδ then @ρ ⊐ @aδ

Proof. Proceed by induction on the derivation ∆ ⊢ T ⊐ @a:

•

∆ ⊢ 1 ⊐ @a

T = 1. Then ρ = ∅, so we’re done.

•

∆ ⊢ T1 ⊐ @a ∆ ⊢ T2 ⊐ @a
∆ ⊢ T1 ⊗ T2 ⊐ @a

T = T1 ⊗ T2. Then there are ρ1, ρ2 such that ρ = ρ1 ● ρ2, ρ1 ∈ VJT1Kδ, and ρ2 ∈ VJT2Kδ. By the IH, @ρ1 ⊐ @aδ,
and @ρ2 ⊐ @aδ, which by []∗ completes the case.

•

∆ ⊢ T1 ⊐ @a ∆ ⊢ T2 ⊐ @a
∆ ⊢ T1 ⊕ T2 ⊐ @a

T = T1 ⊕ T2. Then either ρ ∈ VJT1Kδ, or ρ ∈ VJT2Kδ. In either case, by the IH, @ρ ⊐ @aδ.

•

∆ ⊢ T ⊐ @a
∆ ⊢ Ref T ⊐ @a

T = Ref T . Then there is a v, ℓ, ρT such that ρ = ℓ ↦ own(v) ● ρT and ρT ∈ VJT Kδ(v). By the IH, @ρT ⊐ @aδ,
and @(ℓ↦ own(v)) ⊐ @aδ, which by []∗ completes the case.

•

∆ ⊧ @b ⊐ @a
∆ ⊢ [@b]T ⊐ @a

T = [@b]T . Then ρ ∈ [@bδ]VJT Kδ. Unfolding, we have @ρ ⊐ @bδ. And by the hypothesis, @bδ ⊐ @aδ. Therefore
@ρ ⊐ @aδ.

•

∆ ⊧ @b ⊐ @a
∆ ⊢ Imm @b T ⊐ @a

T = Imm @b T . Then there is an ℓ such that ρ ∈ ℓ↦ Imm @bδ VJT Kδ. Unfolding, we have that there are β, v, ρ′
such that ρ = ℓ ↦ imm(β, v, ρ′) and VJT Kδ(v) and @bδ ⊑ ⊔β. And by the hypothesis, @bδ ⊐ @aδ. Therefore
@ρ ⊐ @aδ.

•

∆ ⊧ @b ⊐ @a
∆ ⊢Mut @b T ⊐ @a

T = Mut @b T . Then there is an ℓ such that ρ ∈ ℓ ↦ Mut @bδ VJT Kδ. Unfolding, we have that there are
β ⊒ @bδ, v, ρ′ such that ρ = ℓ↦ mut(β, v, ρ′,VJT Kδ). And by the hypothesis, @bδ ⊐ @aδ. Therefore @ρ ⊐ @aδ.

21

Lemma 6.61. If ρ′1 ∈ rebα(ρ1), ρ′2 ∈ rebα(ρ2), and ρ1 ▸◂ ρ2, then ρ′1 ● ρ′2 ∈ rebα(ρ1 ● ρ2).

Proof. Unfolding the definition of reb, the only interesting cases are locations ℓ that are in both ρ′1 and ρ′2. By the
definition of reb, ρ′1∣mut,own = ρ′2∣mut,own = ∅. And by the definition of ●, ρ1∣mut,own is disjoint from ρ2∣mut,own. Therefore,
any overlapping locations of ρ′1 and ρ′2 are in (ρ1 ● ρ2)∣imm, which means (ρ′1 ● ρ′2)(ℓ) = (ρ1 ● ρ2)(ℓ), which is sufficient
to complete the proof.

Lemma 6.62. If ∆ ⊢ Γ ⊐ @a and δ ∈ J∆K, then GJΓKδ(γ) ⊧ [@aδ]GJΓKδ(γ).
Proof. Let ρ ∈ GJΓKδ(γ)(H1). We want to show [@aδ]GJΓKδ(γ)(G1). Unfolding [@aδ] , we want to show @ρ ⊐ @aδ(G2).
Unfolding G in H1, we get ρ ∈ ⌜dom(Γ) ⊆ dom(δ)⌝ ⋆ ⍟x∈dom(Γ) VJΓ(x)Kδ(γ(x))(H2). Unfolding further, there exists ρx
such that ρ =●ρx(H3) and ∀x ∈ dom(Γ). ρx ∈ VJΓ(x)Kδ(γ(x))(H4).

By []⋆, it suffices to show ∀x ∈ dom(Γ). @ρx ⊐ @aδ. Let x ∈ dom(Γ). By lemma 6.60, it suffices to show
∆ ⊧ Γ(x) ⊐ @a. and δ ∈ J∆K, both of which follow from the hypotheses.

Lemma 6.63. α ⊐ ↓α

Proof. Unfolding the definition of ↓, ↓α = α + 1, and α < α + 1, so α ⊐ α + 1.

6.3 Frame and Anti-Frame
Theorem 6.64 (Imm Frame). ℓ↦ v ⋆ P̂ (v) ⋆ (Nα. Imm α P̂ –⋆ wp (e) {[α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)}) ⊧ wp (e) {Q̂}

Proof. Let ρ ∈ ℓ↦ v ⋆ P̂ (v) ⋆ (Nα. Imm α P̂ –⋆ wp (e) {[α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)})(H1)
.

By Lemma 6.112, Nα. ρ ∈ ℓ↦ v ⋆ P̂ (v) ⋆ (Imm α P̂ –⋆ wp (e) {[α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)})(H2)
.

We want to show ρ ∈ wp (e) {Q̂}
(G1)

. Unfolding wp, let ρf # ρ(H3). We want to show ∃ρ′ # ρf
(G2)

, ρ+ # ρ′ ● ρf (G3)
, v.

• (Jρf ● ρK, e) ⇓ (Jρf ● ρ′ ● ρ+K, v)(G4)

• ρ↭ ρ′ ● ρ+(G5)

• ρ+∣own = ∅(G6)

• ρ′ ∈ Q̂(v)
(G7)

Unfolding Nin H2, ∃β. ∀α ⊏ β. ρ ∈ [α] (ℓ↦ v ⋆ P̂ (v) ⋆ (Imm α P̂ –⋆ wp (e) {[α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)})).
Let α be some lifetime where α ⊏ β(H4). Such an α always exists because for any lifetime, the set of lifetimes shorter
than it is infinite. Then specializing to α, we have
ρ ∈ [α] (ℓ↦ v ⋆ P̂ (v) ⋆ (Imm α P̂ –⋆ wp (e) {[α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)}))(H5)

.
Applying Lemma 6.104, we have ρ ∈ [α] ℓ↦ v ⋆ [α] P̂ (v) ⋆ [α] (Imm α P̂ –⋆ wp (e) {[α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)})(H6)

.
Unfolding ⋆ and [α] in H6, ∃ρℓ, ρP̂ (v), ρb. such that

• ρ = ρℓ ● ρP̂ (v) ● ρb

• ρℓ ∈ ℓ↦ v(H7)

• ρP̂ (v) ∈ P̂ (v)
(H8)

• ρb ∈ Imm α P̂ –⋆ wp (e) {[α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)}(H9)

• @ρP̂ (v) ⊐ α
(H10)

• @ρb ⊐ α(H11)

22

Suppose we have ρi = ℓ↦ imm({α}, v, ρP̂ (v)). This resource is well formed by H10.
We establish a bunch of compatibility conditions with our starting resources and the “fictional” ρi:

• ρb # ρℓ ● ρP̂ (v)
(H12): by definition of ρ, ρb ▸◂ ρℓ ● ρP̂ (v), so we just need ✓ρ, which follows by lemma 6.10 with

✓ρ ● ρf from H3.

• ρb # ρi
(H13): by lemma 6.34 with H12 and H10.

• ρf # ρℓ ● ρP̂ (v)
(H14): by lemma 6.11 with H3.

• ρf # ρi
(H15): by lemma 6.34 with H14 and H10.

• ρf # ρb
(H16): by lemma 6.11 with H3.

• ρf # ρb ● ρi(H17): by lemma 6.15 with H15 and H16 and H13.

By the definition of –⋆ and H9 and H13, ρb ● ρi ∈ wp (e) {[α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)}.
Unfolding wp, and setting ρf = ρf and ρ = ρb ● ρi with H13 and H17 for the compatibility requirements, ∃ρ′ # ρf

(H18),
ρ+ # ρ′ ● ρf (H19), v′.

• (Jρf ● ρb ● ρiK, e) ⇓ (Jρf ● ρ′ ● ρ+K, v′)(H20)

• ρb ● ρi ↭ ρ′ ● ρ+(H21)

• ρ+∣own = ∅(H22)

• ρ′ ∈ [α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)(v′)(H23)

Unfolding [α] in H23, we have @ρ′ ⊐ α(H24) and ρ′ ∈ ℓ↦ v –⋆ P̂ (v) –⋆ Q̂(v′)(H25)
.

By lemma 6.29 with H11 and H12 and H21, ρ′ ● ρ+ = (ρ′ ● ρ+)/ℓ ● ρi.
By H24, ℓ /∈ dom(ρ′), so ρ′ ● ρ+ = ρ′ ● ρ+/ℓ ● ρi(H26).
Now we establish a bunch more compatibility results, this time for the “owned” resource after running e:

• ρ′ # ρ+
(H27) by lemma 6.11 with H19.

• ρ′ ● ρ+/ℓ# ρℓ ● ρP̂ (v)
(H28), by lemma 6.38 with H12 and H27 and H11 and H24 and H22 and H21.

• ρ′ ● ρ+/ℓ# ρf
(H29) by lemma 6.11 with H19.

• ρ′ ● ρ+/ℓ ● ρℓ ● ρP̂ (v) # ρf
(H30), by lemma 6.15 with H28 and H29 and H14.

• ρ′ ● ρℓ ● ρP̂ (v) # ρf
(H31), by lemma 6.11 with H30.

• ρ+/ℓ# ρ′ ● ρℓ ● ρP̂ (v) ● ρf
(H32), by H30.

• ρ′ # ρℓ ● ρP̂ (v)
(H33), by lemma 6.11 with H28.

By lemmas 6.26 and 6.8 with H12 and H28 and H20, (Jρf ● ρK, e) ⇓ (rρf ● ρ′ ● ρ+/ℓ ● ρℓ ● ρP̂ (v)z, v′)(H34)
.

By lemma 6.39 with H12 and H28 and H21, ρ↭ ρ′ ● ρ+/ℓ ● ρℓ ● ρP̂ (v)
(H35).

By the definition of –⋆, ρ′ ● ρℓ ● ρP̂ (v) ∈ Q̂(v′)
(H36)

.
Now we can prove our goals, setting ρ′ = ρ′ ● ρℓ ● ρP̂ (v), and ρ+ = ρ+/ℓ,

• G2: ρ′ ● ρℓ ● ρP̂ (V) # ρf by H31

• G3: ρ+/ℓ# ρ′ ● ρℓ ● ρP̂ (V) ● ρf by H32.

23

• G4: (Jρf ● ρK, e) ⇓ (rρf ● ρ′ ● ρ+/ℓ ● ρℓ ● ρP̂ (v)z, v′) by H34

• G5: ρ↭ ρ′ ● ρ+/ℓ ● ρℓ ● ρP̂ (v) by H35

• G6: ρ+∣own = ∅ by H22

• G7: ρ′ ● ρℓ ● ρP̂ (v) ∈ Q̂(v′) by H36

Theorem 6.65 (Mut Frame). If P̂ ⊧ [β] P̂ , then
ℓ↦ v ⋆ P̂ (v) ⋆ (Nα.Mut α P̂ –⋆ wp (e) {[α]∀ v′. ℓ↦ v′ –⋆ P̂ (v′) –⋆ Q̂}) ⊧ wp (e) {Q̂}

Proof. Let ρ ∈ ℓ↦ v ⋆ P̂ (v) ⋆ (Nα.Mut α P̂ –⋆ wp (e) {[α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)})(H1)
.

By Lemma 6.112, Nα. ρ ∈ ℓ↦ v ⋆ P̂ (v) ⋆ (Mut α P̂ –⋆ wp (e) {[α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)})(H2)
.

We want to show ρ ∈ wp (e) {Q̂}
(G1)

. Unfolding wp, let ρf # ρ(H3). We want to show ∃ρ′ # ρf
(G2)

, ρ+ # ρ′ ● ρf (G3)
, v.

• (Jρf ● ρK, e) ⇓ (Jρf ● ρ′ ● ρ+K, v)(G4)

• ρ↭ ρ′ ● ρ+(G5)

• ρ+∣own = ∅(G6)

• ρ′ ∈ Q̂(v)
(G7)

Unfolding Nin H2, ∃γ. ∀α ⊏ γ. ρ ∈ [α] (ℓ↦ v ⋆ P̂ (v) ⋆ (Mut α P̂ –⋆ wp (e) {[α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)})).
Let α be some lifetime where α ⊏ γ ⊓ β(H4). Such an α always exists because for any lifetime, the set of lifetimes
shorter than it is infinite. Then specializing to α, we have
ρ ∈ [α] (ℓ↦ v ⋆ P̂ (v) ⋆ (Mut α P̂ –⋆ wp (e) {[α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)}))(H5)

.
Applying Lemma 6.104, we have ρ ∈ [α] ℓ↦ v ⋆ [α] P̂ (v) ⋆ [α] (Mut α P̂ –⋆ wp (e) {[α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)})(H6)

.
Unfolding ⋆ and [α] in H6, ∃ρℓ, ρP̂ (v), ρb. such that

• ρ = ρℓ ● ρP̂ (v) ● ρb

• ρℓ ∈ ℓ↦ v(H7)

• ρP̂ (v) ∈ P̂ (v)
(H8)

• ρb ∈Mut α P̂ –⋆ wp (e) {[α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)}(H9)

• @ρP̂ (v) ⊐ α
(H10)

• @ρb ⊐ α(H11)

Suppose we have ρm = ℓ↦ mut(α, v, ρP̂ (v), P̂). This resource is well formed by H4.
We establish a bunch of compatibility conditions with our starting resources and the “fictional” ρm:

• ρb # ρℓ ● ρP̂ (v)
(H12): by definition of ρ, ρb ▸◂ ρℓ ● ρP̂ (v), so we just need ✓ρ, which follows by lemma 6.10 with

✓ρ ● ρf from H3.

• ρb # ρm
(H13): by lemma 6.24 with H12 and H10.

• ρf # ρℓ ● ρP̂ (v)
(H14): by lemma 6.11 with H3.

• ρf # ρm
(H15): by lemma 6.24 with H14 and H10.

24

• ρf # ρb
(H16): by lemma 6.11 with H3.

• ρf # ρb ● ρm(H17): by lemma 6.15 with H15 and H16 and H13.

By the definition of –⋆ and H9 and H13, ρb ● ρm ∈ wp (e) {[α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)}.
Unfolding wp, and setting ρf = ρf and ρ = ρb ● ρm with H13 and H17 for the compatibility requirements,
∃ρ′ # ρf

(H18), ρ+ # ρ′ ● ρf (H19), v′.

• (Jρf ● ρb ● ρmK, e) ⇓ (Jρf ● ρ′ ● ρ+K, v′)(H20)

• ρb ● ρm ↭ ρ′ ● ρ+(H21)

• ρ+∣own = ∅(H22)

• ρ′ ∈ [α] (ℓ↦ v –⋆ P̂ (v) –⋆ Q̂)(v′)(H23)

Unfolding [α] in H23, we have @ρ′ ⊐ α(H24) and ρ′ ∈ ℓ↦ v –⋆ P̂ (v) –⋆ Q̂(v′)(H25)
.

