
All the Binaries Together: A Semantic Approach to
Application Binary Interfaces

Andrew Wagner
Northeastern University

Boston, MA, USA
ahwagner@ccs.neu.edu

Amal Ahmed
Northeastern University

Boston, MA, USA
amal@ccs.neu.edu

1 Introduction
Nearly all modern systems critically depend on interoper-
ability between languages and libraries, but reasoning for-
mally about this interaction has proven to be a serious chal-
lenge, as different components maintain drastically differ-
ent invariants. Recent efforts [13, 14] to tackle the interoper-
ability problem make use of advanced type systems that re-
late types or behaviors in one language to those in another.

But as we descend down toward the binary layer, the so-
phisticated type machinery slowly disappears, and all that
remains is an unspoken promise between components. This
promise is the application binary interface (ABI), which spec-
ifies data layouts, calling conventions, and other low-level
details required for interaction. But while type systems have
grown richer, ABIs have largely remained the same, lacking
analogous advances in expressivity and safety guarantees.

However, there is a growing demand for change among
newer systems languages that are aiming to gradually re-
place C. For example, the Swift team has adopted an “ABI
Stability Manifesto” [3], which proposes a safe but flexible
ABI with dynamic overhead, a decidedly different approach
than that of C. Likewise, the Rust team has recently drafted
an RFC for “crABI” [16], a higher-level ABI that will provide
support for types like references and strings while remain-
ing compatible with C’s ABI. As the developer community
looks to build these new ABIs, we aim to provide guidance
on how to formally specify them and design them to be safe.

2 The Approach
In this section, we sketch out our proposed approach and
a handful of potential applications over an abstract source
language 𝐿𝑆 and an abstract target platform 𝑳𝑻 . The goal
of an ABI is to specify precisely the protocol for interacting
with a target component 𝑪 according to a source signature𝛴
(e.g., a header or manifest file). We capture this semantically
using a realizability model:

Definition 1 (ABI). An application binary interface (ABI)
A is a predicate on target components 𝑪 that is indexed by
source signatures 𝛴 .

Definition 2 (Compliance). A component 𝑪 is ABI compli-
ant with 𝛴 if A⟦𝛴⟧(𝑪).
PriSC, January 20, 2024, London, United Kingdom
2024.

The idea of using realizability models to relate high-level
types to low-level code is hardly new [6, 7], but here we are
treating the model itself as an independent artifact, not just
a proof device. Usually, one will first be interested in estab-
lishing properties of the ABI itself; e.g., that if A⟦𝛴⟧(𝑪),
then calling any function in 𝑪 will behave according to its
type in 𝛴 . But perhapsmore interesting are properties about
clients of the ABI (e.g., different compilers, FFIs, shared li-
braries).

One such property is compliant compilation. A key bene-
fit of a stable semantic ABI is that it canonizes the meaning
of source types, so components originating from different
compliant compilers can be soundly linked together.
Application 1 (Compliant Compilation). A compiler
•+ is ABI compliant if ⊢ 𝐶 : 𝛴 implies A⟦𝛴⟧(𝐶+).

This benefit can also be a drawback, since locking into
a stable ABI can signifcantly limit the degrees of freedom
for compiler writers; e.g., it might disallow niche representa-
tion optimizations that could help performance. To mitigate
this, compliance is an extensional property that is only re-
quired at the boundary between components: within a com-
ponent, a compiler might use whatever internal, unstable,
ABI it wishes, but it assumes and guarantees complaince at
the boundary (i.e., on public imports and exports). This idea
need not only apply to compilers from the same language;
it can also be used to link code compiled from entirely dif-
ferent languages:
Application 2 (FFI). A foreign function interface (FFI) for a
language 𝐿𝑆 ′ to language 𝐿𝑆 consists of a type translation •∗
such that

• whenever one exports a component 𝐶 at 𝛴 , the com-
piler must guarantee that A⟦𝛴∗⟧(𝐶+); and

• whenever one imports a component 𝑪 at 𝛴 , the com-
piler may assume A⟦𝛴∗⟧(𝑪).

Another place where stability is crucial is for core shared
libraries, where forward and backward compatibility is of
the utmost importance. But, just as for compiler writers,
rigidity in the ABI can prevent upgrades to libraries, which
can force library developers toward leaky abstractions; e.g.,
reserving space in a struct for future use [5]. Swift, on the
other hand, aims to support “library evolution” [2], which
permits a certain class of signature updates by specifying
layouts to be “resilient” by default. For example, a “fragile”

1



PriSC, January 20, 2024, London, United Kingdom Andrew Wagner and Amal Ahmed

layout for a struct might hardcode the offsets of its fields
based on the declaration order, whereas a resilient onemight
store the offsets in a lookup table, allowing the declaration
order to change without breaking ABI compatibility. With
a semantic ABI, we can reason about resilience formally:

Application 3 (Supported Evolution). A signature 𝛴 sup-
ports evolution to 𝛴 ′ if A⟦𝛴 ′⟧(𝑪) implies A⟦𝛴⟧(𝑪).