By lemma 6.27 with H11 and H21, ρ′ ● ρ+ = (ρ′ ● ρ+)/ℓ ● ρm.
By H24, ℓ /∈ dom(ρ′), so ρ′ ● ρ+ = ρ′ ● ρ+/ℓ ● ρm(H26).
Now we establish a bunch more compatibility results, this time for the “owned” resource after running e:

• ρ′ ● ρ+/ℓ# ρℓ ● ρP̂ (v)
(H27), by lemma 6.24 with ✓ρ′ ● ρ+ from H19 and H26.

• ρ′ ● ρ+/ℓ# ρf
(H28) by lemma 6.11 with H19.

• ρ′ ● ρ+/ℓ ● ρℓ ● ρP̂ (v) # ρf
(H29), by lemma 6.15 with H27 and H28 and H14.

• ρ′ ● ρℓ ● ρP̂ (v) # ρf
(H30), by lemma 6.11 with H29.

• ρ+/ℓ# ρ′ ● ρℓ ● ρP̂ (v) ● ρf
(H31), by H29.

• ρ′ # ρℓ ● ρP̂ (v)
(H32), by lemma 6.11 with H27.

By lemmas 6.25 and 6.8 with H12 and H27 and H20, (Jρf ● ρK, e) ⇓ (rρf ● ρ′ ● ρ+/ℓ ● ρℓ ● ρP̂ (v)z, v′)(H33)
.

By lemma 6.28 with H12 and H27 and H21, ρ↭ ρ′ ● ρ+/ℓ ● ρℓ ● ρP̂ (v)
(H34).

By the definition of –⋆, ρ′ ● ρℓ ● ρP̂ (v) ∈ Q̂(v′)
(H35)

.
Now we can prove our goals, setting ρ′ = ρ′ ● ρℓ ● ρP̂ (v), and ρ+ = ρ+/ℓ,

• G2: ρ′ ● ρℓ ● ρP̂ (V) # ρf by H30

• G3: ρ+/ℓ# ρ′ ● ρℓ ● ρP̂ (V) ● ρf by H31.

• G4: (Jρf ● ρK, e) ⇓ (rρf ● ρ′ ● ρ+/ℓ ● ρℓ ● ρP̂ (v)z, v′) by H33

• G5: ρ↭ ρ′ ● ρ+/ℓ ● ρℓ ● ρP̂ (v) by H34

• G6: ρ+∣own = ∅ by H22

• G7: ρ′ ● ρℓ ● ρP̂ (v) ∈ Q̂(v′) by H35

Theorem 6.66 (Anti Frame).
ℓ↦Mut α P̂ ⋆ (∀ v. ℓ↦ v –⋆ P̂ (v) –⋆ wp (e) {∃ v. ℓ↦ v ⋆ P̂ (v) ⋆ (ℓ↦Mut α P̂ –⋆ Q̂)}) ⊧ wp (e) {Q̂}

25

Proof. Let ρ ∈ ℓ↦Mut α P̂ ⋆ (∀ v. ℓ↦ v –⋆ P̂ (v) –⋆ wp (e) {∃ v. ℓ↦ v ⋆ P̂ (v) ⋆ (ℓ↦Mut α P̂ –⋆ Q̂)})(H1)
.

We want to show ρ ∈ wp (e) {Q̂}
(G1)

. Unfolding wp, let ρf # ρ(H2). We want to show ∃ρ′ # ρf
(G2)

, ρ+ # ρ′ ● ρf (G3)
, v.

• (Jρf ● ρK, e) ⇓ (Jρf ● ρ′ ● ρ+K, v)(G4)

• ρ↭ ρ′ ● ρ+(G5)

• ρ+∣own = ∅(G6)

• ρ′ ∈ Q̂(v)
(G7)

Unfolding ⋆ in H1, ∃ρm, ρa.

• ρ = ρm ● ρa

• ρm ∈ ℓ↦Mut α P̂
(H3)

• ρa ∈ ∀ v. ℓ↦ v –⋆ P̂ (v) –⋆ wp (e) {∃ v. ℓ↦ v ⋆ P̂ (v) ⋆ (ℓ↦Mut α P̂ –⋆ Q̂)}(H4)

Unfolding ℓ↦Mut in H3, ∃β ⊒ α, v, ρP̂ (v) ∈ P̂ (v). ρm = ℓ↦ mut(β, v, ρP̂ (v), P̂)
(H5)

.

Specializing H4 to v, ρa ∈ ℓ↦ v –⋆ P̂ (v) –⋆ wp (e) {∃ v. ℓ↦ v ⋆ P̂ (v) ⋆ (ℓ↦Mut α P̂ –⋆ Q̂)}(H6)
.

By lemma 6.11 with H2, ρm # ρa. Let ρℓ = ℓ↦ own(v). Then by lemma 6.24, ρa # ρℓ ● ρP̂ (v)
(H7).

By lemma 6.11 with H2, ρm # ρf . Then by lemma 6.24, ρf # ρℓ ● ρP̂ (v)
(H8).

By the definition of –⋆ with H7, ρa ● ρℓ ● ρP̂ (v) ∈ wp (e) {∃ v. ℓ↦ v ⋆ P̂ (v) ⋆ (ℓ↦Mut α P̂ –⋆ Q̂)}(H9)
.

Unfolding wp, and setting ρf = ρf and ρ = ρa ● ρℓ ● ρP̂ (v) with H8 for the compatibility requirement, ∃ρ′ # ρf
(H10),

ρ+ # ρ′ ● ρf (H11), v′.

• (
r
ρf ● ρa ● ρℓ ● ρP̂ (v)

z
, e) ⇓ (Jρf ● ρ′ ● ρ+K, v′)(H12)

• ρa ● ρℓ ● ρP̂ (v) ↭ ρ′ ● ρ+(H13)

• ρ+∣own = ∅(H14)

• ρ′ ∈ ∃ v. ℓ↦ v ⋆ P̂ (v) ⋆ (ℓ↦Mut α P̂ –⋆ Q̂(v′))(H15)

Unfolding ∃ and ⋆ in H15, ∃ v′′, ρ′′ℓ , ρP̂ (v′′), ρb.

• ρ′ = ρ′′ℓ ● ρP̂ (v′′) ● ρb
(H16)

• ρ′′ℓ ∈ ℓ↦ v′′
(H17)

• ρP̂ (v′′) ∈ P̂ (v
′′)
(H18)

• ρb ∈ (ℓ↦Mut α P̂ –⋆ Q̂(v′))(H19)

Let ρ′′m = ℓ↦ mut(β, v′′, ρP̂ (v′′), P̂). Note since ρm is well formed, ρ′′m is as well.
Now we establish a bunch more compatibility results for the “mutably borrowed” resource after running e:

• ρb ● ρ+ # ρ′′m
(H20): by lemma 6.11 with H11, ρ′ # ρ+, and then by lemma 6.24.

• ρf # ρb ● ρ+ ● ρ′′m
(H21): by H11, ρ′ ● ρ+ # ρf , and therefore by lemma 6.24.

• ρb # ρ′′m
(H22): by lemma 6.11 with H21.

26

• ρb ● ρ′′m # ρf
(H23): by lemma 6.11 with H21.

By lemmas 6.25 and 6.8 with H21 and H12, (Jρf ● ρK, e) ⇓ (Jρf ● ρb ● ρ+ ● ρ′′mK, v′)(H24).
By lemma 6.28 with H20 and H13, ρ↭ ρb ● ρ+ ● ρ′′m

(H25).
By the definition of –⋆ with H22, ρb ● ρ′′m ∈ Q̂(v′)

(H26)
.

Now we can prove our goals, setting ρ′ = ρb ● ρ′′m, and ρ+ = ρ+,

• G2: ρb ● ρ′′m # ρf by H23

• G3: ρ+ # ρb ● ρ′′m ● ρf by H21.

• G4: (Jρf ● ρK, e) ⇓ (Jρf ● ρb ● ρ′′m ● ρ+K, v′) by H24

• G5: ρ↭ ρb ● ρ′′m ● ρ+ by H25

• G6: ρ+∣own = ∅ by H14

• G7: ρb ● ρ′′m ∈ Q̂(v′) by H26

6.4 Standard Entailments
Lemma 6.67 (refl). P ⊧ P

Proof. By inspection.

Lemma 6.68 (trans).
P ⊧ Q Q ⊧ R

P ⊧ R

Proof. Suppose P ⊧ Q and Q ⊧ R. Let ρ be arbitrary such that P (ρ). By P ⊧ Q, Q(ρ). By Q ⊧ R, R(ρ).

Lemma 6.69 (⊺r). P ⊧ ⊺

Proof. By inspection.

Lemma 6.70 (�l). � ⊧ P

Proof. By inspection.

Lemma 6.71 (∧r).
P ⊧ Q1 P ⊧ Q2

P ⊧ Q1 ∧Q2

Proof. Suppose P ⊧ Q1 and P ⊧ Q2. Let ρ be arbitrary such that P (ρ). By P ⊧ Q1, Q1(ρ). By P ⊧ Q2, Q2(ρ).

Lemma 6.72 (∧l). P1 ∧ P2 ⊧ Pi

Proof. By inspection.

Lemma 6.73 (∨r). Pi ⊧ P1 ∨ P2

Proof. Let ρ be arbitrary such that Pi(ρ). Since i ∈ {1,2}, P1(ρ) ∨ P2(ρ).

Lemma 6.74 (∨l).
P1 ⊧ Q P2 ⊧ Q
P1 ∨ P2 ⊧ Q

Proof. Suppose P1 ⊧ Q and P2 ⊧ Q. Let ρ be arbitrary such that P1(ρ) ∨ P2(ρ). By cases on P1(ρ) ∨ P2(ρ).

Lemma 6.75 (⇒r).
P ∧Q ⊧ R
P ⊧ Q⇒ R

Proof. Suppose P ∧Q ⊧ R. Let ρ be arbitrary such that P (ρ). Suppose Q(ρ). Immediate.

27

Lemma 6.76 (⇒l). P ∧ (P ⇒ Q) ⊧ Q

Proof. By inspection.

Lemma 6.77 (∀r).
∀x. (P ⊧ Q(x))
P ⊧ ∀x. Q(x)

Proof. Suppose ∀x. P ⊧ Q̂(x). Let ρ be arbitrary such that P (ρ). Let x be arbitrary. Immediate.

Lemma 6.78 (∀l).
P (x) ⊧ Q

(∀x. P (x)) ⊧ Q

Proof. Suppose P̂ (x) ⊧ Q. Let ρ, x be arbitrary such that P̂ (x)(ρ). Immediate.

Lemma 6.79 (∃r).
P ⊧ Q(x)

P ⊧ ∃x. Q(x)

Proof. Suppose P ⊧ Q̂(x). Let ρ be arbitrary such that P (ρ). Choose x. Immediate.

Lemma 6.80 (∃l).
∀x. (P (x) ⊧ Q)
(∃x. P (x)) ⊧ Q

Proof. Suppose P̂ (x) ⊧ Q. Let x, ρ be arbitrary such that P̂ (x)(ρ). Immediate.

Lemma 6.81 (⌜⌝r).
Qmeta

P ⊧ P ⋆ ⌜Qmeta⌝

Proof. Suppose Qmeta. Let ρ be arbitrary such that P (ρ). Choose ∃ρ1, ρ2 to be ρ,∅. Then by theorem 6.4 and
inspection.

Lemma 6.82 (⌜⌝l).
Pmeta ⇒ (Q ⊧ R)
⌜Pmeta⌝ ⋆Q ⊧ R

Proof. Suppose Pmeta ⇒ (Q ⊧ R). Let ρ be arbitrary such that ρ = ∅ ● ρ2, Pmeta, and Q(ρ2) for some ρ2. By
theorem 6.2 and theorem 6.4, ρ = ρ2. Immediate.

Lemma 6.83 (!mono).
P ⊧ Q
!P ⊧ !Q

Proof. Suppose P ⊧ Q. Let ρ be arbitrary such that (!P)(ρ). By unfolding, ρ = ∅ and P (∅). Immediate.

Lemma 6.84 (!l). !P ⊧ Q

Proof. By inspection.

Lemma 6.85 (!unr). !P ⊧⊧ !P ⋆ !P

Proof. Case ⊧. Let ρ be arbitrary such that ρ = ∅ and P (∅). Then by choosing ∃ρ1, ρ2 to be ∅,∅.
Case ⊧. Let ρ be arbitrary such that ρ = ∅ ● ∅, P (∅), and P (∅). Immediate.

Lemma 6.86 (!∧). (!P) ∧Q ⊧ (!P) ⋆Q

Proof. Let ρ be arbitrary such that ρ = ∅, P (∅), and Q(∅). Choosing ∃ρ1, ρ2 to be ∅,∅. Immediate.

Lemma 6.87 (!4). !P ⊧ ! !P

Proof. By inspection.

Lemma 6.88 (!∀). ∀x. !P (x) ⊧ !∀x. P (x)

28

Proof. Suppose X ≠ ∅. Let ρ be arbitrary such that ∀x ∈X. ρ = ∅∧ P̂ (x)(ρ). From X ≠ ∅, it follows that ρ = ∅ and
∀x. P̂ (x)(ρ). Immediate.

Lemma 6.89 (!∃). ∃x. !P (x) ⊧ !∃x. P (x)

Proof. Let ρ be arbitrary such that ρ = ∅ and P̂ (x)(∅) for some x. Choose ∃x to be x. Immediate.

Lemma 6.90 (⋆com). P ⋆Q ⊧ Q ⋆ P

Proof. By inspection, using theorem 6.2.

Lemma 6.91 (⋆asc). (P ⋆Q) ⋆R ⊧ P ⋆ (Q ⋆R)

Proof. By inspection, using theorem 6.3.

Lemma 6.92 (⋆mono).
P1 ⊧ Q1 P2 ⊧ Q2

P1 ⋆ P2 ⊧ Q1 ⋆Q2

Proof. Suppose P1 ⊧ Q1 and P2 ⊧ Q2. Let ρ be arbitrary such that ρ = ρ1 ● ρ2, P1(ρ1), and P2(ρ) for some ρ1, ρ2.
It follows that Q1(ρ) and Q2(ρ). Choose ∃ρ1, ρ2 to be ρ1, ρ2. Immediate.

Lemma 6.93 (–⋆r).
P ⋆Q ⊧ R
P ⊧ Q –⋆ R

Proof. Suppose P ⋆Q ⊧ R. Let ρ be arbitrary such that P (ρ). Let ρ1, ρ2 be arbitrary such that Q(ρ1) and ρ ● ρ1 = ρ2.
By P ⋆Q ⊧ R with ρ ● ρ1, R(ρ ● ρ1).

Lemma 6.94 (–⋆l). P ⋆ (P –⋆ Q) ⊧ Q

Proof. Let ρ be arbitrary such that ρ = ρ1 ● ρ2, P (ρ1), (P –⋆ Q)(ρ2). By (P –⋆ Q)(ρ2) with ρ1, Q(ρ2 ● ρ1). By
theorem 6.2, Q(ρ1 ● ρ2).

Lemma 6.95 (↦ex). ℓ↦ v1 ⋆ ℓ↦ _ ⊧ �

Proof. By contradiction, using theorem 6.41.

6.5 Non-standard Entailments

Lemma 6.96 ([] -mono).
P ⊧ Q

[α]P ⊧ [α]Q

Proof. Suppose P ⊧ Q. Let ρ be arbitrary such that P (ρ) and @ρ ⊐ α. By P ⊧ Q and P (ρ), Q(ρ).

Lemma 6.97 ([]l). [α]P ⊧ P

Proof. By inspection.

Lemma 6.98 ([]r).
[α]P ⊧ Q
[α]P ⊧ [α]Q

Proof. By inspection.

Lemma 6.99 ([]4). [α] [β]P ⊧ [α ⊔ β]P

Proof. Case ⊧. Let ρ be arbitrary such that P (ρ), @ρ ⊐ α, and @ρ ⊐ β. By lattice laws, it follows that @p ⊐ α ⊔ β.
Case ⊧. Let ρ be arbitrary such that P (ρ), @ρ ⊐ α ⊔ β. By lattice laws, @ρ ⊐ α and @ρ ⊐ β.

Lemma 6.100 ([] ⊒).
α ⊒ β

[α]P ⊧ [β]P

Proof. Suppose α ⊒ β. Let ρ be arbitrary such that P (ρ) and @ρ ⊐ α. By transitivity, @ρ ⊐ α ⊒ β. Thus, @ρ ⊐ β.

29

Lemma 6.101 ([]∃r). P ⊧ ∃α.[α]P

Proof. Let ρ be arbitrary such that P (ρ). Choose ∃α to be ↓@ρ. By theorem 6.63, @ρ ⊐ ↓@ρ.

Lemma 6.102 ([]∀). ∀x. [α]P (x) ⊧⊧ [α]∀x. P (x)

Proof. Case: ⊧. Suppose X ≠ ∅. Let ρ be arbitrary such that ∀x ∈ X. P̂ (x)(ρ) ∧@ρ ⊐ α. Since X ≠ ∅, it follows
that @ρ ⊐ α and ∀x ∈X. P̂ (x)(ρ).

Case: ⊧. Similar to the previous case, but without the domain restriction on x.

Lemma 6.103 ([]∃). ∃x. [α]P (x) ⊧⊧ [α]∃x. P (x)

Proof. Case: ⊧. Let ρ be arbitrary such that P̂ (x)(ρ) for some x and @p ⊐ α. Choose ∃x to be x. Immediate.
Case: ⊧. Similar to previous case.

Lemma 6.104 ([]⋆). [α] (P ⋆Q) ⊧⊧ [α]P ⋆ [α]Q [α] (P ⋆Q) ⊧⊧ [α]P ⋆ [α]Q

Proof. Case ⊧. Let ρ be arbitrary such that ρ = ρ1 ● ρ2, P (ρq), Q(ρ2), and @(ρ1 ● ρ2) ⊐ α. Choose ∃ρ1, ρ2 to be
ρ1, ρ2. It suffices to show that @ρ1 ⊐ α and @ρ2 ⊐ α, which follows by theorem 6.45.

Case ⊧. Similar to previous case.

Lemma 6.105 ([]∨). [α] (P ∨Q) ⊧⊧ [α]P ∨ [α]Q

Proof. Case ⊧. Let ρ be arbitrary such that (P (ρ)∨Q(ρ))∧@ρ ⊐ α. It suffices if (P (ρ)∧@ρ ⊐ α)∨(Q(ρ)∧@ρ ⊐ α),
which follows by De Morgan’s laws.

Case ⊧. Similar to previous case.

Lemma 6.106 ([] !). [α] !P ⊧⊧ ! [α]P

Proof. By inspection.

Lemma 6.107 ([] ↦). ℓ↦ v ⊧ [α] ℓ↦ v

Proof. By inspection.

Lemma 6.108 (N-mono).
∀α ⊏ β′. ([α]P (α) ⊧ [α]Q(α))

Nα.P (α) ⊧ Nα.Q(α)

Proof.
Proof step Current goal
Unfold N. ∃β.∀α ⊏ β.[α]P (α) ⊧ ∃β.∀α ⊏ β.[α]Q(α)
Apply ∃L. Choose β ∶= β ⊓ β′ on right. Fix α ⊏ β ⊓ β′. (∀α ⊏ β.[α]P (α)) ⊧ [α]Q(α)
Choose α ∶= α on left. [α]P (α) ⊧ [α]Q(α)
Follows by assumption because α ⊏ β′.

Lemma 6.109 (Nl).
∀α ⊏ β′. ([α]P (α) ⊧ Q)

Nα.P (α) ⊧ Q

Proof.
Proof step Current goal
Unfold N. ∃β.∀α ⊏ β.[α]P (α) ⊧ Q
Fix β arbitrary. ∀α ⊏ β.[α]P (α) ⊧ Q
Choose arbitrary α ⊏ β ⊓ β′, always possible ⊏ is infinitely decreasing. [α]P (α) ⊧ Q
Follows by assumption because α ⊏ β′.

Lemma 6.110 (Nr). P ⊧ Nα.P

30

Proof.
Proof step Current goal
Unfold N. P ⊧ ∃β. ∀α ⊏ β. [α]P
Apply []∃R on left. ∃β.[β]P ⊧ ∃β. ∀α ⊏ β. [α]P
Fix β arbitrary. [β]P ⊧ ∃β. ∀α ⊏ β. [α]P
Choose β ∶= β. [β]P ⊧ ∀α ⊏ β. [α]P
Fix α ⊏ β arbitrary. [β]P ⊧ [α]P
Apply [] ⊒.

Lemma 6.111 (N⋆). Nα.P (α) ⋆ Nα.Q(α) ⊧ Nα. (P (α) ⋆Q(α))

Proof.
Proof step Current goal
Unfold N. (∃βP . ∀αP ⊏ βP . P (αP)) ⋆ (∃βQ. ∀αQ ⊏ βQ. Q(αQ)) ⊧ ∃β. ∀α ⊏ β. (P (α) ⋆Q(α))
Fix arbitrary βP , βQ. (∀αP ⊏ βP . P (αP)) ⋆ (∀αQ ⊏ βQ. Q(αQ)) ⊧ ∃β. ∀α ⊏ β. (P (α) ⋆Q(α))
Choose β ∶= βP ⊓ βQ. (∀αP ⊏ βP . P (αP)) ⋆ (∀αQ ⊏ βQ. Q(αQ)) ⊧ ∀α ⊏ βP ⊓ βQ. (P (α) ⋆Q(α))
Fix α ⊏ βP ⊓ βQ. (∀αP ⊏ βP . P (αP)) ⋆ (∀αQ ⊏ βQ. Q(αQ)) ⊧ P (α) ⋆Q(α)
Choose αP ∶= α,αQ ∶= α. P (α) ⋆Q(α) ⊧ P (α) ⋆Q(α)

Lemma 6.112 (Nf). P ⋆ Nα.Q(α) ⊧ Nα. ([α]P ⋆Q(α))

Proof.

P ⋆ Nα.Q(α) ⊧ ∃β. [β]P ⋆ Nα.Q(α) by []∃r
⊧ ∃β. [β] [β]P ⋆ Nα.Q(α) by []4
⊧ (∃β. ∀α ⊏ β. [α] [α]P) ⋆ Nα.Q(α) by [] -⊒ and monotonicity
⊧ Nα. [α]P ⋆ Nα.Q(α) definition of N
⊧ Nα. ([α]P ⋆Q(α)) by N⋆

Lemma 6.113 (I-mono).
∀ v. P̂ (v) ⊧ Q̂(v)
ℓ↦Iα P̂ ⊧ ℓ↦Iα Q̂

Proof. Suppose ∀ v. P̂ (v) ⊧ Q̂(v). Let ρ be arbitrary such that ρ = ℓ↦ imm(β̃, v, ρ′), P̂ (v)(ρ′), and α ⊑⊔β̃ for some
v, ρ′, β̃. Choose ∃ β̃, v, ρ′ to be β̃, v, ρ′. It suffices if Q̂(v)(ρ′), which follows by ∀ v. P̂ (v) ⊧ Q̂(v) and P̂ (v)(ρ′).

Lemma 6.114 (I ⊒).
α ⊒ β

ℓ↦Iα P̂ ⊧ ℓ↦Iβ P̂

Proof. Suppose α ⊒ β. Let ρ be arbitrary such that ρ = ℓ ↦ imm(β̃, v, ρ′), P̂ (v)(ρ′), and α ⊑⊔β̃ for some v, ρ′, β̃.
Choose ∃β,̃v, ρ′ to be β,̃v, ρ′. It suffices if β ⊑⊔β̃. By transitivity, it follows that β ⊑ α ⊑⊔β̃.

Lemma 6.115 (I-ag). ℓ↦Iα P̂ ⋆ ℓ↦Iβ Q̂ ⊧ ℓ↦Iα⊔β (P̂ ∧ Q̂)

Proof. Let ρ be arbitrary such that ρ = ρ1 ● ρ2, ρ1 = ℓ ↦ imm(β̃1, v1, ρ′1), P̂ (v1)(ρ′1), α ⊑ ⊔β̃1, ρ2 = ℓ ↦
imm(β̃2, v2, ρ′2), Q̂(v2)(ρ′2), and β ⊑⊔β̃2 for some ρ1, ρ2, β̃1, β̃2, v1, v2, ρ′1, and ρ′2. We must show ∃ β̃, v, ρ′. ρ = ℓ↦
imm(β̃, v, ρ′) ∧ P̂ (v)(ρ′) ∧ Q̂(v)(ρ′) ∧ α ⊔ β ⊑⊔β̃.

By definition, ρ = ρ1 ● ρ2 = ℓ ↦ imm(β̃1, v1, ρ′1) ● ℓ ↦ imm(β̃2, v2, ρ′2) = ℓ ↦ imm(β̃1 ∪ β̃2, v1, ρ′1), v1 = v2, and
ρ′1 = ρ′2. Choose ∃ β̃, v, ρ′ to be β̃1 ∪ β̃2, v1, ρ′1. All proof obligations are immediate except α ⊔ β ⊑⊔(β̃1 ∪ β̃2). This
follows from the lattice laws given α ⊑ β̃1 and β ⊑ β̃2.

Lemma 6.116 (I-dup). ℓ↦Iα P̂ ⊧ ℓ↦Iα P̂ ⋆ ℓ↦Iα P̂

Proof. Let ρ be arbitrary such that ρ = ℓ ↦ imm(β̃, v, ρ′), P̂ (v)(ρ′), and α ⊑⊔β̃ for some β̃, v, ρ′. Choose ∃ρ1, ρ2
to be ρ, ρ. It suffices if ρ = ρ ● ρ, which follows from theorem 6.43.

31

Lemma 6.117 (M-inv).
∀ v. P̂ (v) ⊧⊧ Q̂(v)

ℓ↦Mα P̂ ⊧⊧ ℓ↦Mα Q̂

Proof. By inspection, using functional extensionality.

Lemma 6.118 (M ⊒).
α ⊒ β

ℓ↦Mα P̂ ⊧ ℓ↦Mβ P̂

Proof. Suppose α ⊒ β. Let ρ be arbitrary such that ρ = ℓ ↦ mut(β0, v, ρ′, P̂) for some β0 ⊒ α, v, ρ′. Choose ∃β, v, ρ′
to be β0, v, ρ′. It suffices if β0 ⊒ β. By transitivity, β0 ⊒ α ⊒ β.

Lemma 6.119 (M-ex). ℓ↦Mα P̂ ⋆ ℓ↦ _ ⊧ �

Proof. By inspection, using theorem 6.42.

6.6 Reborrowing Entailments

Lemma 6.120 (↺-mono).
P ⊧ Q

↺αP ⊧ ↺αQ

Proof. Suppose P ⊧ Q. Let ρ be arbitrary such that P (ρ′) for some ρ′ ∈ rebα(ρ). Choose ρ′. By P ⊧ Q with ρ′ and
P (ρ′), we obtain Q(ρ′).

Lemma 6.121 (↺↦). ℓ↦ v ⋆ [α] P̂ (v) ⊧ ↺αℓ↦Iα P̂

Proof. Let ρ be arbitrary such that ρ = ρ1 ● ρ2, ρ1 = ℓ↦ own(v), P̂ (v)(ρ2), and @ρ2 ⊐ α for some ρ1 and ρ2. Choose
∃ρ′ ∈ rebα(ρ) to be ℓ↦ imm({α}, v, ρ2). Choose ∃ β̃, v, ρ′ to be {α}, v, ρ2. Most proof obligations are immediate, but
it remains to show ℓ↦ imm({α}, v, ρ2) ∈ rebα(ρ). Choose ∃π to be ℓ↦ ρ. It suffices if:

• @ρ ⊐ α: Since ρ = ℓ ↦ own(v) ● ρ2, it suffices if @(ℓ ↦ own(v)) ⊐ α, which holds by definition, and @ρ2 ⊐ α,
which is immediate.

• ρ ≥●ℓ∈dom(π) π(ℓ): Since dom(π) = {ℓ} and π(ℓ) = ρ, this is simply equivalent to ρ ≥ ρ.

• ∀ ℓ ∈ dom(π), v, ρ′′. . . . : Since dom(π) = {ℓ} and ρ(ℓ) = own(v), this simplifies to (ℓ ↦ imm({α}, v, ρ2))(ℓ) =
imm({α}, v, π(ℓ) ∖ ℓ), which holds by inspection.

Lemma 6.122 (↺m). [α] (ℓ↦Mβ P̂) ⊧ ↺α(ℓ↦Iα P̂)

Proof. Let ρ be arbitrary such that ρ = ℓ ↦ mut(β, v, ρ′, P̂) (which implies P̂ (v)) and @ρ ⊐ α for some β ⊒ α, v,
and ρ′. Choose ∃ρ′ ∈ rebα(ρ) to be ℓ↦ imm({α}, v, ρ′). Choose ∃ β̃, v, ρ′ to be {α}, v, ρ′. Most proof obligations are
immediate, but it remains to show ℓ↦ imm({α}, v, ρ′) ∈ rebα(ρ). Choose ∃π to be ℓ↦ ρ. It suffices if:

• @ρ ⊐ α: Immediate.

• ρ ≥●ℓ∈dom(π) π(ℓ): Since dom(π) = {ℓ} and π(ℓ) = ρ, this is simply equivalent to ρ ≥ ρ.

• ∀ ℓ ∈ dom(π), v, ρ′′. . . . : Since dom(π) = {ℓ} and ρ(ℓ) = mut(β, v, ρ′, P̂), this can be simplified to (ℓ ↦
imm({α}, v, ρ′))(ℓ) = imm({α}, v, ρ′) ∧ dom(π(ℓ)) = {ℓ}, which holds by inspection.

Lemma 6.123 (↺i). [α] (ℓ↦Iβ P̂) ⊧ ↺α(ℓ↦Iβ P̂)

Proof. Let ρ be arbitrary such that ρ = ℓ ↦ imm(β̃, v, ρ′), P̂ (v)(ρ′), β ⊒ ⊔β̃, and @ρ ⊐ α for some β̃, v, and ρ′.
Choose ∃ρ′ ∈ rebα(ρ) to be ℓ ↦ imm(β̃, v, ρ′). Choose ∃ β̃, v, ρ′ to be β̃, v, ρ′. Most proof obligations are immediate,
but it remains to show ℓ↦ imm(β̃, v, ρ′) ∈ rebα(ρ). Choose ∃π to be ℓ↦ ρ. It suffices if:

32

• @ρ ⊐ α: Immediate.

• ρ ≥●ℓ∈dom(π) π(ℓ): Since dom(π) = {ℓ} and π(ℓ) = ρ, this is simply equivalent to ρ ≥ ρ.

• ∀ ℓ ∈ dom(π), v, ρ′′. . . . : Since dom(π) = {ℓ} and ρ(ℓ) = imm(β̃, v, ρ′), this simplifies to (ℓ↦ imm(β̃, v, ρ′))(ℓ) =
ρ(ℓ) ∧ dom(π(ℓ)) = {ℓ}, which holds by inspection.

Lemma 6.124 (↺ ⌜⌝). ⌜P ⌝ ⊧ ↺α ⌜P ⌝

Proof. Let ρ be arbitrary such that ρ = ∅ and P . Choose ∃ρ′ ∈ rebα(ρ) to be ∅. Most proof obligations are
immediate, but it remains to show ∅ ∈ rebα(ρ). Choose ∃π to be ∅. Since dom(∅) = ∅, this simplifies to @∅ ⊐ α
and ∅ ≥●ℓ∈dom(π) π(ℓ), which hold by definition.