3 Case Study: Reference Counting
Our first application of this technique is is a case study that
develops a standard functional language with a reference
counting ABI over a C-like target. While we plan to explore
using a lower-level platform (e.g., WebAssembly [10]) to re-
move C from the equation, as a first step, we take a cue from
Rust’s crABI proposal [16]: because so many languages and
tools already support C’s ABIs, there is practical value in
building on top of it rather than outright replacing it. We
consider a handful of variations of the ABI, but the core
model dictates that all source values are boxed and reference-
counted in the target. The model itself is specified in a sepa-
ration logic with custom ghost state [1, 8, 11, 12].
The heart of the model is the object predicate O, which

specifies how an object of a given type is laid out in memory
and what logical resources it owns or shares. The simplest
exmaple is the object predicate for integers Z:

O⟦Z⟧(ℓ) ≜ ∃ 𝒏. ℓ ↦→ 𝒏

An integer object is just a pointer to an integer in memory,
wherewe use the points-to connective from separation logic
to indicate ownership.
A slightly larger example is the object predicate for prod-

ucts 𝑇1 ×𝑇2:

O⟦𝑇1 ×𝑇2⟧(ℓ) ≜ ∃ ℓ1, ℓ2.

ℓ ↦→ ℓ1 ★ ℓ + 1 ↦→ ℓ2 ★ R⟦𝑇1⟧(ℓ1) ★ R⟦𝑇2⟧(ℓ2)
A product object is a pointer to two adjacent pointers in
memory, where the first of these is a reference to a 𝑇1, and
likewise the second is a reference to a 𝑇2.
As mentioned earlier, all values are boxed and reference-

counted, so the reference predicate R is used pervasively:

R⟦𝑇⟧(ℓ) ≜ @ℓ O⟦𝑇⟧(ℓ + 1)
Physically, a reference is just a pointer to the cell holding
the count, but logically it also confers shared permission to
the object being reference-counted, which is stored in ad-
jacent memory. We represent this with the jump modality1
@ℓ 𝑃 , where ℓ is the cell with the reference count and 𝑃
is the resource it protects. Logically, memory is organized
into a graph of resources connected by references, and if we
were to “jump across” the edge ℓ from the current resource,
we would obtain a resource satisfying 𝑃 . Each occurrence
of the jump modality at a particular location makes a single

1The name and notation is inspired by hybrid logic [4].

contribution to the reference count. The effect that physi-
cally incrementing (++ℓ) or decrementing (−−ℓ) the count
has on logical resources can be seen in the following infer-
ence rules:

Rc-new{
𝑃 ★@ℓ 𝑄

}
𝒆
{
𝑅
}{

𝑃 ★ ℓ ↦→ 1 ★𝑄
}
𝒆
{
𝑅
}

Rc-incR{
@ℓ 𝑃

}
++ℓ

{
𝒏. ⌜𝒏 > 1⌝ ★@ℓ 𝑃 ★@ℓ 𝑃

}
Rc-decR{
@ℓ 𝑃

}
−−ℓ

{
𝒏. ⌜𝒏 > 0⌝ ∨ (⌜𝒏 = 0⌝ ★ ℓ ↦→ 0 ★ 𝑃)

}
Using these rules to satisfy the counting requirements

of the ABI is very reminiscent of working with reference-
counted objects in Python’s C API [9]: one needs to keep
careful track of when a reference may be stolen—that is, the
referencemay be consumed—andwhen itmust be borrowed—
that is, the reference must be returned. As it relates to func-
tion calls, stealing a reference usually requires the caller to
increment, whereas borrowing a reference usually requires
the callee to increment. To eliminate ambiguity, the ABI dic-
tates a particular calling convention for a function 𝑇1 → 𝑇2:
it steals its input reference R⟦𝑇1⟧ and returns a reference
R⟦𝑇2⟧:

O⟦𝑇1 → 𝑇2⟧(ℓ) △≈ ∃ 𝒇 .

ℓ ↦→ 𝒇 ★ ∀ ℓ1.
{
R⟦𝑇1⟧(ℓ1)

}
𝒇 (ℓ1)

{
ℓ2. R⟦𝑇2⟧(ℓ2)

}
Roughly, a function object is a pointer to a function pointer

that obeys the calling convention. The actual definition of
O⟦𝑇1 → 𝑇2⟧ is more involved: since we support closures, we
must also specify how environments are stored, destroyed,
and passed in the calling convention.