Lemma 6.125 (↺⋆). ↺αP ⋆↺αQ ⊧ ↺α(P ⋆Q)

Proof. Let ρ be arbitrary such that ρ = ρ1 ● ρ2, P (ρ′1), and Q(ρ′2) for some ρ1, ρ2, ρ′1 ∈ rebα(ρ1), and ρ′2 ∈ rebα(ρ2).
By theorem 6.61, ρ′1 ● ρ′2 ∈ rebα(ρ1 ● ρ2). Choose ∃ρ′ ∈ rebα(ρ) to be ρ′1 ● ρ′2. The remaining obligations are
immediate.

Lemma 6.126 (↺∨). ↺αP ∨↺αQ ⊧⊧ ↺α(P ∨Q)

Proof. Case ⊧. Let ρ be arbitrary such that (∃ρ′ ∈ rebα(ρ).P (ρ′)) ∨ (∃ρ′ ∈ rebα(ρ).Q(ρ′)).

• Case: P (ρ′) for some ρ′ ∈ rebα(ρ). Choose ∃ρ′ ∈ rebα(ρ) to be ρ′ and discharge the disjunction via the left side.

• Case: Q(ρ′) for some ρ′ ∈ rebα(ρ). Choose ∃ρ′ ∈ rebα(ρ) to be ρ′ and discharge the disjunction via the right
side.

Case ⊧. Let ρ be arbitrary such that P (ρ′) ∨Q(ρ′) for some ρ′ ∈ rebα(ρ).

• Case: P (ρ′). Discharge the disjunction via the left side and choose ∃ρ′ ∈ rebα(ρ) to be ρ′.

• Case: Q(ρ′). Discharge the disjunction via the right side and choose ∃ρ′ ∈ rebα(ρ) to be ρ′.

Lemma 6.127 (↺-weak). ↺α(P ⋆Q) ⊧ ↺αP

Proof. Let ρ be arbitrary such that ρ′ = ρ′1 ● ρ′2 and P (ρ′1) and Q(ρ′2) for some ρ′ ∈ rebα(ρ), ρ′1, and ρ′2. Choose
∃ρ′ ∈ rebα(ρ) to be ρ′1. P (ρ′1) is immediate, but it remains to show ρ′1 ∈ rebα(ρ).

Unfold ρ′ ∈ rebα(ρ) and we obtain @ρ ⊐ α(H1), ρ ≥●ℓ∈dom(π) π(ℓ)
(H2), and ∀ ℓ ∈ dom(π), v, ρ′′. F (ℓ, v, ρ, ρ′, ρ′′, π)(H3)

for some π ∶ dom(ρ′)→ Res, where

F (ℓ, v, ρ, ρ′, ρ′′, π) = ℓ ∈ dom(π(ℓ)) ∧
(ρ(ℓ) = own(v)⇒ ρ′(ℓ) = imm({α}, v, π(ℓ) ∖ ℓ)) ∧
(ρ(ℓ) = mut(−, v, ρ′′,−)⇒ ρ′(ℓ) = imm({α}, v, ρ′′) ∧ dom(π(ℓ)) = {ℓ}) ∧
(ρ(ℓ) = imm(−,−,−)⇒ ρ′(ℓ) = ρ(ℓ) ∧ dom(π(ℓ)) = {ℓ})

Let π′ be π with its domain restricted to dom(ρ′1). Choose ∃π to be π′. It suffices if:

• @ρ ⊐ α: Immediate by H1.

• ρ ≥●ℓ∈dom(π′) π
′(ℓ): Since π′ ⊆ π, ρ ≥●ℓ∈dom(π) π(ℓ) ≥●ℓ∈dom(π′) π

′(ℓ).

• ∀ ℓ ∈ dom(π′), v, ρ′′. F (ℓ, v, ρ, ρ′1, ρ′′, π′): Let ℓ ∈ dom(π′), v, ρ′′ be arbitrary. Because ℓ ∈ dom(π′) implies
ℓ ∈ dom(π), we can instantiate H3 with ℓ, v, ρ′′ to obtain F (ℓ, v, ρ, ρ′, ρ′′, π). By inspection of F , we observe
that all usages of π are of the form π(ℓ). Since π(ℓ) = π′(ℓ), we obtain F (ℓ, v, ρ, ρ′1, ρ′′, π′).

33

Lemma 6.128 (↺∃). ∃x. ↺αP (x) ⊧⊧ ↺α∃x. P (x)

Proof. Case ⊧. Let ρ be arbitrary such that P̂ (x)(ρ′) for some x and ρ′ ∈ rebα(ρ). Choose ∃x to be x and
∃ρ′ ∈ rebα(ρ) to be ρ′. P̂ (x)(ρ′) is immediate.

Case ⊧. Let ρ be arbitrary such that P̂ (x)(ρ′) for some ρ′ ∈ rebα(ρ) and x. Choose ∃ρ′ ∈ rebα(ρ) to be ρ′ and
∃x to be x. P̂ (x)(ρ′) is immediate.

Lemma 6.129 (↺∀). ∀x. ↺αP (x) ⊧⊧ ↺α∀x. P (x)

Proof. Let ρ be arbitrary such that ∀x. P̂ (x)(ρ′) for some ρ′ ∈ rebα(ρ). Let x be arbitrary and choose ∃ρ′ ∈ rebα(ρ)
to be ρ′. Instantiate ∀x. P̂ (x)(ρ′) with x to obtain P̂ (x)(ρ′).

Lemma 6.130. P ⊧ ↺αemp

Proof. Suppose ρ ∈ P . Then ∅ vacuously satisfies the conditions needed to be a reborrowed version of ρ, so ρ ∈
↺αemp.

Lemma 6.131 (↺V1). [δ(′a)]VJT Kδ(v) ⊧ ↺δ(′a)VJImm ′a T Kδ(v) for all T ≠ Unk.

Proof. By induction on T . Let δ(′a) = α.

• Case T = 1:
Goal is [α]VJ1Kδ(v) ⊧ ↺αVJImm ′a 1Kδ(v).
Unfold: [α] ⌜v = ()⌝ ⊧ ↺α ⌜v = ()⌝
Apply [] -L and ↺-⌜⌝.

• Case T = T1 ⊗ T2:
Goal is [α]VJT1 ⊗ T2Kδ(v) ⊧ ↺αVJImm ′a T1 ⊗ Imm ′a T2Kδ(v).
Unfold.
[α]∃ v1, v2. ⌜v = (v1, v2)⌝ ⋆ VJT1Kδ(v1) ⋆ VJT2Kδ(v2)
⊧ ↺α∃ v1, v2. ⌜v = (v1, v2)⌝ ⋆ VJImm ′a T1Kδ(v1) ⋆ VJImm ′a T2Kδ(v2).

Apply []∃ , ∃L, []⋆, []L.
⌜v = (v1, v2)⌝ ⋆ [α]VJT1Kδ(v1) ⋆ [α]VJT2Kδ(v2)
⊧ ↺α∃ v1, v2. ⌜v = (v1, v2)⌝ ⋆ VJImm ′a T1Kδ(v1) ⋆ VJImm ′a T2Kδ(v2).

Apply ↺∃ , ∃R, ↺⋆, ↺ ⌜⌝.
⌜v = (v1, v2)⌝ ⋆ [α]VJT1Kδ(v1) ⋆ [α]VJT2Kδ(v2)
⊧ ⌜v = (v1, v2)⌝ ⋆↺αVJImm ′a T1Kδ(v1) ⋆↺αVJImm ′a T2Kδ(v2).

Apply IH.

• Case T = T1 ⊕ T2: Analogous to T = T1 ⊗ T2 case, using ↺∨ in place of ↺⋆.

• Case T = T1⊸T2:
Goal is [α]VJT1⊸T2Kδ(v) ⊧ ↺αVJUnkKδ(v).
Unfold: [α]VJT1⊸T2Kδ(v) ⊧ ↺αemp.
Apply theorem 6.130.

• Case T = ∀ ′a ⊏ @b.T ′: analogous to case T = T1⊸T2.

• Case T = [@a]T :
Goal is [α]VJ[@a]T Kδ(v) ⊧ ↺αVJImm ′a T Kδ(v).
Unfold: [α] [@aδ]VJT Kδ(v) ⊧ ↺αVJImm ′a T Kδ(v).
Apply [] L: [α]VJT Kδ(v) ⊧ ↺αVJImm ′a T Kδ(v).
Apply IH.

• Case T = Ref T ′:
Goal is [α]VJRef T ′Kδ(v) ⊧ ↺αVJImm ′a T ′Kδ(v).
Unfold: [α]∃ ℓ, v′. ⌜v = ℓ⌝ ⋆ l ↦ v′ ⋆ VJT ′Kδ(v′) ⊧ ↺αVJImm ′a T ′Kδ(v).
Apply []∃ , ∃L, []⋆, []L to get ⌜v = ℓ⌝ ⋆ l ↦ v′ ⋆ [α]VJT ′Kδ(v′) ⊧ ↺αVJImm ′a T ′Kδ(v).
Apply IH: ⌜v = ℓ⌝ ⋆ l ↦ v′ ⋆↺αVJImm ′a T ′Kδ(v′) ⊧ ↺αVJImm ′a T ′Kδ(v).

34

Apply theorem 6.130: ↺αemp ⋆↺αVJImm ′a T ′Kδ(v′) ⊧ ↺αVJImm ′a T ′Kδ(v).
Apply ↺⋆: ↺α(emp ⋆↺αVJImm ′a T ′Kδ(v′)) ⊧ ↺αVJImm ′a T ′Kδ(v).
Done because emp is a unit for ⋆.

• Case T = Imm @b T ′:
Goal is [α]VJImm @b T ′Kδ(v) ⊧ ↺αVJImm @b T ′Kδ(v).
Unfold: [α]∃ ℓ. ⌜v = ℓ⌝ ⋆ ℓ↦I@bδ VJT ′Kδ ⊧ ↺αVJImm @b T ′Kδ(v).
Apply []∃ , []⋆, []L: ∃ ℓ. ⌜v = ℓ⌝ ⋆ [α] (ℓ↦I@bδ VJT ′Kδ) ⊧ ↺αVJImm @b T ′Kδ(v).
Apply ↺I: ∃ ℓ. ⌜v = ℓ⌝ ⋆↺α(ℓ↦I@bδ VJT ′Kδ) ⊧ ↺αVJImm @b T ′Kδ(v).
Apply ↺ ⌜⌝, ↺⋆, ↺∃ : ↺α∃ ℓ. ⌜v = ℓ⌝ ⋆ (ℓ↦I@bδ VJT ′Kδ) ⊧ ↺αVJImm @b T ′Kδ(v).
Fold the definition of VJImm @b T ′K.

• Case T =Mut @b T :
Goal is [α]VJMut @b T ′Kδ(v) ⊧ ↺αVJImm α T ′Kδ(v).
Unfold: [α]∃ ℓ. ⌜v = ℓ⌝ ⋆ ℓ↦M@bδ VJT ′Kδ ⊧ ↺αVJImm α T ′Kδ(v).
Apply []∃ , []⋆, []L: ∃ ℓ. ⌜v = ℓ⌝ ⋆ [α] (ℓ↦M@bδ VJT ′Kδ) ⊧ ↺αVJImm α T ′Kδ(v).
Apply ↺M: ∃ ℓ. ⌜v = ℓ⌝ ⋆↺α(ℓ↦Iα VJT ′Kδ) ⊧ ↺αVJImm α T ′Kδ(v).
Apply ↺ ⌜⌝, ↺⋆, ↺∃ : ↺α∃ ℓ. ⌜v = ℓ⌝ ⋆ (ℓ↦Iα VJT ′Kδ) ⊧ ↺αVJImm α T ′Kδ(v).
Fold the definition of VJImm α T ′K.

• Case T = Unk: impossible.

Lemma 6.132 (↺V2). If ′a not free in T then VJT Kδ(v) ⊧ Nα.↺αVJImm ′a T Kδ[′a↦α](v)
Proof.

Proof step Current goal
Apply NR, Nmono and fix α ⊏⊓δ arbitrary. [α]VJT Kδ(v) ⊧ [α]↺αVJImm ′a T Kδ[′a↦α](v)
Apply []R. [α]VJT Kδ(v) ⊧ ↺αVJImm ′a T Kδ[′a↦α](v)
Have VJT Kδ = VJT Kδ[′a↦α] because ′a not free in T . [α]VJT Kδ[′a↦α](v) ⊧ ↺αVJImm ′a T Kδ[′a↦α](v)
Apply ↺V1.

Lemma 6.133 (↺V3). If ′b not free in T then ℓ↦Iα VJT Kδ ⊧ ℓ↦Iα Nβ.↺βVJImm ′b T Kδ[′b↦β]
Proof. Apply ↺V2 and I-mono.

Lemma 6.134. ⌜x = y⌝ ⋆ Nα.↺αVJImm ′a T Kδ[′a↦α] ⊧ Nα.↺α(⌜x = y⌝ ⋆ VJImm ′a T Kδ[′a↦α])
Proof. By unfolding and substituting for x = y.

6.7 Weakest Precondition Rules
Lemma 6.135 (wp-bind). wp (e) {v.wp (K[v]) {Q̂}} ⊧ wp (K[e]) {Q̂}

Proof. Let ρ be arbitrary such that wp (e) {v. wp (K[v]) {Q̂}}(ρ)
(H1)

. We must show wp (K[e]) {Q̂} (ρ)
(G1)

. Unfold
wp in G1 and let ρf # ρ be arbitrary. Instantiate H1 with ρf and we have (Jρf ● ρK, e)Ð→∗ (Jρf ● ρ′ ● ρ+K, v)(H2),
ρ↭ ρ′ ● ρ+(H3), ρ+ ∣ own = ∅(H4), and wp (K[v]) {Q̂} (ρ)

(H5)
for some ρ′ # ρf

(H6), ρ+ # ρf ● ρ′(H7), v.
Instantiate H5 with ρf ● ρ+. Note that we have ρf ● ρ+ # ρ′ by H7 and theorem 6.46. Then we have

(Jρf ● ρ+ ● ρ′K,K[v])Ð→∗ (Jρf ● ρ+ ● ρ++ ● ρ′′K, v′)(H8), ρ′ ↭ ρ′′ ● ρ++(H9), ρ++ ∣ own = ∅(H10), and Q̂(v′)(ρ′′)
(H11)

for
some ρ′′ # ρf ● ρ+(H12), ρ++ # ρf ● ρ+ ● ρ′′(H13), v′.

In G1, choose ∃ρ′, ρ+, v to be ρ′′, ρ+ ● ρ++, v′. It suffices if:

• ρ′′ # ρf : By H12 and theorem 6.11.

• ρ+ ● ρ++ # ρf ● ρ′′: By H13 and theorem 6.46.

35

• (Jρf ● ρK,K[e])Ð→∗ (Jρf ● ρ+ ● ρ′′ ● ρ++K, v′): By transitivity with H2 and H8.

• ρ↭ ρ′′ ● ρ+ ● ρ++: By H3, H9, H13, theorem 6.48, and theorem 6.49.

• ρ+ ● ρ++ ∣ own = ∅: By H4 and H10.

• Q̂(v′)(ρ′′): By H11.

Lemma 6.136 (wp-val). Q̂(v) ⊧⊧ wp (v) {Q̂}

Proof. Let ρ be arbitrary such that Q̂(v)(ρ)
(H1)

. Let ρf # ρ(H2) be arbitrary. Choose ∃ρ′, ρ+, v to be ρ,∅, v. It
suffices if:

• ρ# ρf : By H2.

• ∅# ρf ● ρ′: By definition.

• (Jρf ● ρK, v)Ð→∗ (Jρf ● ρ ● ∅K, v): By theorem 6.4 and reflexivity.

• ρ↭ ρ ● ∅: By theorem 6.4 and theorem 6.47.

• ∅ ∣ own = ∅: By definition.

• Q̂(v)(ρ): By H1.