To exercise the model, we develop a compiler and prove
that it is compliant. The compiler is inspired by the Perceus
scheme [15]: internally, the type system tracks variable uses
linearly, and explicit applications of contraction and weak-
ening in the typing derivation cause the compiler to insert
increment and decrement operations.

4 Conclusion
So far, we have formalized an ABI for the reference count-
ing case study and we are in the process of proving compiler
compliance. Next, we plan to formalize instances of library
evolution and intra-language ABI migration (e.g., two com-
pilers with different representation choices), as well as a for-
eign function interface to a different source language.
For future work, a natural avenue is scaling the languages

of study. For platforms, we will explore usingWebAssembly
and its Component Model Proposal [17] as building blocks.
For sources, Rust is certainly a top priority, as questions

2



All the Binaries Together: A Semantic Approach to ABIs PriSC, January 20, 2024, London, United Kingdom

about its ABI are under active discussion [16], but formal-
izing the idiosyncracies of Swift’s resilient ABI is another
compelling option.

3



PriSC, January 20, 2024, London, United Kingdom Andrew Wagner and Amal Ahmed

References
[1] Andrew W Appel. 2014. Program logics for certified compilers. Cam-

bridge University Press.
[2] Apple. 2015. Library Evolution. https://github.com/apple/swift/blob/

main/docs/LibraryEvolution.rst.
[3] Apple. 2017. ABI Stability Manifesto. https://github.com/apple/swift/

blob/main/docs/ABIStabilityManifesto.md.
[4] Carlos Areces and Balder ten Cate. 2007. 14 Hybrid logics. In Studies

in Logic and Practical Reasoning. Vol. 3. Elsevier, 821–868.
[5] Aria Beingessner. 2022. C Isn’t A Programming Language Any-

more. https://faultlore.com/blah/c-isnt-a-language/#case-study-
minidump_handle_data.

[6] Nick Benton and Nicolas Tabareau. 2009. Compiling functional types
to relational specifications for low level imperative code. In Proceed-
ings of the 4th international workshop on Types in language design and
implementation. 3–14.

[7] Nick Benton and Uri Zarfaty. 2007. Formalizing and verifying seman-
tic type soundness of a simple compiler. In Proceedings of the 9th ACM
SIGPLAN international conference on Principles and practice of declar-
ative programming. 1–12.

[8] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew
Parkinson, and Hongseok Yang. 2013. Views: compositional reason-
ing for concurrent programs. In Proceedings of the 40th annual ACM
SIGPLAN-SIGACT symposium on principles of programming languages.
287–300.

[9] Python Software Foundation. 2023. Python/C API Reference Manual.
https://docs.python.org/3/c-api/intro.html#reference-counts.

[10] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF
Bastien. 2017. Bringing the web up to speed with WebAssembly. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 185–200.

[11] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular
foundation for higher-order concurrent separation logic. Journal of
Functional Programming 28 (2018), e20.

[12] Ruy Ley-Wild and Aleksandar Nanevski. 2013. Subjective auxiliary
state for coarse-grained concurrency. In Proceedings of the 40th an-
nual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. 561–574.

[13] Daniel Patterson, Noble Mushtak, AndrewWagner, and Amal Ahmed.
2022. Semantic soundness for language interoperability. In Proceed-
ings of the 43rd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation. 609–624.

[14] Daniel Patterson, Andrew Wagner, and Amal Ahmed. 2023. Seman-
tic Encapsulation using Linking Types. In Proceedings of the 8th ACM
SIGPLAN InternationalWorkshop on Type-Driven Development. 14–28.

[15] Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen.
2021. Perceus: Garbage free reference counting with reuse. In Proceed-
ings of the 42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation. 96–111.

[16] Rust Language RFCs. 2023. #3470: crABI v1. https://github.com/rust-
lang/rfcs/pull/3470.

[17] WebAssembly. 2023. Component Model. https://github.com/
WebAssembly/component-model.

4

https://github.com/apple/swift/blob/main/docs/LibraryEvolution.rst
https://github.com/apple/swift/blob/main/docs/LibraryEvolution.rst
https://github.com/apple/swift/blob/main/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/main/docs/ABIStabilityManifesto.md
https://faultlore.com/blah/c-isnt-a-language/#case-study-minidump_handle_data
https://faultlore.com/blah/c-isnt-a-language/#case-study-minidump_handle_data
https://docs.python.org/3/c-api/intro.html#reference-counts
https://github.com/rust-lang/rfcs/pull/3470
https://github.com/rust-lang/rfcs/pull/3470
https://github.com/WebAssembly/component-model
https://github.com/WebAssembly/component-model

	1 Introduction
	2 The Approach
	3 Case Study: Reference Counting
	4 Conclusion
	References