Lemma 6.137 (wp1). wp (e) {Q̂} ⊧ wp ((); e) {Q̂}

Proof. Let ρ be arbitrary such that wp (e) {Q̂} (ρ)
(H1)

. Let ρf # ρ(H2) be arbitrary. Instantiate H1 with ρf and we
have (Jρf ● ρK, e)Ð→∗ (Jρf ● ρ′ ● ρ+K, v)(H3), ρ↭ ρ′ ● ρ+(H4), ρ+ ∣ own = ∅(H5), and Q̂(v)(ρ′)

(H6)
for some ρ′ # ρf

(H7),
ρ+ # ρf ● ρ′(H8), v.

Choose ∃ρ′, ρ+, v to be ρ′, ρ+, v. Most of the resulting obligations are immediate, but we must show that
(Jρf ● ρK, (); e) Ð→∗ (Jρf ● ρ′ ● ρf K, v). By the operational semantics, (Jρf ● ρK, (); e) Ð→ (Jρf ● ρK, e). Then by
H3.

Lemma 6.138 (wp⊗). wp (e[v1/x1, v2/x2]) {Q̂} ⊧ wp (let (x1, x2) = (v1, v2); e) {Q̂}

Proof. Let ρ be arbitrary such that wp (e[v1/x1, v2/x2]) {Q̂} (ρ)
(H1)

. Let ρf ● ρ(H2) be arbitrary. Instantiate H1
with ρf and we have (Jρf ● ρK, e[v1/x1, v2/x2])Ð→∗ (Jρf ● ρ′ ● ρ+K, v)(H3), ρ↭ ρ′ ● ρ+(H4), ρ+ ∣ own = ∅(H5), and
Q̂(v)(ρ′)

(H6)
for some ρ′ # ρf

(H7), ρ+ # ρf ● ρ′(H8), v.
Choose ∃ρ′, ρ+, v to be ρ′, ρ+, v. Most of the resulting obligations are immediate, but we must show that

(Jρf ● ρK, let (x1, x2) = (v1, v2); e) Ð→∗ (Jρf ● ρ′ ● ρ+K, v). By the operational semantics, (Jρf ● ρK, let (x1, x2) =
(v1, v2); e)Ð→ (Jρf ● ρK, e[v1/x1, v2/x2]). Then by H3.

Lemma 6.139 (wp⊕). wp (ei[v/xi]) {Q̂} ⊧ wp (match i v {1x1 ⇒ e1 ∣ 2x2 ⇒ e2}){Q̂}

Proof. Let ρ be arbitrary such that wp (ei[v/xi]) {Q̂} (ρ)
(H1)

. Let ρf # ρ(H2) be arbitrary. Instantiate H1 with ρf

and we have (Jρf ● ρK, ei[v/xi])Ð→∗ (Jρf ● ρ′ ● ρ+K, v)(H3), ρ↭ ρ′ ● ρ+(H4), ρ+ ∣ own = ∅(H5), and Q̂(v)(ρ′)
(H6)

for
some ρ′ # ρf

(H7), ρ+ # ρf ● ρ′(H8), v.
Choose ∃ρ′, ρ+, v to be ρ′, ρ+, v. Most of the resulting obligations are immediate, but we must show that

(Jρf ● ρK,match iv {1x1 ⇒ e1 ∣ 2x2 ⇒ e2}) Ð→∗ (Jρf ● ρ′ ● ρ+K, v). By the operational semantics, it follows that
(Jρf ● ρK,match iv {1x1 ⇒ e1 ∣ 2x2 ⇒ e2})Ð→ (Jρf ● ρK, ei[v/xi]). Then by H3.

Lemma 6.140 (wp⊸). wp (e[v/x]) {Q̂} ⊧ wp ((λx.e) v) {Q̂}

36

Proof. Let ρ be arbitrary such that wp (e[v/x]) {Q̂} (ρ)
(H1)

. Let ρf # ρ(H2) be arbitrary. Instantiate H1 with ρf and
we have (Jρf ● ρK, e[v/x])Ð→∗ (Jρf ● ρ′ ● ρ+K, v)(H3), ρ↭ ρ′ ● ρ+(H4), ρ+ ∣ own = ∅(H5), and Q̂(v)(ρ′)

(H6)
for some

ρ′ # ρf
(H7), ρ+ # ρf ● ρ′(H8), and v.

Choose ∃ρ′, ρ+, v to be ρ′, ρ+, v. Most of the resulting obligations are immediate, but we must show that
(Jρf ● ρK, (λx.e) v) Ð→∗ (Jρf ● ρ′ ● ρ+K, v). By the operational semantics, (Jρf ● ρK, (λx.e) v) Ð→ (Jρf ● ρK, e[v/x]).
Then by H3.

Lemma 6.141 (wp-alloc). (∀ ℓ. ℓ↦ v –⋆ Q̂(ℓ)) ⊧ wp (alloc v) {Q̂}

Proof. Let ρ be arbitrary such that (∀ ℓ. ℓ↦ v –⋆ Q̂(ℓ))(ρ)
(H1)

. Let ρf # ρ(H2). Choose an ℓ such that ℓ ∉ ρf ● ρ(H3).
Instantiate H1 with ℓ, ℓ↦ own(v), ρ ● ℓ↦ own(v) and we have Q̂(ℓ)(ρ ● ℓ↦ own(v))

(H4)
.

Choose ∃ρ′, ρ+, v to be ρ ● ℓ↦ own(v),∅, ℓ. It suffices if:

• ρ ● ℓ↦ own(v)# ρf : By H2 and H3.

• ∅# ρf ● ρ′: By definition.

• (Jρf ● ρK, alloc v)Ð→∗ (Jρf ● ρ ● ℓ↦ own(v)K, ℓ): According to the operational semantics, (Jρf ● ρK, alloc v)Ð→
(Jρf ● ρK ⊎ ℓ↦ v, ℓ). By definition, Jρf ● ρK ⊎ ℓ↦ v = Jρf ● ρK ⊎ Jℓ↦ own(v)K = Jρf ● ρ ● ℓ↦ own(v)K.

• ρ↭ ρ ● ℓ↦ own(v): By definition, since ↭ ignores own cells.

• ∅ ∣ own = ∅: By definition.

• Q̂(ℓ)(ρ ● ℓ↦ own(v)): By H4.

Lemma 6.142 (wp-free). ℓ↦ v ⋆ Q̂(v) ⊧ wp (free ℓ) {Q̂}

Proof. Let ρ be arbitrary such that ρ = ρ1 ● ρ2, ρ1 = ℓ ↦ own(v), and Q̂(v)(ρ2)
(H1)

for some ρ1, ρ2. Let ρf # ρ(H2)

be arbitrary. Choose ∃ρ′, ρ+, v to be ρ2,∅, v. Most of the resulting proof obligations are immediate, but we must
show that (Jρf ● ℓ↦ own(v) ● ρ2K, free ℓ)Ð→∗ (Jρf ● ρ2K, v). By definition, Jρf ● ℓ↦ own(v) ● ρ2K = Jρf ● ρ2K⊎ℓ↦ v.
Then by the operational semantics, (Jρf ● ρ2K ⊎ ℓ↦ v, free ℓ)Ð→ (Jρf ● ρ2K, v).
Lemma 6.143 (wp-load). ℓ↦ v ⋆ (ℓ↦ v –⋆ Q̂(v)) ⊧ wp (load ℓ) {Q̂}

Proof. Let ρ be arbitrary such that ρ = ρ1 ● ρ2, ρ1 = ℓ ↦ own(v), and (ℓ↦ v –⋆ Q̂(v))(ρ2)
(H1)

for some ρ1, ρ2.
Instantiate H1 with ρ1, ρ and we have Q̂(v)(ρ)

(H2)
.

Let ρf # ρ be arbitrary. Choose ∃ρ′, ρ+, v to be ρ,∅, v. Most of the resulting proof obligations are immediate, but
we must show (Jρf ● ρK, load ℓ)Ð→∗ (Jρf ● ρK, v). By definition, Jρf ● ρK = Jρf ● ρ1 ● ℓ↦ own(v)K = Jρf ● ρ1K ⊎ ℓ ↦ v.
By the operational semantics, (Jρf ● ρ1K ⊎ ℓ↦ v, load ℓ)Ð→ (Jρf ● ρ1K ⊎ ℓ↦ v, v).

Lemma 6.144 (wp-load-I). ℓ↦Iα P̂ ⋆ (∀ v. ℓ↦Iα (v′. ⌜v = v′⌝ ⋆ P̂ (v)) –⋆ Q̂(v)) ⊧ wp (load ℓ) {Q̂}

Proof. Let R = ∀ v. ℓ ↦Iα (v′. ⌜v = v′⌝ ⋆ P̂ (v)) –⋆ Q̂(v). Suppose ρ ∈ ℓ ↦Iα P̂ ⋆ R, so ρ = ℓ ↦ imm(β, v, ρv) ● ρR
for some β, v, ρv such that ρv ∈ P̂ (v) and α ⊑ ⊔β and ρR ∈ R. Since ⌜v = v′⌝ ⋆ P̂ (v) is equivalent to P̂ (v) for v
arbitrary, and α ⊑ ⊔β, we have that ℓ↦ imm(β, v, ρv) ∈ ℓ↦Iα (v′. ⌜v = v′⌝ ⋆ P̂ (v)). Hence, because ρR ∈ R and ρR is
composable with ℓ↦ imm(β, v, ρv) by assumption, it holds that ℓ↦ imm(β, v, ρv) ● ρR = ρ ∈ Q̂(v).

This establishes ρ ⊧ wp (load ℓ) {Q̂(v)}: for any ρf # ρ, choosing ρ′ ∶= ρ and ρ+ ∶= ∅ and v ∶= v gives
(Jρf ● ρK, load ℓ) Ð→∗ (Jρf ● ρ′K, v) and Jρf ● ρK = Jρf ● ρ′K and ρ ↭ ρ′ ● ρ+ and ρ+∣own = ∅ and ρ′ ∈ Q̂(v) as
needed.

Lemma 6.145 (wp-store). ℓ↦ v1 ⋆ (ℓ↦ v2 –⋆ Q̂(())) ⊧ wp (store ℓ v2) {Q̂}

37

Proof. Let ρ be arbitrary such that ρ = ρ1 ● ρ2, ρ1 = ℓ ↦ own(−), and (ℓ↦ v –⋆ Q̂(()))(ρ2)
(H1)

for some ρ1, ρ2.
Instantiate H1 with ℓ↦ own(v), ρ2 ● ℓ↦ own(v) and we have Q̂(())(ρ2 ● ℓ↦ own(v))

(H2)
.

Let ρf # ρ(H3) be arbitrary. Choose ∃ρ′, ρ+, v to be ρ2 ● ℓ↦ own(v),∅, (). It suffices if:

• ρ2 ● ℓ↦ own(v)# ρf : By H3 and theorem 6.40.

• ∅# ρ2 ● ρ2 ● ℓ↦ own(v): By definition.

• (Jρf ● ℓ↦ own(−) ● ρ2K, store ℓ v) Ð→∗ (Jρf ● ρ2 ● ℓ↦ own(v)K, ()): By definition, ℓ ∈ Jρf ● ℓ↦ own(−) ● ρ2K.
Thus, by the operational semantics, (Jρf ● ℓ↦ own(−) ● ρ2K, store ℓ v) Ð→ (Jρf ● ℓ↦ own(−) ● ρ2K[ℓ ↦ v], ()).
By definition, Jρf ● ℓ↦ own(−) ● ρ2K[ℓ↦ v] = Jρf ● ℓ↦ own(v) ● ρ2K.

• ℓ↦ own(−) ● ρ2 ↭ ρ2 ● ℓ↦ own(v): By definition and theorem 6.47, since ↭ ignores own.

• ∅ ∣ own = ∅: By definition.

• Q̂(())(ρ2 ● ℓ↦ own(v)): By H2.

Lemma 6.146 (wp-ramify). wp (e) {P̂} ⋆ (P̂ –⋆ Q̂) ⊧ wp (e) {Q̂}

Proof. Let ρ be arbitrary such that ρ = ρ1 ● ρ2, P̂ (H1)(ρ1), and (∀ (P̂ –⋆ Q̂))(ρ2)
(H2)

for some ρ1, ρ2. Let ρf # ρ(H3)

be arbitrary.
Instantiate H1 with ρf ● ρ2. Note that ρf ● ρ2 # ρ by H3 and theorem 6.46. As a result, we obtain

that (Jρf ● ρ2 ● ρ1K, e)Ð→∗ (Jρf ● ρ2 ● ρ′ ● ρ+K, v)(H4), ρ1 ↭ ρ′ ● ρ+(H5), ρ+ ∣ own = ∅(H6), and P̂ (v)(ρ′)
(H7)

for some
ρ′ # ρf ● ρ2(H8), ρ+ # ρf ● ρ2 ● ρ′(H9), and v.

Instantiate H2 with v, ρ′, ρ2 ● ρ′ and we obtain Q̂(v)(ρ2 ● ρ′)
(H10)

.
Choose ∃ρ′, ρ+, v to be ρ2 ● ρ′, ρ+, v. Most proof obligations are immediate and others follow from theorem 6.46

or theorem 6.48.

Lemma 6.147 (wp[]). [α]wp (e) {Q̂} ⊧ wp (e) {[α] Q̂}

Proof. Let ρ be arbitrary such that wp (e) {Q̂} (ρ)
(H1)

and @ρ ⊐ α(H2). Let ρf # ρ(H3) be arbitrary.
Instantiate H1 with ρf and we obtain (Jρf ● ρK, e)Ð→∗ (Jρf ● ρ′ ● ρ+K, v)(H4), ρ↭ ρ′ ● ρ+(H5), ρ+ ∣ own = ∅(H6),

and Q̂(v)(ρ′)
(H7)

for some ρ′ # ρf
(H8), ρ+ # ρf ● ρ′(H9), and v.

Choose ∃ρ′, ρ+, v to be ρ′, ρ+, v. All proof obligations are immediate except @ρ′ ⊐ α. From theorem 6.50 with H2
and H5, we obtain @(ρ′ ● ρ+) ⊐ α. From theorem 6.45, we obtain @ρ′ ⊐ α.

Lemma 6.148 (wp-M-forget). ℓ↦Mα P̂ ⋆wp (e) {Q̂} ⊧ wp (e) {Q̂}

Proof. Let ρ be arbitrary such that ρ = ρ1 ● ρ2, ρ1 = ℓ↦ mut(β, v, ρ′, P̂), and wp (e) {Q̂} (ρ2)
(H1)

for some ρ1, ρ2, β,
v, and ρ′. Let ρf # ρ(H2) be arbitrary.

Instantiate H1 with ρf ● ρ1. Note that ρf ● ρ1 # ρ2 by H2 and theorem 6.46. From this, we obtain
that (Jρf ● ρ1 ● ρ2K, e)Ð→∗ (Jρf ● ρ1 ● ρ′ ● ρ+K, v)(H3), ρ2 ↭ ρ′ ● ρ+(H4), ρ+ ∣ own = ∅(H5), and Q̂(v)(ρ′)

(H6)
for some

ρ′ # ρf ● ρ1(H7), ρ+ # ρf ● ρ1 ● ρ′(H8), and v.
Choose ∃ρ′, ρ+, v to be ρ′, ρ+ ● ρ1, v. Note that: ρ′ # ρf by H7 and theorem 6.11; and ρ+ ● ρ1 # ρf ● ρ′(H9) by

H8 and theorem 6.46. Most proof obligations are immediate, but observe that:

• ρ+ ● ρ1 ∣ own = ∅ follows from H5 and by definition, since ρ1 contains only a borrow; and

• ρ1 ● ρ2 ↭ ρ′ ● ρ+ ● ρ1 follows from H4 and H9 and theorem 6.48.

Lemma 6.149 (wp-I-forget). ℓ↦Iα P̂ ⋆wp (e) {Q̂} ⊧ wp (e) {Q̂}

38

Proof. Proceeds almost identically to the proof of theorem 6.148. The reasoning depends only on the resource being
a borrow, not on it being a mutable borrow.

Theorem 6.150 (↺ rule). ℓ↦ Imm α (Nβ.↺βP̂) ⋆ (Nβ.∀ v. P̂ (v) –⋆ wp (e) {[β] Q̂}) ⊧ wp (e) {Q̂}

Proof. Let ρ ∈ ℓ↦ Imm α (Nβ.↺βP̂) ⋆ (Nβ.∀ v. P̂ (v) –⋆ wp (e) {[β] Q̂})(H1)
.

We want to show ρ ∈ wp (e) {Q̂}
(G1)

. Unfolding wp, let ρf # ρ(H2). We want to show ∃ρ′ # ρf
(G2)

, ρ+ # ρ′ ● ρf (G3)
, v.

• (Jρf ● ρK, e) ⇓ (Jρf ● ρ′ ● ρ+K, v)(G4)

• ρ↭ ρ′ ● ρ+(G5)

• ρ+∣own = ∅(G6)

• ρ′ ∈ Q̂(v)
(G7)

Unfolding ⋆ in H1, ∃ρi, ρc such that

• ρ = ρi ● ρc(H3),

• ρi ∈ ℓ↦ Imm α (Nβ.↺βP̂)
(H4)

• ρb ∈ Nβ.∀ v. P̂ (v) –⋆ wp (e) {[β] Q̂}(H5)

Unfolding Imm in H4, we get there exists α, v′, ρ′ such that

• ρi = ℓ↦ imm(α, v′, ρ′)(H6)

• ρ′ ∈ (Nβ.↺βP̂)(v
′)
(H7)

• α ⊑ α(H8)

Unfolding Nin H7, we get there exists γi such that ρ′ ∈ ∀β ⊏ γi. [β] (↺βP̂)(v
′)
(H9)

. Unfolding Nin H5, we get there

exists γb such that ρb ∈ ∀β ⊏ γb. [β] (∀ v. P̂ (v) –⋆ wp (e) {[β] Q̂})(H10)
.

Let β be some lifetime where β ⊏ γi ⊓ γb(H11). Such a β always exists because for any lifetime, the set of lifetimes
shorter than it is infinite. Specializing H9 and H10 to β, unfolding [β] , and specializing to v′, we get

• ρ′ ∈↺βP̂ (v
′)
(H12)

.

• @ρ′ ⊐ β(H13)

• ρb ∈ P̂ (v′) –⋆ wp (e) {[β] Q̂}(H14)

• @ρb ⊐ β(H15)

Unfolding ↺β in H12, we get there exists a ρP̂ (v′) such that ρ ˆP (v′) ∈ rebβ(ρ
′)(H16) and ρ ˆP (v′) ∈ P̂ (v

′)
(H17)

.
By lemma 6.10 with H2, ✓ρ, and therefore ρi # ρb

(H18). Then by lemma 6.55 with H16, ρP̂ (v′) # ρb
(H19).

By similar reasoning, we have ρP̂ (v′) # ρb ● ρf .
By lemma 6.55, ρi # ρP̂ (v). Therefore by lemma 6.15 with H2, ρP̂ (v′) # ρi ● ρb ● ρf (H20).

By the definition of –⋆, ρP̂ (v′) ● ρb ∈ wp (e) {[β] Q̂}
(H21)

. Unfolding wp in H21 and setting ρf = ρi ● ρf , with the com-
patibility constraint from H20, and ρ = ρP̂ (v′) ● ρb, we have there exists ρQ # ρi ● ρf (H22) and ρ+ # ρQ ● ρi ● ρf (H23)

and v such that

• (
r
ρi ● ρf ● ρP̂ (v′) ● ρb

z
, e) ⇓ (Jρi ● ρf ● ρQ ● ρ+K, v)(H24)

39

• ρP̂ (v′) ● ρb ●↭ ρQ ● ρ+(H25)

• ρ+∣own = ∅(H26)

• ρQ ∈ [β] Q̂(v)
(H27)

Unfolding [β] in H27, we get ρQ ∈ Q̂(v)
(H28)

and @ρQ ⊐ β(H29).
Let ρ+′ = ρ+ ⊟ ρP̂ (v′)∣dom(ρ′∣mut,own). By rewriting in H24 with lemma 6.58 applied to H16, H25, H15, H29, H18, and
H23 with lemma 6.11,
(Jρf ● ρi ● ρbK, e) ⇓ (Jρf ● ρQ ● ρi ● ρ+′K, v)(H30).
By lemma 6.11 with H23, ρQ # ρf

(H31), and ρi ● ρ+′ # ρQ ● ρf (H32).
By lemma 6.59 applied to H16, H25, H15, H29, H18, and H23, ρi ● ρb ↭ ρQ ● ρi ● ρ+′(H33).
Now we can prove our goals, setting ρ′ = ρQ, and ρ+ = ρi ● ρ+′,

• G2: ρQ # ρf by H31

• G3: ρi ● ρ+′ # ρQ ● ρf by H32.

• G4: (Jρf ● ρK, e) ⇓ (Jρf ● ρQ ● ρi ● ρ+′K, v′) by H30

• G5: ρi ● ρb ↭ ρQ ● ρi ● ρ+′ by H33

• G6: ρ+∣own = ∅ by H26

• G7: ρQ ∈ Q̂(v) by H28

6.8 Fundamental Property
Lemma 6.151 (Fundamental Property). If ∆;Γ ⊢ e ∶ T then ∆;Γ ⊧ e ∶ T .

Proof. By induction on the typing derivation and appealing to the appropriate compatibility lemma (theorem 6.152
- theorem 6.176) in each case.

Lemma 6.152 (id-compat).
∆;x ∶ T ⊧ x ∶ T

id

Proof. By unfolding and wp-val.

Lemma 6.153 (1I-compat).
∆;∅ ⊧ () ∶ 1

1I

Proof. By unfolding and wp-val.

Lemma 6.154 (1E-compat).
∆;Γ1 ⊧ e1 ∶ 1 ∆;Γ2 ⊧ e2 ∶ T

∆;Γ1,Γ2 ⊧ e1; e2 ∶ T
1E

Proof. Suppose ∆;Γ1 ⊧ e1 ∶ 1(H1) and ∆;Γ2 ⊧ e2 ∶ T (H2). Let δ ∈ J∆K, γ be arbitrary. Split γ into γ1, γ2. Apply
wp-bind. We must show:

GJΓ1Kδ(γ1) ⋆ GJΓ2Kδ(γ2) ⊧ wp (e1γ1) {v1. wp (v1; e2γ2) {VJT Kδ}}
Apply H1, wp-frame, and wp-mono for an arbitrary v1.

VJ1Kδ(v1) ⋆ GJΓ2Kδ(γ2) ⊧ wp (v1; e2γ2) {VJT Kδ}
By unfolding VJ1K, we have v1 = (). Follows from wp-1 and H2.

40

Lemma 6.155 (⊗I-compat).
∆;Γ1 ⊧ e1 ∶ T1 ∆;Γ2 ⊧ e2 ∶ T2
∆;Γ1,Γ2 ⊧ (e1, e2) ∶ T1 ⊗ T2

⊗I

Proof. Suppose ∆;Γ1 ⊧ e1 ∶ T1(H1) and ∆;Γ2 ⊧ e2 ∶ T2(H2). Let δ ∈ J∆K, γ be arbitrary. Split γ into γ1, γ2. Apply
wp-bind. We must show:

GJΓ1Kδ(γ1) ⋆ GJΓ2Kδ(γ2) ⊧ wp (e1γ1) {v1. wp ((v1, e2γ2)) {VJT1 ⊗ T2K}}
Apply H1, wp-frame, and wp-mono for an arbitrary v1. Apply wp-bind. Repeat the previous with H2 for some
v2.

VJT1Kδ(v1) ⋆ VJT2Kδ(v2) ⊧ wp ((v1, v2)) {VJT1 ⊗ T2K}
Fold VJ⊗K. Follows from wp-val.

Lemma 6.156 (⊗E-compat).
∆;Γ1 ⊧ e1 ∶ T 1

1 ⊗ T 2
1 ∆;Γ2, x1 ∶ T 1

1 , x2 ∶ T 2
1 ⊧ e2 ∶ T2

∆;Γ1,Γ2 ⊧ let (x1, x2) = e1; e2 ∶ T2
⊗E

Proof. Suppose ∆;Γ1 ⊧ e1 ∶ T 1
1 ⊗ T 2

1
(H1) and ∆;Γ2, x1 ∶ T 1

1 , x2 ∶ T 2
1 ⊧ e2 ∶ T2

(H2). Let δ ∈ J∆K, γ be arbitrary. Split γ
into γ1, γ2. Apply wp-bind. We must show:

GJΓ1Kδ(γ1) ⋆ GJΓ2Kδ(γ2) ⊧ wp (e1γ1) {v1. wp (let (x1, x2) = v1; e2γ2) {VJT2Kδ}}
Apply H1, wp-frame, and wp-mono for an arbitrary v1. By unfolding VJ⊗K, there exist some v11 , v21 such that
v1 = (v11 , v21).

V
q
T 1
1

y
δ
(v11) ⋆ V

q
T 2
1

y
(v21) ⋆ GJΓ2Kδ(γ2) ⊧ wp (let (x1, x2) = (v11 , v21); e2γ2) {VJT2Kδ}

Follows from wp-⊗ and H2 with γ2[x1 ↦ v11 , x2 ↦ v21].

Lemma 6.157 (⊕I-compat).
∆;Γ ⊧ e ∶ Ti

∆;Γ ⊧ i e ∶ T1 ⊕ T2
⊕I

Proof. Suppose ∆;Γ ⊧ e ∶ Ti(H1). Let δ ∈ J∆K, γ be arbitrary. Apply wp-bind. We must show:

GJΓKδ(γ) ⊧ wp (eγ) {v. wp (iv) {VJT1 ⊕ T2Kδ}}
Apply H1 and wp-mono. Fold VJ⊕K. Follows from wp-val.

Lemma 6.158 (⊕E-compat).
∆;Γ1 ⊧ e1 ∶ T 1

1 ⊕ T 2
1 ∆;Γ2, xi ∶ T i1 ⊧ ei2 ∶ T2 i ∈ {1,2}

∆;Γ1,Γ2 ⊧ match e1 {x1 ⇒ e12, x2 ⇒ e22} ∶ T2
⊕E

Proof. Suppose ∆;Γ1 ⊧ e1 ∶ T 1
1 ⊕ T 2

1
(H1) and ∀ i ∈ {1,2}. ∆;Γ2, xi ∶ T i1 ⊧ ei2 ∶ T2

(H2). Let δ ∈ J∆K, γ be arbitrary. Split
γ into γ1, γ2. Apply wp-bind. We must show:

GJΓ1Kδ(γ1) ⋆ GJΓ2Kδ(γ2) ⊧ wp (e1γ1) {v1. wp (match v1 {x1 ⇒ e12γ2, x2 ⇒ e22γ2}){VJT2Kδ}}
Apply H1, wp-frame, and wp-mono for an arbitrary v1. By unfolding VJ⊕K, there exists some i and v′1.

V
q
T i1

y
δ
(v′1) ⋆ GJΓ2Kδ(γ2) ⊧ wp (match iv′1 {x1 ⇒ e12γ2, x2 ⇒ e22γ2}){VJT2Kδ}

Follows from wp-⊕ and H2 with γ2[xi ↦ v′1].

Lemma 6.159 (⊸I-compat).
∆;Γ, x ∶ T1 ⊧ e ∶ T2
∆;Γ ⊧ λx.e ∶ T1⊸T2

⊸I

Proof. Suppose ∆;Γ, x ∶ T1 ⊧ e ∶ T2(H1). Let δ ∈ J∆K, γ be arbitrary. Apply wp-val. Unfold VJ⊸K and let v′ be
arbitrary. We must show:

GJΓKδ(γ) ⋆ VJT1Kδ(v′) ⊧ wp ((λx.eγ) v′) {VJT2Kδ}
Follows from wp-⊸ and H1.

41

Lemma 6.160 (⊸E-compat).
∆;Γ1 ⊧ e1 ∶ T1 ∆;Γ2 ⊧ e2 ∶ T1⊸T2

∆;Γ1,Γ2 ⊧ e2e1 ∶ T2
⊸E

Proof. Suppose ∆;Γ1 ⊧ e1 ∶ T1(H1) and ∆;Γ2 ⊧ e2 ∶ T1⊸T2
(H2). Let δ ∈ J∆K, γ be arbitrary. Split γ into γ1, γ2. Apply

wp-bind. We must show:

GJΓ1Kδ(γ1) ⋆ GJΓ2Kδ(γ2) ⊧ wp (e1γ1) {v1. wp (e2γ2 v1) {VJT2Kδ}}
Apply H1, wp-frame, and wp-mono for an arbitrary v1. Apply wp-bind.

VJT1Kδ(v1) ⋆ GJΓ2Kδ(γ2) ⊧ wp (e2γ2) {v2. wp (v2 v1) {VJT2Kδ}}
Apply H2, wp-frame, and wp-mono for an arbitrary v2.

VJT1Kδ(v1) ⋆ VJT1⊸T2K(v2) ⊧ wp (v2 v1) {VJT2Kδ}
Follows from unfolding VJ⊸K.
Lemma 6.161 (∀ I-compat).

∆, (′a ⊏ @b); Γ ⊧ e ∶ T
∆;Γ ⊧ λe ∶ ∀ (′a ⊏ @b).T

∀ I

Proof. Suppose ∆, (′a ⊏ @b); Γ ⊧ e ∶ T (H1). Let δ ∈ J∆K, γ be arbitrary. Apply wp-val. We must show:

GJΓKδ(γ) ⊧ VJ∀ (′a ⊏ @b). T Kδ(λ_.eγ)

Unfold VJ∀ K and let α ⊏ @bδ be arbitrary. By ∆-extend, δ[′a↦ α] ∈ J∆, (′a ⊏ @b)K. Extend GJΓKδ with δ[′a↦ α].

GJΓKδ[′a↦α](γ) ⊧ wp ((λ_.eγ) ()) {VJT Kδ[′a↦α]}
Follows from wp-⊸ and H1.

Lemma 6.162 (∀E-compat).
∆;Γ ⊧ e ∶ ∀ (′a ⊏ @b).T ∆ ⊧ @a ⊏ @b

∆;Γ ⊧ e () ∶ T [@a/′a]
∀E

Proof. Suppose ∆;Γ ⊧ e ∶ ∀ (′a ⊏ @b). T (H1) and ∆ ⊧ @a ⊏ @b(H2). Let δ ∈ J∆K, γ be arbitrary. Apply wp-bind. We
must show:

GJΓKδ(γ) ⊧ wp (eγ) {v. wp (v ()) {VJT [@a/′a]Kδ}}
Apply H1 and wp-mono for an arbitrary v.

VJ∀ (′a ⊏ @b). T Kδ(v) ⊧ wp (v ()) {VJT [@a/′a]Kδ}
Unfold VJ∀ K and instantiate with @aδ. Note that @aδ ⊏ @bδ by H2. Apply wp-mono for an arbitrary v′.

VJT Kδ[′a↦@aδ](v
′) ⊧ VJT [@a/′a]Kδ(v′)

Follows from ∆-subst.

Lemma 6.163 ([] I-compat).
∆;Γ ⊧ e ∶ T ∆ ⊧ Γ ⊐ @a

∆;Γ ⊧ e ∶ [@a]T
[] I

Proof. Suppose ∆;Γ ⊧ e ∶ T (H1) and ∆ ⊢ Γ ⊐ @a(H2). Let δ ∈ J∆K, γ be arbitrary. We must show:

GJΓKδ(γ) ⊧ wp (e) {VJ[@a]T Kδ}
Apply theorem 6.62 with H2. Unfold VJ[] K.

[@aδ]GJΓKδ(γ) ⊧ wp (e) {[@aδ]VJT Kδ}
Follows from wp-[] , [] -mono, and H1.

42

Lemma 6.164 ([]E-compat).
∆;Γ ⊧ e ∶ [@a]T

∆;Γ ⊧ e ∶ T
[]E

Proof. Suppose ∆;Γ ⊧ e ∶ [@a]T (H1). Let δ ∈ J∆K, γ be arbitrary. Follows from H1, wp-mono, unfolding VJ[] K, and
[] -l

Lemma 6.165 (alloc -compat).
∆;∅ ⊧ alloc ∶ T⊸Ref T

alloc

Proof. Let δ ∈ J∅K, γ be arbitrary. Apply wp-val and unfold VJ⊸K for an arbitrary v. We must show:

VJT Kδ(v) ⊧ wp (alloc v) {VJ∗T Kδ}
Follows from wp-alloc and unfolding VJ∗K.
Lemma 6.166 (free -compat).

∆;∅ ⊧ free ∶ Ref T⊸T
free

Proof. Let δ ∈ J∅K, γ be arbitrary. Apply wp-val and unfold VJ⊸K for an arbitrary v. We must show:

VJ∗T Kδ(v) ⊧ wp (free v) {VJT Kδ}
Follows from unfolding VJ∗K and wp-free.

Lemma 6.167 (⊑imm-compat).
∆;Γ ⊧ e ∶ Imm @b T ∆ ⊧ @a ⊑ @b

∆;Γ ⊧ e ∶ Imm @a T
⊑imm

Proof. Suppose ∆;Γ ⊧ e ∶ Imm @b T (H1) and ∆ ⊧ @a ⊑ @b(H2). Let δ ∈ J∆K, γ be arbitrary. We must show:

GJΓKδ(γ) ⊧ wp (e) {VJImm @a T Kδ}
Apply H1 to GJΓKδ(γ), then apply wp-mono for an arbitrary v.

VJImm @b T Kδ(v) ⊧ VJImm @a T Kδ(v)
Unfold VJImm Kδ. There exists some ℓ such that v = ℓ.

ℓ↦I@bδ VJT Kδ ⊧ ∃ ℓ. ⌜v = ℓ⌝ ⋆ ℓ↦I@aδ VJT Kδ
Apply I ⊒ with H2. Then choose ∃ ℓ to be ℓ.

Lemma 6.168 (⊑mut-compat).
∆;Γ ⊧ e ∶Mut @b T ∆ ⊧ @a ⊑ @b

∆;Γ ⊧ e ∶Mut @a T
⊑mut

Proof. Suppose ∆;Γ ⊧ e ∶Mut @b T (H1) and ∆ ⊧ @a ⊑ @b(H2). Let δ ∈ J∆K, γ be arbitrary. We must show:

GJΓKδ(γ) ⊧ wp (e) {VJMut @a T Kδ}
Apply H1 to GJΓKδ(γ), then apply wp-mono for an arbitrary v.

VJMut @b T Kδ(v) ⊧ VJMut @a T Kδ(v)
Unfold VJMut Kδ. There exists some ℓ such that v = ℓ.

ℓ↦M@bδ VJT Kδ ⊧ ∃ ℓ. ⌜v = ℓ⌝ ⋆ ℓ↦M@aδ VJT Kδ
Apply M ⊒ with H2. Then choose ∃ ℓ to be ℓ.

43

Lemma 6.169 (swap-compat).
∆;∅ ⊧ swap ∶ Ref T1⊸T2⊸Ref T2 ⊗ T1

swap

Proof. Let δ ∈ J∅K, γ be arbitrary. Apply wp-val. We must show:

⊧ VJRef T1⊸T2⊸Ref T2 ⊗ T1Kδ(swap)
Unfold VJ⊸K. Let v1 be arbitrary. Apply wp-⊸.

VJRef T1Kδ(v1) ⊧ wp (λy.let z = load v1; store v1 y; (x, z)) {VJT2⊸Ref T2 ⊗ T1Kδ}
Apply wp-val. Unfold VJ⊸K. Let v2 be arbitrary. Apply wp-⊸.

VJRef T1Kδ(v1) ⋆ VJT2Kδ(v2) ⊧ wp (let z = load v1; store v1 v2; (v1, z)) {VJRef T2 ⊗ T1Kδ}
Unfold let.

VJRef T1Kδ(v1) ⋆ VJT2Kδ(v2) ⊧ wp ((λz.store v1 v2; (v1, z)) (load v1)) {VJRef T2 ⊗ T1Kδ}
Apply wp-bind.

VJRef T1Kδ(v1) ⋆ VJT2Kδ(v2) ⊧ wp (load v) {v3. wp ((λz.store v1 v2; (v1, z)) v3) {VJRef T2 ⊗ T1Kδ}}
Unfold VJRef K. There exists some ℓ, v′1 such that v1 = ℓ.

ℓ↦ v′1 ⋆ VJT1Kδ(v′1) ⋆ VJT2Kδ(v2) ⊧ wp (load v) {v3. wp ((λz.store v1 v2; (ℓ, z)) v3) {VJRef T2 ⊗ T1Kδ}}
Apply wp-load, wp-⊸, and wp-bind.

ℓ↦ v′1 ⋆ VJT1Kδ(v′1) ⋆ VJT2Kδ(v2) ⊧ wp (store v1 v2) {_. wp ((ℓ, v′1)) {VJRef T2 ⊗ T1Kδ}}
Apply wp-store and wp-val.

ℓ↦ v2 ⋆ VJT1Kδ(v′1) ⋆ VJT2Kδ(v2) ⊧ VJRef T2 ⊗ T1Kδ((ℓ, v′1))
This follows from folding and unfolding V definitions.

Lemma 6.170 (copy-compat). ∆ ⊧ copy ∶ Imm @a T⊸(Imm @a T ⊗ Imm @a T).

Proof.
Proof step Current goal
Let δ ∈ J∆K be arbitrary. ⊧ VJImm @a T1⊸(Imm @a T ⊗ Imm @a T)Kδ(copy)
Apply wp-val.
Let v be arbitrary.
Apply wp⊸. VJImm @a T Kδ(v) ⊧ VJImm @a T ⊗ Imm @a T Kδ(v, v).
Unfold. VJImm @a T Kδ(v) ⊧ ∃ v1, v2. ⌜(v, v) = (v1, v2)⌝ ⋆ VJT Kδ(v1) ⋆ VJT2Kδ(v2)
Choose v1 = v2 = v. VJImm @a T Kδ(v) ⊧ VJImm @a T Kδ(v) ⋆ VJImm @a T Kδ(v)
Unfold. ∃ ℓ. ⌜v = ℓ⌝ ⋆ ℓ↦I@aδ VJT K ⊧ VJImm @a T Kδ(v) ⋆ VJImm @a T Kδ(v)
Substitute v = ℓ. ℓ↦I@aδ VJT K ⊧ VJImm @a T Kδ(ℓ) ⋆ VJImm @a T Kδ(ℓ)
Unfold and simplify. ℓ↦I@aδ VJT K ⊧ (ℓ↦I@aδ VJT K) ⋆ (ℓ↦I@aδ VJT K)
Apply I-Dup.

Lemma 6.171 (forget-compat). ∆ ⊧ forget ∶ B⊸1 for all B ∈ {Imm @a T,Mut @a T,Unk}.

Proof.
Proof step Current goal
Let δ ∈ J∆K be arbitrary. ⊧ VJB⊸1Kδ(forget)
Apply wp-val.
Let v be arbitrary.
Apply wp⊸. VJBKδ(v) ⊧ wp (()) {VJ1Kδ}

Now there are three cases:

44

• Case B = Imm @a T :
Proof step Current goal

VJImm @a T Kδ(v) ⊧ wp (()) {VJ1Kδ}
Unfold. ∃ ℓ. ⌜v = ℓ⌝ ⋆ ℓ↦I VJT K ⊧ wp (()) {VJ1Kδ}
Substitute v = ℓ. ℓ↦I VJT K ⊧ wp (()) {VJ1Kδ}
Apply wp-I-forget. ℓ↦I VJT K ⊧ ℓ↦I VJT K ⋆wp (()) {VJ1Kδ}
Cancel ℓ↦I VJT K. emp ⊧ wp (()) {VJ1Kδ}
Apply wp-val. emp ⊧ VJ1Kδ()
Unfold. emp ⊧ ⌜() = ()⌝

• Case B =Mut @a T :
Proof step Current goal

VJMut @a T Kδ(v) ⊧ wp (()) {VJ1Kδ}
Unfold. ∃ ℓ. ⌜v = ℓ⌝ ⋆ ℓ↦M VJT K ⊧ wp (()) {VJ1Kδ}
Substitute v = ℓ. ℓ↦M VJT K ⊧ wp (()) {VJ1Kδ}
Apply wp-M-forget. ℓ↦M VJT K ⊧ ℓ↦M VJT K ⋆wp (()) {VJ1Kδ}
Cancel ℓ↦M VJT K. emp ⊧ wp (()) {VJ1Kδ}
Apply wp-val. emp ⊧ VJ1Kδ()
Unfold. emp ⊧ ⌜() = ()⌝

• Case B = Unk:
Proof step Current goal

VJUnkKδ(v) ⊧ wp (()) {VJ1Kδ}
Unfold. emp ⊧ wp (()) {VJ1Kδ}
Apply wp-val. emp ⊧ VJ1Kδ()
Unfold. emp ⊧ ⌜() = ()⌝

Lemma 6.172 (withbor-compat1). ∆ ⊧ withbor ∶ Ref T1⊸(∀ ′a ⊏⊓∆. Imm ′a T1⊸[′a]T2)⊸Ref T1 ⊗ T2

Proof. Let Tf ∶= (∀ ′a ⊏⊓∆. Imm ′a T1⊸[′a]T2). Fix δ ∈ J∆K.
⊧ VJRef T1⊸Tf⊸Ref T1 ⊗ T2Kδ(withbor)

Apply wp-val,wp⊸ and fix v, vf .

VJRef T1Kδ(v) ⋆ VJTf Kδ(vf) ⊧ wp (v, vf () v) {VJRef T1 ⊗ T2Kδ}
Unfold.

(∃ ℓ vℓ. ⌜v = ℓ⌝ ⋆ ℓ↦ vℓ ⋆ VJT1Kδ(vℓ)) ⋆ VJTf K(vf) ⊧ wp (v, vf () v) {VJRef T1 ⊗ T2Kδ}
Substitute.

ℓ↦ vℓ ⋆ VJT1Kδ(vℓ) ⋆ VJTf Kδ(vf) ⊧ wp (ℓ, vf () ℓ) {VJRef T1 ⊗ T2Kδ}
Apply ImmFrame.

VJTf K(vf) ⊧ Nα. ℓ↦Iα VJT1Kδ(vℓ) –⋆ wp (ℓ, vf () ℓ) {[α] (ℓ↦ vℓ –⋆ VJT1Kδ(vℓ) –⋆ VJRef T1 ⊗ T2Kδ)}
Unfold VJRef T1 ⊗ T2Kδ.

VJTf Kδ(vf) ⊧ Nα. ℓ↦Iα VJT1Kδ(vℓ) –⋆ wp (ℓ, vf () ℓ) {[α] (ℓ↦ vℓ –⋆ VJT1Kδ(vℓ) –⋆ P̂)}
where P̂ (v′) = ∃ v1, v2. ⌜v′ = (v1, v2)⌝ ⋆ VJRef T1Kδ(v1) ⋆ VJT2Kδ(v2)

Apply wp-bind.

VJTf Kδ(vf) ⊧ Nα. ℓ↦Iα VJT1Kδ(vℓ) –⋆ wp (vf () ℓ) {v2.wp (ℓ, v2) {[α] (ℓ↦ vℓ –⋆ VJT1Kδ(vℓ) –⋆ P̂ (ℓ, v2))}}
where P̂ (v′) = ∃ v1, v2. ⌜v′ = (v1, v2)⌝ ⋆ VJRef T1Kδ(v1) ⋆ VJT2Kδ(v2)

45

Choose v1 ∶= ℓ, v2 ∶= v2.
VJTf Kδ(vf) ⊧ Nα. ℓ↦Iα VJT1Kδ(vℓ) –⋆ wp (vf () ℓ) {v2.wp (ℓ, v2) {[α] (ℓ↦ vℓ –⋆ VJT1Kδ(vℓ) –⋆ Q)}}
where Q = VJRef T1Kδ(ℓ) ⋆ VJT2Kδ(v2)

Unfold VJRef T1Kδ.
VJTf Kδ(vf) ⊧ Nα. ℓ↦Iα VJT1Kδ(vℓ) –⋆ wp (vf () ℓ) {v2.wp (ℓ, v2) {[α] (ℓ↦ vℓ –⋆ VJT1Kδ(vℓ) –⋆ Q̂)}}
where Q̂(ℓ, v2) = (∃ vℓ. ℓ↦ vℓ ⋆ VJT1Kδ(vℓ)) ⋆ VJT2Kδ(v2)

Choose vℓ ∶= vℓ in Q̂.
Cancel ℓ↦ vℓ,VJT1Kδ(vℓ).

VJTf Kδ(vf) ⊧ Nα. ℓ↦Iα VJT1Kδ(vℓ) –⋆ wp (vf () ℓ) {v2.wp (ℓ, v2) {(ℓ, v2). [α]VJT2Kδ(v2)}}
Apply wp-val.

VJTf Kδ(vf) ⊧ Nα. ℓ↦Iα VJT1Kδ(vℓ) –⋆ wp (vf () ℓ) {v2.[α]VJT2Kδ(v2)}
Unfold Tf .

V
q
∀ ′a ⊏⊓∆. Imm ′a T1⊸[′a]T2

y
δ
(vf) ⊧ Nα. ℓ↦Iα VJT1Kδ(vℓ) –⋆ wp (vf () ℓ) {v2.[α]VJT2Kδ(v2)}

Apply NR on LHS.
Fix α ⊏⊓δ by N-mono.
Apply –⋆R.

V
q
∀ ′a ⊏⊓∆. Imm ′a T1⊸[′a]T2

y
δ
(vf) ⋆ ℓ↦Iα VJT1Kδ(vℓ) ⊧ wp (vf () ℓ) {v2.[α]VJT2Kδ(v2)}

Fold and simplify, using that ′b does not occur free in T1 or T2.

V
q
∀ ′a ⊏⊓∆. Imm ′a T1⊸[′a]T2

y
δ
(vf) ⋆ VJImm ′a T1Kδ[′a↦α](ℓ) ⊧ wp (vf () ℓ) {v2.VJ[′a]T2Kδ[′a↦α](v2)}

Follows from ∀E-compat and⊸E-compat.

Lemma 6.173 (withbor-compat2). If ∆ ⊢ T1 ⊐ @b then

∆ ⊧ withbor ∶ Ref T1⊸(∀ ′a ⊏⊓∆. Mut ′a T1⊸[′a]T2)⊸Ref T1 ⊗ T2
Proof. Let Tf = (∀ ′a ⊏ ⊓∆. Mut ′a T1 ⊸ [′a]T2). Follow the proof of theorem 6.172 up to the point where
ImmFrame is applied. The proof state is:

ℓ↦ vℓ ⋆ VJT1Kδ(vℓ) ⋆ VJTf Kδ(vf) ⊧ wp (ℓ, vf () ℓ) {VJRef T1 ⊗ T2Kδ}
Since ∆ ⊢ T1 ⊐ @b, theorem 6.60 gives VJT1Kδ ⊧ [@bδ]VJT1Kδ, so MutFrame applies.

VJTf Kδ(vf) ⊧ Nα. ℓ↦Mα VJT1Kδ –⋆ wp (ℓ, vf () ℓ) {[α]∀ v′. ℓ↦ v′ –⋆ VJT1Kδ(v′) –⋆ VJRef T1 ⊗ T2Kδ}
Apply wp-bind, wp-ret.

VJTf Kδ(vf) ⊧ Nα. ℓ↦Mα VJT1Kδ –⋆ wp (vf () ℓ) {v′′.[α]∀ v′. ℓ↦ v′ –⋆ VJT1Kδ(v′) –⋆ VJRef T1 ⊗ T2Kδ(ℓ, v′′)}
Unfold VJRef T1 ⊗ T2Kδ and simplify.

VJTf Kδ(vf) ⊧ Nα. ℓ↦Mα VJT1Kδ –⋆ wp (vf () ℓ) {v′′.[α]∀ v′. ℓ↦ v′ –⋆ VJT1Kδ(v′) –⋆ P (v′, v′′)}
where P (v′, v′′) = ∃ v1, v2. ⌜(ℓ, v′′) = (v1, v2)⌝ ⋆ (∃ vℓ. ℓ↦ vℓ ⋆ VJT1Kδ(vℓ)) ⋆ VJT2Kδ(v′′)

Choose v1 ∶= ℓ, v2 ∶= v′′, vℓ ∶= v′.
VJTf Kδ(vf) ⊧ Nα. ℓ↦Mα VJT1Kδ –⋆ wp (vf () ℓ) {v′′.[α]∀ v′. ℓ↦ v′ –⋆ VJT1Kδ(v′) –⋆ P (v′, v′′)}
where P (v′, v′′) = ℓ↦ v′ ⋆ VJT1Kδ(v′) ⋆ VJT2Kδ(v′′)

Cancel ℓ↦ v′,VJT1Kδ(v′).
VJTf Kδ(vf) ⊧ Nα. ℓ↦Mα VJT1Kδ –⋆ wp (vf () ℓ) {v′′.[α]VJT2Kδ(v′′)}

The remainder of the proof follows the proof of theorem 6.172, from the step “Unfold Tf” onwards.

46

Lemma 6.174 (withbor-compat3). ∆ ⊧ withbor ∶Mut @a T1⊸(∀ ′b ⊏⊓∆. Mut ′b T1⊸[′b]T2)⊸Mut @a T1 ⊗ T2

Proof. Let Tf = (∀ ′b ⊏⊓∆. Mut ′b T1⊸[′b]T2). Fix δ ∈ J∆K.
⊧ VJMut @a T1⊸Tf⊸Mut @a T1 ⊗ T2Kδ(withbor)

Apply wp-val,wp⊸ and fix v, vf .

VJMut @a T1Kδ(v) ⋆ VJTf Kδ(vf) ⊧ wp (v, vf () v) {VJMut @a T1 ⊗ T2Kδ}
Unfold and let α ∶= @aδ.

∃ ℓ. ⌜v = ℓ⌝ ⋆ ℓ↦Mα VJT1Kδ ⋆ VJTf K(vf) ⊧ wp (v, vf () v) {VJMut @a T1 ⊗ T2Kδ}
Substitute.

ℓ↦Mα VJT1Kδ ⋆ VJTf K(vf) ⊧ wp (ℓ, vf () ℓ) {VJMut @a T1 ⊗ T2Kδ}
Apply AntiFrame.

VJTf K(vf) ⊧ (∀ v. ℓ↦ v –⋆ VJT1Kδ(v) –⋆
wp (ℓ, vf () ℓ) {v′.∃ v. ℓ↦ v ⋆ VJT1Kδ(v) ⋆ (ℓ↦Mα VJT1Kδ(v) –⋆ VJMut @a T1 ⊗ T2Kδ)})

Apply ∀R, –⋆R.

VJTf K(vf) ⋆ ℓ↦ v ⋆ VJT1Kδ(v)
⊧ wp (ℓ, vf () ℓ) {v′.∃ v. ℓ↦ v ⋆ VJT1Kδ(v) ⋆ (ℓ↦Mα VJT1Kδ(v) –⋆ VJMut @a T1 ⊗ T2Kδ(v′))}

Apply wp-bind.

VJTf K(vf) ⋆ ℓ↦ v ⋆ VJT1Kδ(v)
⊧ wp (vf () ℓ) {v′′.wp (ℓ, v′′) {v′.∃ v. ℓ↦ v ⋆ VJT1Kδ(v) ⋆ (ℓ↦Mα VJT1Kδ(v) –⋆ VJMut @a T1 ⊗ T2Kδ(v′))}}

Apply wp-val.

VJTf K(vf) ⋆ ℓ↦ v ⋆ VJT1Kδ(v)
⊧ wp (vf () ℓ) {v′′.∃ v. ℓ↦ v ⋆ VJT1Kδ(v) ⋆ (ℓ↦Mα VJT1Kδ(v) –⋆ VJMut @a T1 ⊗ T2Kδ(ℓ, v′′))}

Simplify VJMut @a T1 ⊗ T2Kδ(ℓ, v′′).
VJTf K(vf) ⋆ ℓ↦ v ⋆ VJT1Kδ(v)
⊧ wp (vf () ℓ) {v′′.∃ v. ℓ↦ v ⋆ VJT1Kδ(v) ⋆ (ℓ↦Mα VJT1Kδ(v) –⋆ ℓ↦Mα VJT1K ⋆ VJT2Kδ(v′′))}

Cancel ℓ↦Mα VJT1Kδ(v).
VJTf K(vf) ⋆ ℓ↦ v ⋆ VJT1Kδ(v) ⊧ wp (vf () ℓ) {v′′.∃ v. ℓ↦ v ⋆ VJT1Kδ(v) ⋆ VJT2Kδ(v′′)}

Have ∆ ⊢ T1 ⊐ @a by well-formedness of the type Mut @a T1, hence VJT1Kδ ⊧ [α]VJT1Kδ by theorem 6.60, so
MutFrame applies.

VJTf K(vf) ⊧ Nα. ℓ↦Mα VJT1Kδ –⋆ wp (vf () ℓ) {v′′.[α]∀ v′. ℓ↦ v′ –⋆ VJT1Kδ(v′) –⋆ ∃ v. ℓ↦ v ⋆ VJT1Kδ(v) ⋆ VJT2Kδ(v′′)}
In the postcondition, choose v ∶= v′ and cancel.

VJTf K(vf) ⊧ Nα. ℓ↦Mα VJT1Kδ –⋆ wp (vf () ℓ) {v′′.[α]VJT2Kδ(v′′)}
The remainder of the proof follows the proof of theorem 6.172, from the step “Unfold Tf” onwards.

Lemma 6.175 (withload-compat). ∆ ⊧ withload ∶ Imm @a T1⊸(∀ ′b ⊏⊓∆. Imm ′b T1⊸[′b]T2)⊸T2

47

Proof. Let δ ∈ J∆K be arbitrary. We must show

⊧ V
q
Imm @a T1⊸(∀ ′b ⊏⊓∆. Imm ′b T1⊸[′b]T2)⊸T2

y
δ
(withload)

Unfold VJ⊸K. Let v be arbitrary. Apply wp⊸ and wp-val.

VJImm @a T1Kδ(v) ⊧ Vq
(∀ ′b ⊏⊓∆. Imm ′b T1⊸[′b]T2)⊸T2

y
δ
(λf.f () (load v))

Unfold VJ⊸K. Let vf be arbitrary. Apply wp⊸.

VJImm @a T1Kδ(v) ⋆ Vq
∀ ′b ⊏⊓∆. Imm ′b T1⊸[′b]T2

y
δ
(vf) ⊧ wp (vf () (load v)) {VJT2Kδ}

Unfold VJImmK. There exists some ℓ such that v = ℓ.

ℓ↦I@aδ VJT1Kδ ⋆ Vq
∀ ′b ⊏⊓∆. Imm ′b T1⊸[′b]T2

y
δ
(vf) ⊧ wp (vf () (load ℓ)) {VJT2Kδ}

Apply wp-bind.

ℓ↦I@aδ VJT1Kδ ⋆ Vq
∀ ′b ⊏⊓∆. Imm ′b T1⊸[′b]T2

y
δ
(vf) ⊧ wp (load ℓ) {vℓ.wp (vf () vℓ) {VJT2Kδ}}

Apply wp-load-I. Let vℓ be arbitrary.

ℓ↦I@aδ (v′. (v′ = vℓ) ⋆ VJT1Kδ(v′)) ⋆ Vq
∀ ′b ⊏⊓∆. Imm ′b T1⊸[′b]T2

y
δ
(vf) ⊧ wp (vf () vℓ) {VJT2Kδ}

Apply ↺V2.

ℓ↦I@aδ (v′. (v′ = vℓ)⋆ Nβ.↺βVJImm ′b T1Kδ[′b↦β](v′))⋆Vq
∀ ′b ⊏⊓∆. Imm ′b T1⊸[′b]T2

y
δ
(vf) ⊧ wp (vf () vℓ) {VJT2Kδ}

Apply theorem 6.134.

ℓ↦I@aδ (v′. Nβ.↺β((v
′ = vℓ) ⋆ VJImm ′b T1Kδ[′b↦β](v′)))⋆Vq

∀ ′b ⊏⊓∆. Imm ′b T1⊸[′b]T2
y
δ
(vf) ⊧ wp (vf () vℓ) {VJT2Kδ}

Apply theorem 6.150.

V
q
∀ ′b ⊏⊓∆. Imm ′b T1⊸[′b]T2

y
δ
(vf) ⊧ Nβ.∀ v′.v′ = vℓ ⋆ VJImm ′b T1Kδ[′b↦β](v′) –⋆ wp (vf () v′) {[β]VJT2Kδ}

Substitute vℓ for v′.

V
q
∀ ′b ⊏⊓∆. Imm ′b T1⊸[′b]T2

y
δ
(vf) ⊧ Nβ.VJImm ′b T1Kδ[′b↦β](vℓ) –⋆ wp (vf () vℓ) {[β]VJT2Kδ}

Apply NR on the left-hand side. By N-mono, let β ⊏⊓δ be arbitrary. Apply –⋆R.

V
q
∀ ′b ⊏⊓∆. Imm ′b T1⊸[′b]T2

y
δ
(vf) ⋆ VJImm ′b T1Kδ[′b↦β](v′) ⊧ wp (vf () vℓ) {[β]VJT2Kδ}

Have VJT2Kδ = VJT2Kδ[′b↦β] because ′b does not occur free in T2.

V
q
∀ ′b ⊏⊓∆. Imm ′b T1⊸[′b]T2

y
δ
(vf) ⋆ VJImm ′b T1Kδ[′b↦β](v′) ⊧ wp (vf () vℓ) {[β]VJT2Kδ[′b↦β]}

Fold EJ−K.
V

q
∀ ′b ⊏⊓∆. Imm ′b T1⊸[′b]T2

y
δ
(vf) ⋆ VJImm ′b T1Kδ[′b↦β](v′) ⊧ EJ[′b]T2Kδ[′b↦β](vf () vℓ)

Follows from ∀E-compat and⊸E-compat.

Lemma 6.176 (withswap-compat).
∆;∅ ⊧ withswap ∶Mut @a T1⊸(T1⊸T1 ⊗ T2)⊸Mut @a T1 ⊗ T2

withswap

48

Proof. Let δ ∈ J∆K be arbitrary. We must show

⊧ VJMut @a T1⊸(T1⊸T1 ⊗ T2)⊸Mut @a T1 ⊗ T2Kδ(withswap)
Unfold VJ⊸K. Let v1 be arbitrary.

VJMut @a T1Kδ(v1) ⊧ wp (withswap v1) {VJ(T1⊸T2 ⊗ T2)⊸Mut @a T1 ⊗ T2Kδ}
Apply wp-⊸ and wp-val. Unfold VJ⊸K. Let vf be arbitrary. Apply wp-⊸.

VJMut @a T1Kδ(v1) ⋆ VJT1⊸T1 ⊗ T2Kδ(vf) ⊧ wp (let (y, z) = vf (load v1); store v1 y; (v1, z)) {VJMut @a T1 ⊗ T2Kδ}
Unfold VJMut K. There exists some ℓ such that v1 = ℓ.

ℓ↦M@aδ VJT1Kδ ⋆ VJT1⊸T1 ⊗ T2Kδ(vf) ⊧ wp (let (y, z) = vf (load ℓ); store ℓ y; (ℓ, z)) {VJMut @a T1 ⊗ T2Kδ}
Apply wp-m-anti-frame. Let v2 be arbitrary.

ℓ↦ v2 ⋆ VJT1Kδ(v2) ⋆ VJT1⊸T1 ⊗ T2Kδ(vf) ⊧
wp (let (y, z) = vf (load ℓ); store ℓ y; (ℓ, z)) {∃ v. ℓ↦ v ⋆ VJT1Kδ(v) ⋆ (ℓ↦M@aδ VJT1Kδ –⋆ VJMut @a T1 ⊗ T2Kδ)}

Apply wp-bind to focus on load ℓ. Apply wp-load.

ℓ↦ v2 ⋆ VJT1Kδ(v2) ⋆ VJT1⊸T1 ⊗ T2Kδ(vf) ⊧
wp (let (y, z) = vf v2; store ℓ y; (ℓ, z)) {∃ v. ℓ↦ v ⋆ VJT1Kδ(v) ⋆ (ℓ↦M@aδ VJT1Kδ –⋆ VJMut @a T1 ⊗ T2Kδ)}

Instantiate VJT1⊸T1 ⊗ T2Kδ(vf) with VJT1Kδ(v2).
ℓ↦ v2 ⋆wp (vf v2) {VJT1 ⊗ T2K} ⊧
wp (let (y, z) = vf v2; store ℓ y; (ℓ, z)) {∃ v. ℓ↦ v ⋆ VJT1Kδ(v) ⋆ (ℓ↦M@aδ VJT1Kδ –⋆ VJMut @a T1 ⊗ T2Kδ)}

Apply wp-bind to focus on f v2. Apply wp-mono. Unfold VJ⊗K for some v3, v4.

ℓ↦ v2 ⋆ VJT1Kδ(v3) ⋆ VJT2Kδ(v4) ⊧
wp (let (y, z) = (v3, v4); store ℓ y; (ℓ, z)) {∃ v. ℓ↦ v ⋆ VJT1Kδ(v) ⋆ (ℓ↦M@aδ VJT1Kδ –⋆ VJMut @a T1 ⊗ T2Kδ)}

Apply wp-⊗.

ℓ↦ v2 ⋆ VJT1Kδ(v3) ⋆ VJT2Kδ(v4) ⊧
wp (store ℓ v3; (ℓ, v4)) {∃ v. ℓ↦ v ⋆ VJT1Kδ(v) ⋆ (ℓ↦M@aδ VJT1Kδ –⋆ VJMut @a T1 ⊗ T2Kδ)}

Apply wp-bind to focus on store ℓ v3. Apply wp-store, wp-1, and wp-val.

ℓ↦ v3 ⋆ VJT1Kδ(v3) ⋆ VJT2Kδ(v4) ⊧ ∃ v. ℓ↦ v ⋆ VJT1Kδ(v) ⋆ (ℓ↦M@aδ VJT1Kδ –⋆ VJMut @a T1 ⊗ T2Kδ((ℓ, v4)))
Choose ∃ v to be v3.

VJT2Kδ(v4) ⋆ ℓ↦M@aδ VJT1Kδ ⊧ VJMut @a T1 ⊗ T2Kδ((ℓ, v4))
This follows from the V definitions.

49

	Syntax
	Statics
	Dynamics
	Logical Relation
	Model
	Theorems, Lemmas, Proofs
	Standard Lemmas
	Non-standard Lemmas
	Frame and Anti-Frame
	Standard Entailments
	Non-standard Entailments
	Reborrowing Entailments
	Weakest Precondition Rules
	Fundamental Property

